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Abstract
This article deals with the novel method for finding solutions for the initial-boundary
value problems (IBVPs), which is called the Sawangtong’s Green function homotopy
perturbation method, shortly called SGHPM. The SGHPM is a method which
combines the homotopy perturbation method with Green’s function method. The
convergence analysis for the SGHPM is shown. Furthermore, some examples are
presented to illustrate the validity of the proposed method and to ensure that SGHPM
is a technique which is powerful and efficient for finding approximate analytic
solutions of IBVPs.
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1 Introduction
It has been known for a long time that Green’s function method is a powerful classical
one for analytical manipulation of solution of boundary value problems. Furthermore,
the homotopy perturbation method (HPM) is a technique which is powerful and efficient
for finding approximate analytic solutions of nonlinear initial value problems without the
need of a linearization process. The HPM was first introduced by He in 1998 [3, 4]. In
general, HPM and Green’s function method have been successfully applied to solve many
linear and nonlinear equations in science and engineering by many authors [2–6].

The main objective of this article is to propose a novel method for finding solutions
for the initial-boundary value problems (IBVPs), which is called the Sawangtong’s Green
function homotopy perturbation method (SGHPM). The SGHPM is a combination of
HPM and Green’s function method.

The organization of the rest of the paper is as follows. The idea of SGHPM is given in
Sect. 2. In Sect. 3, the solution existence and convergence analysis for SGHPM method
are investigated. The applications of SGHPM for finding an analytical solution for IBVPs
are verified in Sect. 4. The last section deals with the conclusions about the SGHPM tech-
nique.

2 Basic idea of SGHPM
Let a, b and T be positive constants with 0 < a < b and 0 < T ≤ ∞. To illustrate the ba-
sic ideas of the new method, we consider the following initial-boundary value problem
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(IBVP):

ut(x, t) = 1
r(x) (k(x)ux(x, t))x + u(x, t) for (x, t) ∈ (a, b) × (0, T],

u(x, 0) = u0(x) for x ∈ [a, b],
α1u(a, t) + β1ux(a, t) = 0 and α2u(b, t) + β2ux(b, t) = 0 for 0 < t ≤ T ,

⎫
⎪⎬

⎪⎭
(1)

where u0 is a given function, k, k′ and r are continuous on [a, b], k(x) > 0 on [a, b] and
r(x) > 0 on [a, b], and αi and βi for i = 1, 2 are real constants such that α1α2 ≥ 0, α2

1 +α2
2 �= 0,

β1β2 ≥ 0 and β2
1 + β2

2 �= 0. Let G(x, t, ξ , τ ) denote Green’s function corresponding to the
IBVP (1). Based on the eigenfunction expansion technique [2], Green’s function is defined
by

G(x, t, ξ , τ ) =
∞∑

k=0

φk(x)φk(ξ )e–λk (t–τ ) for 0 ≤ τ < t ≤ T , (2)

where λk and φk are eigenvalue and its corresponding eigenfunction given by the following
regular Sturm–Liouville problem:

d
dx

(

k(x)
dφ

dx

)

+ λr(x)φ = 0 for x ∈ (a, b),

α1φ(a) + β1
d

dx
φ(a) = 0 and α2φ(b) + β2

d
dx

φ(b) = 0.
(3)

Note that the following properties are well-known for the regular Sturm–Liouville prob-
lem:

1. All the eigenvalues of the Sturm–Liouville problem (3) are real.
2. All the eigenvalues of the Sturm–Liouville problem (3) are simple, that is, to each

eigenvalue there corresponds only one linearly independent eigenfunction. Further,
the eigenvalues form an infinite sequence and can be ordered according to increasing
magnitude so that λ1 < λ2 < λ3 < · · · < λn < · · · .

3. Eigenfunctions φn are real and can be normalized so that
∫ b

a r(x)φ2
n(x) dx = 1.

4. If φn and φm are two eigenfunctions of the Sturm–Liouville problem (3)
corresponding to eigenvalues λn and λm, respectively, and if λn �= λm, then
∫ b

a r(x)φn(x)φm(x) dx = 0.
5. The set of eigenfunctions {φn} is complete.
Using Green’s second identity, the IBVP (1) can be transformed into the associated in-

tegral equation

u(x, t) =
∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )u(ξ , τ ) dξ dτ . (4)

By the homotopy perturbation technique [3, 4], we construct a homotopy v(x, t; p) : [a, b]×
[0, T] × [0, 1] → R which satisfies

H
(
v(x, t; p); p

)
= (1 – p)

(
v(x, t; p) – ṽ0(x, t)

)
+ p

(

v(x, t; p) –
∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ

+
∫ t

0

∫ b

a
G(x, t, ξ , τ )v(ξ , τ ; p) dξ dτ

)

= 0, (5)
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where p ∈ [0, 1] is an embedding parameter and ṽ0(x, t) is an initial guess for (5), which
satisfies initial and boundary conditions that can be freely chosen [1]. Equation (5) is called
a homotopy equation. Equivalently, it can be written as follows:

v(x, t; p) = ṽ0 + p
(

–̃v0 +
∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ

+
∫ t

0

∫ b

a
G(x, t, ξ , τ )v(ξ , τ ; p) dξ dτ

)

. (6)

Obviously, we have

p = 0 ⇒ H
(
v(x, t; 0); 0

)
= v(x, t; 0) – ṽ0(x, t) = 0,

p = 1 ⇒ H
(
v(x, t; 1); 1

)
= v(x, t; 1) –

∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ

–
∫ t

0

∫ b

a
G(x, t, ξ , τ )v(ξ , τ ; 1) dξ dτ = 0.

By the HPM technique, the solution v(x, t; p) in Eq. (6) is presented by the infinite series

v(x, t; p) =
∞∑

n=0

pnvn(x, t). (7)

By substituting Eq. (7) into Eq. (6), we obtain

∞∑

n=0

pnvn = ṽ0 + p

(

–̃v0 +
∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ

+
∫ t

0

∫ b

a
G(x, t, ξ , τ )

( ∞∑

n=0

pnvn(ξ , τ )

)

dξ dτ

)

.

By equating the coefficients of the corresponding powers of p one can find an approximate
solution vn(x, t) for n = 0, 1, 2, . . . of Eq. (7). We then get the recurrence relation as given
below:

v0(x, t) = ṽ0(x, t),
v1(x, t) = –̃v0 +

∫ b
a G(x, t, ξ , 0)u0(ξ ) dξ +

∫ t
0
∫ b

a G(x, t, ξ , τ )v0(ξ , τ ) dξ dτ ,
vn+1(x, t) =

∫ t
0
∫ b

a G(x, t, ξ , τ )vn(ξ , τ ) dξ dτ for n ≥ 1.

⎫
⎪⎬

⎪⎭
(8)

From Eq. (7), the solution v(x, t; p) is

v(x, t; p) = v0(x, t) + pv1(x, t) + p2v2(x, t) + p3v3(x, t) + · · · .

As p converges to 1, the approximate analytical solution u(x, t) of IBVP (1) can be ex-
pressed as

u(x, t) = v(x, t; 1) = v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · · .
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3 Solution existence and convergence analysis
In order to obtain the existence result for problem (1), let us introduce the Banach
space C([a, b] × [0, T]). The C([a, b] × [0, T]) is the space of all continuous functions
on [a, b] × [0, T], and its norm is defined by ‖u‖ = max(x,t)∈[a,b]×[0,T] |u(ξ , τ )| for any u ∈
C([a, b] × [0, T]). The existence of the solution for problem (1) is established in the fol-
lowing theorem.

Theorem 1 Assume that
∫ T

0
∫ b

a G(x, t, ξ , τ ) dξ dτ < 1 for any (x, t) ∈ [a, b] × [0, T]. Then,
problem (1) has a unique solution u ∈ C([a, b] × [0, T]).

Proof Let us consider the corresponding integral equation (4) to problem (1):

u(x, t) =
∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )u(ξ , τ ) dξ dτ .

Let F be an operator such that F : C([a, b] × [0, T]) → C([a, b] × [0, T]) and

F
(
u(x, t)

)
=

∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )u(ξ , τ ) dξ dτ .

We next will show that operator F is contractive. Let u and v be in C([a, b] × [0, T]). Then
by the positivity G and for any (x, t) ∈ [a, b] × [0, T],

∣
∣F

(
u(x, t)

)
– F

(
v(x, t)

)∣
∣ =

∣
∣
∣
∣

∫ t

0

∫ b

a
G(x, t, ξ , τ )

(
u(ξ , τ ) – v(ξ , τ )

)
dξ dτ

∣
∣
∣
∣

≤
∫ t

0

∫ b

a
G(x, t, ξ , τ ) dξ dτ max

(x,t)∈[a,b]×[0,T]

∣
∣u(ξ , τ ) – v(ξ , τ )

∣
∣

≤
∫ T

0

∫ b

a
G(x, t, ξ , τ ) dξ dτ‖u – v‖.

This implies that ‖Fu – Fv‖ ≤ ∫ T
0

∫ b
a G(x, t, ξ , τ ) dξ dτ‖u – v‖, i.e., F is a contraction map-

ping. Therefore, the Banach fixed point theorem yields that the integral equation (4) has a
unique solution, or equivalently, problem (1) has a unique solution u ∈ C([a, b] × [0, T]).

�

The convergence of the SGHPM is described in the theorem below.

Theorem 2 Assume that
∫ T

0
∫ b

a G(x, t, ξ , τ ) dξ dτ < 1 for any (x, t) ∈ [a, b] × [0, T]. Let
{vn}∞n=0 be a sequence in a Banach space C([a, b] × [0, T]) given by (8). If there exists a
positive constant σ with 0 < σ < 1 and vn(x, t) ≤ σvn–1(x, t) for any (x, t) ∈ [a, b] × [0, T]
and n = 1, 2, 3, . . . , then the infinite series

∑∞
n=0 vn converges to u, where u is the solution of

problem (1).

Proof Let Sn be the nth partial sum of the series
∑∞

n=0 vn. Firstly, we will show that the
sequence {Sn}∞n=0 be a Cauchy sequence in C([a, b] × [0, T]).

Let m, l ∈ N be such that m > l. Then for any (x, t) ∈ [a, b] × [0, T],

∣
∣Sm(x, t) – Sm–1(x, t)

∣
∣ =

∣
∣vm(x, t)

∣
∣ ≤ σ

∣
∣vm–1(x, t)

∣
∣ ≤ σ 2∣∣vm–2(x, t)

∣
∣

≤ · · · ≤ σ m∣
∣v0(x, t)

∣
∣ ≤ σ m‖v0‖.
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Thus,

‖Sm – Sm–1‖ = max
(x,t)∈[a,b]×[0,T]

∣
∣Sm(x, t) – Sm–1(x, t)

∣
∣ ≤ σ m‖v0‖. (9)

By (9), we obtain that for any (x, t) ∈ [a, b] × [0, T],

∣
∣Sm(x, t) – Sl(x, t)

∣
∣ ≤

m–l–1∑

k=0

|Sl+k+1 – Sl+k| ≤
m–l–1∑

k=0

σ l+k+1‖v0‖ = σ l+1 1 – σ m–l

1 – σ
‖v0‖.

It follows from 0 < σ < 1 that ‖Sm – Sl‖ ≤ σ l+1

1–σ
‖v0‖. As l → ∞, we can conclude that se-

quence {Sn}∞n=0 is a Cauchy sequence in C([a, b] × [0, T]). Let ũ = limn→∞ Sn. Since u is the
solution of problem (1), u satisfies

u(x, t) =
∫ b

a
G(x, t, ξ , 0)u0(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )u(ξ , τ ) dξ dτ .

Suppose that ũ �= u. Then by the positivity of G and for any (x, t) ∈ [a, b] × [0, T],

∣
∣̃u(x, t) – u(x, t)

∣
∣ =

∣
∣
∣
∣
∣

lim
n→∞

n–1∑

k=0

vk – u(x, t)

∣
∣
∣
∣
∣

≤
∫ t

0

∫ b

a
G(x, t, ξ , τ )

∣
∣
∣
∣
∣

(

lim
n→∞

n–2∑

k=0

vk

)

– u(ξ , τ )

∣
∣
∣
∣
∣
dξ dτ

≤
∫ T

0

∫ b

a
G(x, t, ξ , τ ) dξ dτ ‖̃u – u‖.

This means that ‖̃u–u‖ ≤ ∫ T
0

∫ b
a G(x, t, ξ , τ ) dξ dτ ‖̃u–u‖. Since ‖̃u–u‖ �= 0, we obtain that

∫ T
0

∫ b
a G(x, t, ξ , τ ) dξ dτ ≥ 1 for any (x, t) ∈ [a, b] × [0, T]. This contradicts the assumption

that
∫ T

0
∫ b

a G(x, t, ξ , τ ) dξ dτ < 1 for any (x, t) ∈ [a, b] × [0, T]. Hence, the series
∑∞

n=0 vn

converges to u, which is the solution of problem (1). �

Theorem 3 Let λ̃ be the principal eigenvalue of the regular Sturm–Liouville problem (3)
with λ̃ > 0 and let φ̃ be the principal eigenfunction associated with the principal eigenvalue.

If u0 = φ̃, then the analytical solution of problem (1) is the of form u(x, t) = (b –
a)φ̃(x)e–(̃λ–1)t for any (x, t) ∈ [a, b] × [0, T].

Proof By Green’s second identity, the IBVP (1) can be transformed into the integral equa-
tion

u(x, t) =
∫ b

a
G(x, t, ξ , 0)φ̃(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )u(ξ , τ ) dξ dτ ,

where G(x, t, ξ , τ ) is the corresponding Green’s function and

G(x, t, ξ , τ ) =
∞∑

k=0

φk(x)φk(ξ )e–λk (t–τ ) for 0 ≤ τ < t ≤ T .
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By HPM technique, the homotopy v(x, t; p) : [a, b] × [0, T] × [0, 1] → R is defined by

v(x, t; p) = ṽ0 + p
(

–̃v0 +
∫ b

a
G(x, t, ξ , 0)φ̃(ξ ) dξ

+
∫ t

0

∫ b

a
G(x, t, ξ , τ )v(ξ , τ ; p) dξ dτ

)

, (10)

where p ∈ [0, 1] is an embedding parameter, ṽ0 is an initial function which can be chosen
freely, and ṽ0 satisfies the initial and boundary conditions of problem (1). We see that

p = 0 ⇒ v(x, t; 0) = ṽ0(x, t),

p = 1 ⇒ v(x, t; 1) =
∫ b

a
G(x, t, ξ , 0)φ̃(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )v(ξ , τ ; 1) dξ dτ .

The case of p = 1 means that v(x, t; 1) satisfies the corresponding integral equation to prob-
lem (1), or equivalently v(x, t; 1) is the analytical solution of problem (1). By the HPM tech-
nique, we assume v(x, t; p) =

∑∞
n=0 pnvn(x, t) and then substitute v(x, t; p) =

∑∞
n=0 pnvn(x, t)

into (10). We then have that

∞∑

n=0

pnvn(x, t) = ṽ0 + p

(

–̃v0 +
∫ b

a
G(x, t, ξ , 0)φ̃(ξ ) dξ

+
∫ t

0

∫ b

a
G(x, t, ξ , τ )

( ∞∑

n=0

pnvn(ξ , τ )

)

dξ dτ

)

,

or

v0(x, t) = ṽ0(x, t),

v1(x, t) = –̃v0 +
∫ b

a
G(x, t, ξ , 0)φ̃(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )v0(ξ , τ ) dξ dτ ,

vn+1(x, t) =
∫ t

0

∫ b

a
G(x, t, ξ , τ )vn(ξ , τ ) dξ dτ for n ≥ 1.

First, we set ṽ0(x, t) = ( b–a
2 )φ̃(x)e–̃λt . Then v0(x, t) = ṽ0(x, t) = ( b–a

2 )φ̃(x)e–̃λt . We next con-
sider that

v1(x, t) = –̃v0 +
∫ b

a
G(x, t, ξ , 0)φ̃(ξ ) dξ +

∫ t

0

∫ b

a
G(x, t, ξ , τ )v0(ξ , τ ) dξ dτ

= –
(

b – a
2

)

φ̃(x)e–̃λt +
∫ b

a

∞∑

k=0

φk(x)φk(ξ )e–λktφ̃(ξ ) dξ

+
∫ t

0

∫ b

a

∞∑

k=0

φk(x)φk(ξ )e–λk (t–τ )
(

b – a
2

)

φ̃(ξ )e–̃λτ dξ dτ .
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From the orthogonality of eigenfunctions we get

v1(x, t) = –
(

b – a
2

)

φ̃(x)e–̃λt + φ̃(x)e–̃λt

+
(

b – a
2

)

φ̃(x)
∫ t

0
e–̃λ(t–τ )e–̃λτ dτ

=
(

b – a
2

)

φ̃(x)e–̃λt +
(

b – a
2

)

φ̃(x)e–̃λtt.

Next we have that

v2(x, t) =
∫ t

0

∫ b

a
G(x, t, ξ , τ )v1(ξ , τ ) dξ dτ

=
∫ t

0

∫ b

a

∞∑

k=0

φk(x)φk(ξ )e–λk (t–τ )

×
[(

b – a
2

)

φ̃(ξ )e–̃λτ +
(

b – a
2

)

φ̃(ξ )e–̃λτ τ

]

dξ dτ

=
(

b – a
2

)

φ̃(x)e–̃λtt +
(

b – a
2

)

φ̃(x)e–̃λt t2

2!

and

v3(x, t) =
∫ t

0

∫ b

a
G(x, t, ξ , τ )v2(ξ , τ ) dξ dτ

=
(

b – a
2

)

φ̃(x)e–̃λt t2

2!
+

(
b – a

2

)

φ̃(x)e–̃λt t3

3!
.

From the above calculations, we obtain that

vn(x, t) =
(

b – a
2

)

φ̃(x)e–̃λt tn–1

(n – 1)!
+

(
b – a

2

)

φ̃(x)e–̃λt tn

n!

for any n ≥ 1. Since v(x, t; p) =
∑∞

n=0 pnvn(x, t), we have

v(x, t; p) = v0(x, t) + pv1(x, t) + p2v2(x, t) + p3v3(x, t) + · · ·

=
(

b – a
2

)

φ̃(x)e–̃λt + p
[(

b – a
2

)

φ̃(x)e–̃λt +
(

b – a
2

)

φ̃(x)e–̃λtt
]

+ p2
[(

b – a
2

)

φ̃(x)e–̃λtt +
(

b – a
2

)

φ̃(x)e–̃λt t2

2!

]

+ p3
[(

b – a
2

)

φ̃(x)e–̃λt t2

2!
+

(
b – a

2

)

φ̃(x)e–̃λt t3

3!

]

+ · · · + pn
[(

b – a
2

)

φ̃(x)e–̃λt tn–1

(n – 1)!
+

(
b – a

2

)

φ̃(x)e–̃λt tn

n!

]

+ · · · .
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As p converges to 1, the analytic solution u(x, t) of problem (1) is given by

u(x, t) = v(x, t; 1)

= (b – a)φ̃(x)e–̃λt + (b – a)φ̃(x)e–̃λtt

+ (b – a)φ̃(x)e–̃λt t2

2!
+ (b – a)φ̃(x)e–̃λt t3

3!
+ · · ·

= (b – a)φ̃(x)e–̃λt
[

1 + t +
t2

2!
+

t3

3!
+ · · ·

]

= (b – a)φ̃(x)e–(̃λ–1)t .

Hence, problem (1) has an analytic solution u(x, t) = (b – a)φ̃(x)e–(̃λ–1)t where λ̃ is the prin-
cipal eigenvalue and φ̃ is its corresponding principal eigenfunction of the regular Strum–
Liouville problem defined by (3). �

Note that if the principal eigenvalue λ̃ is zero, then we let the initial function u0 = φ1,
which is the eigenfunction φk with k = 1. We apply the method in Theorem 3 and
then obtain the analytical solution of the IBVP (1) in the following form: u(x, t) = (b –
a)φ1(x)e–(λ1–1)t for any (x, t) ∈ [a, b] × [0, T] and λ1 being the eigenvalue corresponding to
the eigenfunction φ1.

4 Applications
To illustrate the SGHPM for solving the IBVPs, we consider the following examples.

Example 1 Consider the heat equation problem with the Dirichlet boundary condition:

ut(x, t) = uxx(x, t) + u(x, t) for (x, t) ∈ (0, 1) × (0, T],
u(x, 0) = sin(πx) for x ∈ [0, 1],
u(0, t) = 0 and u(1, t) = 0 for 0 < t ≤ T .

⎫
⎪⎬

⎪⎭
(11)

The regular Sturm–Liouville problem corresponding to problem (11) is

φ′′(x) + λφ(x) = 0 for x ∈ (0, 1),

φ(0) = 0 and φ(1) = 0.
(12)

It is well-known that the regular Sturm–Liouville problem (12) has eigenvalues and eigen-
functions given by

λk = (kπ )2 and φk(x) = sin(kπx) for k = 1, 2, 3, . . . .

We see that these eigenfunctions are orthogonal, and that the set {√2 sin(kπx)}∞k=1 consists
of orthonormal eigenfunctions. Furthermore, the corresponding Green’s function of the
IBVP (11) is defined by

G(x, t, ξ , τ ) = 2
∞∑

k=1

sin(kπx) sin(kπξ )e–k2π2(t–τ ) for 0 ≤ τ < t ≤ T . (13)
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For this BVP (11), we see that the principal eigenvalue λ̃ = π2 is not zero and its corre-
sponding eigenfunction is φ̃(x) = sin(πx). It then follows from Theorem 3 that the analyt-
ical solution of IBVP (11) is given by u(x, t) = sin(πx)e–(π2–1)t for any (x, t) ∈ [0, 1] × [0, T].

Example 2 Consider the heat equation problem with the Neumann boundary condition:

ut(x, t) = uxx(x, t) + u(x, t) for (x, t) ∈ (0, 1) × (0, T],
u(x, 0) = cos(πx) for x ∈ [0, 1],
ux(0, t) = 0 and ux(1, t) = 0 for 0 < t ≤ T .

⎫
⎪⎬

⎪⎭
(14)

The regular Sturm–Liouville problem associated with problem (14) is defined by

φ′′(x) + λφ(x) = 0 for x ∈ (0, 1),

φ′(0) = 0 and φ′(1) = 0.
(15)

The regular Sturm–Liouville problem (12) has eigenvalues and eigenfunctions given by

λk = (kπ )2 and φk(x) = cos(kπx) for k = 0, 1, 2, 3, . . . ,

respectively. We then have that these eigenfunctions are orthogonal, and that the set
{1} ∪ {√2 cos(kπx)}∞k=1 consists of orthonormal eigenfunctions. Furthermore, the corre-
sponding Green’s function of IBVP (14) is defined by

G(x, t, ξ , τ ) = 2 + 2
∞∑

k=1

cos(kπx) cos(kπξ )e–k2π2(t–τ ) for 0 ≤ τ < t ≤ T .

In this example, we see that the principal eigenvalue λ̃ is zero. Then we assume the initial
function u0 by u0(x) = φ1(x) = cos(πx). By applying Theorem 3, the analytical solution of
IBVP (14) is defined by u(x, t) = cos(πx)e–(π2–1)t for any (x, t) ∈ [0, 1] × [0, T].

Example 3 Consider the heat equation problem with the periodic boundary condition:

ut(x, t) = uxx(x, t) + u(x, t) for (x, t) ∈ (0, 1) × (0, T],
u(x, 0) = sin(2πx) for x ∈ [0, 1],
u(0, t) = u(1, t) and ux(0, t) = ux(1, t) for 0 < t ≤ T .

⎫
⎪⎬

⎪⎭
(16)

The regular Sturm–Liouville problem of the problem (16) is the following:

φ′′(x) + λφ(x) = 0 for x ∈ (0, 1),

φ(0) = φ(1) and φ′(0) = φ′(1).
(17)

It’s well-known that the eigenvalues and eigenfunctions of the regular Sturm–Liouville
problem (17) are

λk = (2kπ )2 and φk(x) = sin(2kπx) for k = 1, 2, 3, . . . ,
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respectively. The set {√2 sin(2kπx)}∞k=1 forms an orthonormal set. Moreover, the Green’s
function of IBVP (16) is of the form:

G(x, t, ξ , τ ) = 2
∞∑

k=1

sin(2kπx) sin(2kπξ )e–4k2π2(t–τ ) for 0 ≤ τ < t ≤ T .

It follows from Theorem 3 that u(x, t) = sin(2πx)e–(4π2–1)t for any (x, t) ∈ [0, 1] × [0, T] is
the analytic solution of problem (16).

Example 4 Consider the following heat equation problem with the Dirichlet condition:

ut(x, t) = uxx(x, t) + 3ux(x, t) + u(x, t) for (x, t) ∈ (0, 1) × (0, T],
u(x, 0) = e– 3x

2 sin(πx) for x ∈ [0, 1],
u(0, t) = 0 and u(1, t) = 0 for 0 < t ≤ T .

⎫
⎪⎬

⎪⎭
(18)

Let us consider the equation: ut(x, t) = uxx(x, t) + 3ux(x, t) + u(x, t). It can be rewritten in
the form:

ut(x, t) =
1

e3x

(
e3xux

)

x + u(x, t) for (x, t) ∈ (0, 1) × (0, T].

Thus, the regular Sturm–Liouville problem corresponding to problem (18) is

φ′′(x) + 3φ′(x) + λφ(x) = 0 for x ∈ (0, 1),

φ(0) = 0 and φ(1) = 0.
(19)

The characteristic equation of Eq. (19) is

r2 + 3r + λ = 0,

with zeroes

r1 =
–3 +

√
9 – 4λ

2
and r2 =

–3 –
√

9 – 4λ

2
.

If λ < 9
4 , then r1 and r2 are real and distinct, so the general solution of the differential

equation in Eq. (19) is

φ(x) = c1er1x + c2er2x,

where c1 and c2 are arbitrary constants. The boundary conditions require that c1 + c2 = 0
and c1er1 + c2er2 = 0. Since the determinant of this system is er2 – er1 �= 0, the system has
only the trivial solution. Therefore λ isn’t an eigenvalue of Eq. (19).

If λ = 9
4 , then r1 = r2 = –3/2, so the general solution of the differential equation in Eq. (19)

is

φ(x) = (c1 + c2x)er1x,
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where c1 and c2 are arbitrary constants. The boundary condition φ(0) = 0 requires that
c1 = 0, so φ(x) = c2xer1x and the boundary condition φ(1) = 0 requires that c2 = 0. Therefore
λ = 9/4 isn’t an eigenvalue of Eq. (19).

If λ > 9
4 then

r1 = –
3
2

+ iω and r2 = –
3
2

– iω

with

ω =
√

4λ – 9
2

, or equivalently λ =
4ω2 + 9

4
.

In this case the general solution of the differential equation in Eq. (19) is

φ(x) = e– 3x
2 (c1 cosωx + c2 sinωx),

where c1 and c2 are arbitrary constants. The boundary condition φ(0) = 0 requires that
c1 = 0, so φ(x) = c2e– 3x

2 sinωx. Furthermore, the boundary condition φ(1) = 0 holds with
c2 �= 0 if and only if ω = kπ for any k = 1, 2, 3, . . . . Then the eigenvalues are λk = k2π2 + 9

4 ,
with associated eigenfunctions φk(x) = c2e– 3x

2 sin(kπx) for any k = 1, 2, 3, . . . . We then have
that eigenfunctions are orthogonal with respect to the weight function e3x, and that the
set {√2e– 3x

2 sin(kπx)}∞k=1 consists of orthonormal eigenfunctions. Thus, the corresponding
Green’s function of problem (18) is defined by

G(x, t, ξ , τ ) = 2
∞∑

k=1

e–3x sin(kπx) sin(kπξ )e–(k2π2+ 9
4 )(t–τ ) for 0 ≤ τ < t ≤ T .

Therefore, the analytical solution of IBVP (18) is given by

u(x, t) = e– 3x
2 sin(kπx)e–(π2+ 5

4 )t for any (x, t) ∈ [0, 1] × [0, T].

Example 5 Consider the parabolic partial differential equation with variable coefficients:

ut(x, t) = x2uxx(x, t) + xux(x, t) + u(x, t) for (x, t) ∈ (1, 2) × (0, T],
u(x, 0) = sin( π

ln 2 ln x) for x ∈ [1, 2],
u(1, t) = 0 and u(2, t) = 0 for 0 < t ≤ T .

⎫
⎪⎬

⎪⎭
(20)

Let us consider the equation ut(x, t) = x2uxx(x, t) + xux(x, t) + u(x, t). It can be rewritten in
the form:

ut(x, t) = x
(
xux(x, t)

)

x + u(x, t) for (x, t) ∈ (1, 2) × (0, T].

The regular Sturm–Liouville problem corresponding to problem (20) is defined by

x
(
xφ′(x)

)′ + λφ(x) = 0 for x ∈ (1, 2),

φ(1) = 0 and φ(2) = 0.
(21)
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If λ = 0, the differential equation in Eq. (21) reduces to x(xφ′(x))′ = 0, so xφ′(x) = c1,

φ′(x) =
c1

x
and φ(x) = c1 ln x + c2,

where c1 and c2 are arbitrary constants. The boundary condition φ(1) = 0 requires that
c2 = 0, so φ(x) = c1 ln x. The boundary condition φ(2) = 0 requires that c1 ln x = 0, so c1 = 0.
Therefore, zero isn’t an eigenvalue of Eq. (21).

If λ < 0, we write λ = –ω2 with ω > 0, so Eq. (21) becomes

x2φ′′(x) + xφ′(x) – ω2φ(x) = 0,

an Euler equation with indicial equation

r2 – ω2 = (r – ω)(r + ω) = 0.

Therefore, φ(x) = c1xω + c2x–ω , where c1 and c2 are arbitrary constants. The boundary
conditions require that c1 + c2 = 0 and 2ωc1 + 2–ωc2 = 0. Since the determinant of this
system is 2–ω + 2ω �= 0, c1 = c2 = 0. Therefore, Eq. (21) has no negative eigenvalues.

If λ > 0, we write λ = ω2 with ω > 0. Then Eq. (21) becomes

x2φ′′(x) + xφ′(x) + ω2φ(x) = 0,

an Euler equation with indicial equation

r2 + ω2 = (r – iω)(r + iω) = 0.

Thus, φ(x) = c1 cos(ω ln x) + c2 sin(ω ln x), where c1 and c2 are arbitrary constants. The
boundary condition φ(1) = 0 requires that c1 = 0. Therefore, φ(x) = c2 sin(ω ln x). Since
φ(2) = 0, we obtain that c2 sin(ω ln 2) = 0. This holds with c2 �= 0 if and only if ω = kπ

ln 2 for
any k = 1, 2, 3, . . . . Hence, the eigenvalues of Eq. (21) are λk = ( kπ

ln 2 )2, with associated eigen-
functions φk(x) = c2 sin( kπ

ln 2 ln x) for any k = 1, 2, 3, . . . . We then have that eigenfunctions are

orthogonal with respect to the weight function x–1, and that the set {
√

2
ln 2 sin( kπ

ln 2 ln x)}∞k=1
consists of orthonormal eigenfunctions. Moreover, the corresponding Green’s function of
problem (20) is given by

G(x, t, ξ , τ ) =
2

ln 2

∞∑

k=1

sin

(
kπ

ln 2
ln x

)

sin

(
kπ

ln 2
ln ξ

)

e–( kπ
ln 2 )2(t–τ ) for 0 ≤ τ < t ≤ T .

Therefore, the analytical solution of IBVP (20) is given by

u(x, t) = sin

(
π

ln 2
ln x

)

e–(( π
ln 2 )2–1)t for any (x, t) ∈ [0, 1] × [0, T].

5 Conclusion
This research paper deals with the new method used to find the solutions for IBVPs.
This method is named the Sawangtong’s Green function homotopy perturbation method
(SGHPM). The SGHPM is the method that combines the Green’s function method with
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the homotopy perturbation method. For the SGHPM technique, the boundary conditions
are not used in the calculation process for finding the analytical solution of the prob-
lem. But the property of the boundary conditions still is included in the property of the
Green’s function. This makes the SGHPM process simple, easy, and effective. Therefore,
the SGHPM is a technique which is powerful and efficient for finding approximate analytic
solutions of IBVPs as SGHPM applications are presented in Sect. 4.
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