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Abstract
In this paper, we study the IBVP for the 2D Boussinesq equations with fractional
dissipation in the subcritical case, and prove the persistence of global well-posedness
of strong solutions. Moreover, we also prove the long time decay of the solutions, and
investigate the existence of the solutions in Sobolev spacesW2,p(R2)×W1,p(R2) for
some p > 2.
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1 Introduction
In this paper, we study the 2D Boussinesq equations with fractional dissipation. The model
reads

ut + νΛ2αu + u · ∇u + ∇P = θe2,

div u = 0,

θt + κΛ2βθ + u · ∇θ = 0,

u(x, 0) = u0(x), θ (x, 0) = θ0(x), x ∈ Ω ,

u(x, t) = 0, θ (x, t) = 0, x ∈ ∂Ω ,

(1)

where u = (u1, u2) is the velocity vector field, ui = ui(x, t) (i = 1, 2), (x, t) ∈ R2 × R+, θ (x, t)
and P(x, t) denote the scalar temperature and pressure of the fluid, respectively. The con-
stants ν ≥ 0 and κ ≥ 0 denote the viscosity and thermal diffusivity; e2 = (0, 1) is the unit
vector in the vertical direction, and the unknown function θe2 is the buoyancy force.
For the sake of simplicity, we denote Λ :=

√
–
, the square root of the negative Lapla-

cian, and obviously ̂Λf (k) = |k|f̂ (k), where k = (k1, k2) is a tuple consisting two integers,
|k| =

√

k2
1 + k2

2 and the Fourier transform f̂ of a tempered distribution f (x) on Ω is defined
as

f̂ (k) =
1

(2π )2

∫

Ω

f (x)e–ik·x dx. (2)
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More generally, we will define the fractional Laplacian Λsf for s ∈ R with the Fourier series

Λsf :=
∑

k∈Z2

|k|sf̂ (k)eik·x. (3)

As suggested by Jiu, Miao, Wu and Zhang in [33], we classify the parameters α and β

into three categories:
(1) the subcritical case, α + β > 1

2 ;
(2) the critical case, α + β = 1

2 ;
(3) the supercritical case, α + β < 1

2 .
When α = β = 1, the Boussinesq equations (1) reduce to the standard Boussinesq equa-
tion. So far, there has been a lot of literature about the mathematical theory of the standard
Boussinesq equation. In the cases when ν,κ > 0, ν > 0 and κ = 0, as well as κ > 0 and ν = 0,
the global regularity has been studied by many authors (see, e.g., [1, 6, 8, 11, 16, 24, 26–
28, 32, 40, 41, 45, 65, 86, 87]). However, in the case of ν = κ = 0, we only have the local
well-posedness theory (see, e.g., [12, 13, 23]), the global regularity or singularity question
is a rather challenging problem in mathematical fluid mechanics. Recently, the 2D incom-
pressible Boussinesq equations with temperature-dependence or anisotropy dissipation
have attracted considerable attention. In the case of temperature-dependent dissipation,
the global-in-time regularity is well-known (see, e.g., [4–6, 29, 30, 43, 47, 48, 58, 60]). In
the case of anisotropy dissipation, many authors have proved the global well-posedness
(see, e.g., [2, 3, 9, 17, 42, 44, 61, 80]). For a detailed review on interesting results, we refer
the reader to [52, 57].

Our main focus of the research on the 2D Boussinesq equation has been on the global
regularity issue when only fractional dissipation is present. Using the Fourier localization
method, Fang, Qian, and Zhang [19] obtained the local and global well-posedness and gave
some blowup criteria with the velocity or temperature. Hmidi, Keraani, and Rousset [25]
proved the global well-posedness results. Jia, Peng, and Li [31] proved that the generalized
2D Boussinesq equation has a global and unique solution. Jiu, Miao, Wu, and Zhang [33,
34] aimed at the global regularity. Jiu, Wu, and Yang [35] studied the solutions in the peri-
odic box. KC, Regmi, Tao, and Wu [38, 39] studied the global (in time) regularity problem.
Miao and Xue [49] proved the global well-posedness results for rough initial data. Ste-
fanov and Wu [56] solved the global regularity problem. Wu and Xu [63] were concerned
with the global well-posedness and inviscid limits of several systems of Boussinesq equa-
tions. Using energy methods, the Fourier localization technique, and Bony’s paraproduct
decomposition, Xiang and Yan [64] showed the global existence of the classical solutions.
Xu [66] has proved the global existence, uniqueness and regularity of the solution. Xu and
Xue [67] considered the Yudovich-type solution and gave a refined blowup criterion in the
supercritical case. Yang, Jiu, and Wu [70] examined the global regularity issue and estab-
lished the global well-posedness. Ye and Xu [83] established the global regularity of the
smooth solutions, and in [84] they proved the global regularity of the smooth solutions.

There are many papers dealing with the fractional differential equation [10, 14, 20, 22,
50, 53–55, 59, 69, 71, 74–79, 81, 82, 85]. For a recent review of the fractional calculus
operators, we refer the reader to [72]. In hydrodynamics, Boussinesq equation is a low-
dimensional model of fluid dynamics, which plays a very important role in the study of
Raleigh–Bernard convection. Boussinesq equation has many applications in modeling flu-
ids and geophysical fluids [15, 21, 51, 70, 73].
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The following is the first main result of this paper, which asserts the global well-
posedness of the 2D Boussinesq equations (1).

Theorem 1 Let ν > 0,κ > 0, α,β ∈ ( 2
3 , 1). Assume that (u0, θ0) ∈ H1+s(R2) × H1+s(R2), s ∈

(0, 1). Then there exists a unique global solution (u(t), θ (t)) of Boussinesq equations (1) such
that, for any T > 0,

u(t) ∈ C
(

[0, T]; H1+s(R2)) ∩ L2([0, T]; H1+s+α
(

R2)), (4)

θ (t) ∈ C
(

[0, T]; H1+s(R2)) ∩ L2([0, T]; H1+s+β
(

R2)). (5)

Moreover, there exist positive constants λ and C independent of t and such that

∥

∥∇θ (t)
∥

∥

2 ≤ C,
∥

∥∇u(t)
∥

∥

2 ≤ C. (6)

And in the case when min{νλ2α ,κλ2β} > 1
2 , one has

∥

∥Λ1+sθ (t)
∥

∥

2 ≤ C,
∥

∥Λ1+su(t)
∥

∥

2 ≤ C. (7)

Inspired by the work of [62, 68], the second main result of this paper asserts the existence
of the solutions in Sobolev spaces W 2,p(R2) × W 1,p(R2) for some p > 2.

Theorem 2 Let ν > 0,κ > 0, α ≥ 1
2 + n

4 (we consider n = 2), β ∈ (0, 1). For some p ≥ 2, as-
sume that (u0, θ0) ∈ W 2,p(R2)×W 1,p(R2), with div u0 = 0. Then there exists a global solution
(u(t), θ (t)) of Boussinesq equations (1) such that, for any T > 0,

(

u(t), θ (t)
) ∈ C

(

[0, T], W 2,p(R2)) × (

[0, T], W 1,p(R2)). (8)

Remark 1 The same result holds for the case n ≥ 3. The persistence of global well-
posedness should be true in Sobolev spaces, which is left to a future work.

Remark 2 In the case κ = 0, our guess is that Theorems 1–2 remain true.

2 Preliminaries
In this section, we first introduce Kato–Ponce inequality from [37] (see also [28, 36]) which
is important for the proof of Theorem 1, and give a positive inequality from [46] (see also
[40, 66]) and Brezis–Wainger inequality from [7] (see also [18]), which are important for
the proof of Theorem 2.

Lemma 1 ([37]) Suppose that f , g ∈ C∞
c (Ω). Let s > 0 and 1 < r ≤ p1, p2, q1, q2 ≤ +∞ be

such that 1
r = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
with the restriction p1, q2 	= +∞. Then

∥

∥Λs(fg)
∥

∥

Lr ≤ C
(∥

∥Λsf
∥

∥

Lp1 ‖g‖Lp2 + ‖f ‖Lq1
∥

∥Λsg
∥

∥

Lq2

)

, (9)

where C > 0 is a constant.
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Lemma 2 ([46]) Suppose that u ∈ Lp(Rn) is such that Λαu ∈ Lp(Rn). Let 0 ≤ m ≤ 2. For all
p > 1, one has

4(p – 1)
p2

∫

Rn

(

Λ
α
2 |u| p

2
)2 dx ≤

∫

Rn
Λαu · u|u|p–2 dx. (10)

Observe that, if α = 2, integrating (10) by parts, we obtain

∫

Rn

(

Λ|u| p
2
)2 dx =

∫

Rn
Λ2u · u|u|p–2 dx. (11)

Lemma 2 is well-known in the theory of sub-Markovian operators, its statement and the
proof are given in [46].

Lemma 3 ([7]) Suppose that u ∈ L2(R2) ∩ W 1,p(R2). For all p > 1, one has

‖u‖L∞ ≤ C(1 + ‖∇u‖L2
(

1 + log+(‖∇u‖Lp
)) 1

2 + C‖u‖L2 , (12)

where C > 0 is a constant.

3 Proof of Theorem 1
The goal of this section is to prove Theorem 1. The proof is divided into two main parts
showing global existence and uniqueness.

3.1 Global existence
The proof of global existence is based on several steps of careful energy estimates. First,
we start with estimates of ‖u(t)‖ and ‖θ (t)‖.

Lemma 4 Under the assumptions of Theorem 1, one has

∥

∥u(t)
∥

∥ ∈ C
(

0, +∞; L2(Ω)
) ∩ L2(0, +∞; Hα(Ω)

)

, (13)
∥

∥θ (t)
∥

∥ ∈ C
(

0, +∞; L2(Ω)
) ∩ L2(0, +∞; Hβ (Ω)

)

. (14)

Moreover, there exist positive constant λ independents of t and such that

∥

∥θ (t)
∥

∥

2 ≤ ‖θ0‖2e–2κλ2β t , (15)

as well as

∥

∥u(t)
∥

∥

2 ≤ e–νλ2α t‖u0‖2 +
1

νλ2α

∣

∣

∣

∣

e–νλ2α t – e–κλ2β t

νλ2α – κλ2β

∣

∣

∣

∣

‖θ0‖2,

νλ2α 	= κλ2β , (16)
∥

∥u(t)
∥

∥

2 ≤ e–νλ2α t‖u0‖2 +
t

νλ2α
e–νλ2α t‖θ0‖2,

νλ2α = κλ2β . (17)
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Proof Taking L2-inner product of (1)3 with θ , and integrating by parts, we have

1
2

d
dt

‖θ‖2 + κ
∥

∥Λβθ
∥

∥

2 = 0. (18)

Since θ (x, t)|∂Ω = 0, using Poincaré inequality, we find

d
dt

‖θ‖2 + 2κλ2β‖θ‖2 = 0, (19)

where λ is the first eigenvalue of Λ. Then, we can obtain that, for all t ∈ [0, +∞),

∥

∥θ (t)
∥

∥

2 ≤ ‖θ0‖e–2κλ2β t . (20)

Integrating (18) in time gives

∥

∥θ (t)
∥

∥

2 + 2κ

∫ t

0

∥

∥Λβθ (τ )
∥

∥

2 dτ ≤ ‖θ0‖2. (21)

Similarly, we can also deduce a uniform Lp estimate of θ , for all p ∈ [2, +∞),

∥

∥θ (t)
∥

∥

Lp ≤ e– κλ2β t
p ‖θ0‖Lp . (22)

Multiplying (1)1 by u and integrating the resulting equation by parts, we have

1
2

d
dt

‖u‖2 + ν
∥

∥Λαu
∥

∥

2 ≤
∫

Ω

θe2 · u dx

≤
∫

Ω

∣

∣Λ–αθ
∣

∣ · ∣∣Λαu
∣

∣dx

≤ 1
2ν

∥

∥Λ–αθ
∥

∥

2 +
ν

2
∥

∥Λαu
∥

∥

2. (23)

Hence,

d
dt

‖u‖2 + ν
∥

∥Λαu
∥

∥

2 ≤ 1
ν

∥

∥Λ–αθ
∥

∥

2. (24)

By Poincaré inequality, we have

d
dt

‖u‖2 + νλ2α‖u‖2 ≤ 1
νλ2α

‖θ‖2. (25)

Integrating in time and using (20), we have, in the case when νλ2α 	= κλ2β ,

∥

∥u(t)
∥

∥

2 ≤ e–νλ2α t‖u0‖2 +
1

νλ2α

∣

∣

∣

∣

e–νλ2α t – e–κλ2β t

νλ2α – κλ2β

∣

∣

∣

∣

‖θ0‖2, (26)

and in the case when νλ2α = κλ2β ,

∥

∥u(t)
∥

∥

2 ≤ e–νλ2α t‖u0‖2 +
t

νλ2α
e–νλ2α t‖θ0‖2. (27)
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After integration (24) in time and by (20), we obtain

∥

∥u(t)
∥

∥

2 + ν

∫ t

0

∥

∥Λαu(τ )
∥

∥

2 dτ ≤ ‖u0‖2 +
1

2νκλ2(α+β) ‖θ0‖2, (28)

completing the proof. �

In the next lemma, we shall obtain estimates of ‖∇u(t)‖ and ‖∇θ (t)‖.

Lemma 5 Under the assumptions of Theorem 1, one has

∥

∥u(t)
∥

∥ ∈ C
(

0, +∞; H1(Ω)
) ∩ L2(0, +∞; H1+α(Ω)

)

, (29)
∥

∥θ (t)
∥

∥ ∈ C
(

0, +∞; H1(Ω)
) ∩ L2(0, +∞; H1+β (Ω)

)

. (30)

Moreover, there exist positive constants λ and C independent of t and such that

∥

∥∇u(t)
∥

∥ ≤ C,
∥

∥∇θ (t)
∥

∥ ≤ C. (31)

Proof In order to complete the proof, we need to use vorticity formulation. Taking the
curl of (1)1, we have

ωt + νΛ2αω + u · ∇ω = θx1 , (32)

where ω = ∂x1 u2 – ∂x2 u1, with the Dirichlet boundary condition

ω = 0, on ∂Ω .

Taking L2-inner product of (32) with ω, we obtain

1
2

d
dt

‖ω‖2 + ν
∥

∥Λαω
∥

∥

2 =
∫

Ω

θx1 · ω dx

≤
∣

∣

∣

∣

∫

Ω

Λ1–αθ · Λαω dx
∣

∣

∣

∣

≤ 1
2ν

∥

∥Λ1–αθ
∥

∥

2 +
ν

2
∥

∥Λαω
∥

∥

2, (33)

from which it follows that

d
dt

‖ω‖2 + ν
∥

∥Λαω
∥

∥

2 ≤ 1
ν

∥

∥Λ1–αθ
∥

∥

2. (34)

Then Poincaré inequality implies

d
dt

‖ω‖2 + νλ2α‖ω‖2 ≤ 1
ν

∥

∥Λ1–αθ
∥

∥

2. (35)

Since α,β ∈ ( 2
3 , 1), we know that 1 – α < β , and so, using the interpolation inequality and

by (21), we have

∫ t

0

∥

∥Λ1–αθ (τ )
∥

∥

2 dτ ≤
∫ t

0

∥

∥Λβθ (τ )
∥

∥

2 dτ ≤ C. (36)
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Applying a variant of the uniform Gronwall lemma, and by the Biot–Savart law and (36),
we have a uniform estimate ‖u(t)‖H1 for all t ∈ [0, +∞). Furthermore, integrating (34) in
time, we can get, for all t ∈ [0, +∞),

∥

∥ω(t)
∥

∥

2 + ν

∫ t

0

∥

∥Λαω(τ )
∥

∥

2 dτ ≤ ‖ω0‖2 +
1
ν

∫ t

0

∥

∥Λ1–αθ (τ )
∥

∥

2 dτ . (37)

As an immediate consequence, and by Sobolev embedding theorem, we have a uniform
Lp estimate for u, that is, for all 1 < p < +∞,

‖u‖Lp ≤ C(p) (38)

and

∫ t

0

∥

∥Λ1+αu
∥

∥dτ ≤ C
(‖∇u0‖,‖θ0‖

)

, (39)

where the constant C(p) > 0 only depends on p and C(‖∇u0‖,‖θ0‖) only depends the initial
data ‖∇u0‖ and ‖θ0‖.

Taking L2-inner product of (1)3 with 
θ , we obtain

1
2

d
dt

‖∇θ‖2 + κ
∥

∥Λ1+βθ
∥

∥

2 = –
∫

Ω

(u · ∇θ ) · 
θ dx

≤
∫

Ω

∣

∣Λ1–β(u · ∇θ )
∣

∣

∣

∣Λ1+βθ
∣

∣dx. (40)

Since u is divergence-free, u · ∇θ = ∇ · (uθ ), and so, using Cauchy–Schwarz inequality, we
have

1
2

d
dt

‖∇θ‖2 + κ
∥

∥Λ1+βθ
∥

∥

2 ≤
∫

Ω

∣

∣Λ2–β(uθ )
∣

∣

∣

∣Λ1+βθ
∣

∣dx

≤ 1
κ

∥

∥Λ2–β (uθ )
∥

∥

2 +
κ

4
∥

∥Λ1+βθ
∥

∥

2. (41)

Using Lemma 1, and by (22) and (38), we have

∥

∥Λ2–β (uθ )
∥

∥

2 ≤ C
∥

∥Λ2–βu
∥

∥

2
L4‖θ‖2

L4 + C‖u‖2
L6

∥

∥Λ2–βθ
∥

∥

2
L3

≤ C
∥

∥Λ2–βu
∥

∥

2
L4 + C

∥

∥Λ2–βθ
∥

∥

2
L3 , (42)

so by Sobolev embedding theorem, and applying Gagliardo–Nirenberg and Young in-
equalities, we can obtain

∥

∥Λ2–β (uθ )
∥

∥

2

≤ C
∥

∥Λ1+αu
∥

∥

2 + C
∥

∥Λ–αθ
∥

∥

2(3α+3β–4)/3(1+2α)∥
∥Λ1+αθ

∥

∥

2(7+3α–3β)/3(1+2α)

≤ C
∥

∥Λ1+αu
∥

∥

2 + a1C
∥

∥Λ–αθ
∥

∥

2 +
κ

4
∥

∥Λ1+αθ
∥

∥

2, (43)
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where a1 = 3α+3β–4
3(1+2α) ( 3κ(1+2α)

4(7+3α–3β) )(7+3α–3β)/(4–3α–3β). Inserting (43) into (41), we can obtain that

d
dt

‖∇θ‖2 + κ
∥

∥Λ1+βθ
∥

∥

2 ≤ C
(∥

∥Λ1+αu
∥

∥

2 +
∥

∥Λ–αθ
∥

∥

2). (44)

Then Poincaré inequality implies

d
dt

‖∇θ‖2 + κλ2β‖∇θ‖2 ≤ C
(

∥

∥Λ1+αu
∥

∥

2 +
1

λ2α
‖θ‖2

)

. (45)

By (20) and (39), we know that

∫ t

0

(∥

∥Λ1+αu
∥

∥

2 + ‖θ‖2)dτ ≤ C. (46)

Applying a variant of the uniform Gronwall lemma again and (46), we have a uniform
estimate of ‖∇θ (t)‖ for all t ∈ [0, +∞). Integrating over [0, t], we obtain, for all t ∈ [0, +∞),

∥

∥∇θ (t)
∥

∥

2 + κ

∫ t

0

∥

∥Λ1+βθ (τ )
∥

∥

2 dτ ≤ ‖∇θ0‖2 + C, (47)

where C only depends on p and the initial data. �

Now let us focus on the persistence in H1+s(R2) × H1+s(R2), s ∈ (0, 1).

Lemma 6 Under the assumptions of Theorem 1, one has

∥

∥u(t)
∥

∥ ∈ C
(

0, +∞; H1+s(Ω)
) ∩ L2(0, +∞; H1+s+α(Ω)

)

, (48)
∥

∥θ (t)
∥

∥ ∈ C
(

0, +∞; H1+s(Ω)
) ∩ L2(0, +∞; H1+s+β (Ω)

)

. (49)

Moreover, in the case when min{νλ2α ,κλ2β} > 1
2 , there exist positive constants λ and C

independent of t, and it holds that

∥

∥Λ1+sθ (t)
∥

∥

2 ≤ C,
∥

∥Λ1+su(t)
∥

∥

2 ≤ C. (50)

Proof Taking L2-inner product of (1)3 with Λ2+2sθ , we obtain

1
2

d
dt

∥

∥Λ1+sθ
∥

∥

2 + κ
∥

∥Λ1+s+βθ
∥

∥

2 = –
∫

Ω

(u · ∇θ ) · Λ2+2sθ dx. (51)

Since u is divergence-free, u · ∇θ = ∇ · (uθ ), using Lemma 1 and (22) with (38), we obtain

–
∫

Ω

(u · ∇θ ) · Λ2+2sθ dx

≤
∣

∣

∣

∣

∫

Ω

Λ2+s–β(uθ ) · Λ1+s+βθ dx
∣

∣

∣

∣

≤ ∥

∥Λ2+s–β(uθ )
∥

∥

∥

∥Λ1+s+βθ
∥

∥

≤ C
(∥

∥Λ2+s–βu
∥

∥

L3‖θ‖L6 + ‖u‖L6
∥

∥Λ2+s–βθ
∥

∥

L3
)∥

∥Λ1+s+βθ
∥

∥
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≤ C
κ

(∥

∥Λ2+s–βu
∥

∥

2
L3 +

∥

∥Λ2+s–βθ
∥

∥

2
L3

)

+
κ

4
∥

∥Λ1+s+βθ
∥

∥

2. (52)

Applying Gagliardo–Nirenberg and Young inequalities, we can get

∥

∥Λ2+s–βu
∥

∥

2
L3 ≤ C

∥

∥Λ–βu
∥

∥

2(3α+3β–4)/3(1+s+α+β)∥
∥Λ1+s+αu

∥

∥

2(7+3s)/3(1+s+α+β)

≤ a2C
∥

∥Λ–βu
∥

∥

2 +
ν

4
∥

∥Λ1+s+αu
∥

∥

2 (53)

and

∥

∥Λ2+s–βθ
∥

∥

2
L3 ≤ C

∥

∥Λ–βθ
∥

∥

4(3β–2)/3(1+s+2β)∥
∥Λ1+s+βθ

∥

∥

2(7+3s)/3(1+s+2β)

≤ a3C
∥

∥Λ–βθ
∥

∥

2 +
κ

4
∥

∥Λ1+s+βθ
∥

∥

2, (54)

where a2 = 3α+3β–4
3(1+s+α+β) ( 3ν(1+s+α+β)

4(7+3s) )(7+3s)/(4–3α–3β) and a3 = 2(3β–2)
3(1+s+2β) ( 3κ(1+s+2β)

4(7+3s) )(7+3s)/2(2–3β). In-
serting (52)–(54) into (51), we arrive at

d
dt

∥

∥Λ1+sθ
∥

∥

2 + κ
∥

∥Λ1+s+βθ
∥

∥

2

≤ ν

2
∥

∥Λ1+s+αu
∥

∥

2 + C
∥

∥Λ–βu
∥

∥

2 + C
∥

∥Λ–βθ
∥

∥

2. (55)

Applying the operator Λ1+s to (1)1, and taking the scalar product of both sides with
Λ1+su, and then integrating the result by parts, we get

1
2

d
dt

∥

∥Λ1+su
∥

∥

2 + ν
∥

∥Λ1+s+αu
∥

∥

2

= –
∫

Ω

Λ1+s(uj∂juk)Λ1+suk dx +
∫

Ω

Λ1+s(θe2)Λ1+su dx. (56)

Using Lemma 1 and applying fractional embedding theorems together with Young in-
equality again, we obtain

–
∫

Ω

Λ1+s(uj∂juk)Λ1+suk dx

≤
∣

∣

∣

∣

∫

Ω

Λ1+s–α(uj∂juk)Λ1+s+αuk dx
∣

∣

∣

∣

≤ C
(∥

∥Λ1+s–αu
∥

∥

L3‖∇u‖L6 + ‖u‖L6
∥

∥Λ2+s–αu
∥

∥

L3
)∥

∥Λ1+s+αu
∥

∥

≤ ν

4
∥

∥Λ1+s+αu
∥

∥

2 +
C
ν

(∥

∥Λ1+s–αu
∥

∥

2
L4‖∇u‖2

L4 +
∥

∥Λ2+s–αu
∥

∥

2
L3

)

. (57)

Applying Gagliardo–Nirenberg and Young inequalities, we can get

∥

∥Λ1+s–αu
∥

∥

2
L3‖∇u‖2

L6 ≤ ∥

∥Λ–αu
∥

∥

4(3α–2)/3(1+s+2α)∥
∥Λ1+s+αu

∥

∥

2(7+3s)/3(1+s+2α)

× ∥

∥Λ–αu
∥

∥

2(1+3α)/3(1+2α)∥
∥Λ1+αu

∥

∥

2(2+3α)/3(1+2α)

≤ a4C
∥

∥Λ–αu
∥

∥

b1∥
∥Λ1+αu

∥

∥

b2 +
ν

8
∥

∥Λ1+s+αu
∥

∥

2 (58)
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and

∥

∥Λ2+s–αu
∥

∥

2
L3 ≤ C

∥

∥Λ–αu
∥

∥

4(3α–2)/3(1+s+2α)∥
∥Λ1+s+αu

∥

∥

2(7+3s)/3(1+s+2α)

≤ a5C
∥

∥Λ–αu
∥

∥

2 +
ν

8
∥

∥Λ1+s+αu
∥

∥

2, (59)

where a4 = a5 = 2(3α–2)
3(1+s+2α) ( 3ν(1+s+2α)

8(7+3s) )(7+3s)/2(2–3α), b1 = 2 + (1+3α)(1+s+2α)
(1+2α)(3α–2) , and b2 = (2+3α)(1+s+2α)

(1+2α)(3α–2) .
Using Hölder and Cauchy–Schwarz inequalities, we can get

∫

Ω

Λ1+s(θe2)Λ1+su dx ≤ 1
2
∥

∥Λ1+sθ
∥

∥

2 +
1
2
∥

∥Λ1+su
∥

∥

2. (60)

Inserting (58)–(60) into (56), we arrive at

d
dt

∥

∥Λ1+su
∥

∥

2 +
3ν

2
∥

∥Λ1+s+αu
∥

∥

2

≤ 1
2
(∥

∥Λ1+sθ
∥

∥

2 +
∥

∥Λ1+su
∥

∥

2) + C
(∥

∥Λ–αu
∥

∥

2 +
∥

∥Λ–αu
∥

∥

b1∥
∥Λ1+αu

∥

∥

b2). (61)

Summing up (55) and (61), we obtain that

d
dt

(∥

∥Λ1+su
∥

∥

2 +
∥

∥Λ1+sθ
∥

∥

2) + ν
∥

∥Λ1+s+αu
∥

∥

2 + κ
∥

∥Λ1+s+βθ
∥

∥

2

≤ 1
2
(∥

∥Λ1+sθ
∥

∥

2 +
∥

∥Λ1+su
∥

∥

2) + C
(∥

∥Λ–αu
∥

∥

2 +
∥

∥Λ–βu
∥

∥

2

+
∥

∥Λ–βθ
∥

∥

2 +
∥

∥Λ–αu
∥

∥

b1∥
∥Λ1+αu

∥

∥

b2). (62)

Then Poincaré inequality implies

d
dt

(∥

∥Λ1+su
∥

∥

2 +
∥

∥Λ1+sθ
∥

∥

2) + νλ2α
∥

∥Λ1+su
∥

∥

2 + κλ2β
∥

∥Λ1+sθ
∥

∥

2

≤ 1
2
(∥

∥Λ1+sθ
∥

∥

2 +
∥

∥Λ1+su
∥

∥

2)

+ C
(

1
λ2α

‖u‖2 +
1

λ2β
‖u‖2 +

1
λ2β

‖θ‖2 +
1

λb1
‖u‖b1

∥

∥Λ1+αu
∥

∥

b2
)

. (63)

Hence

d
dt

X(t) +
(

c1 –
1
2

)

X(t) ≤ C
(‖u‖2 + ‖θ‖2 + ‖u‖b1

∥

∥Λ1+αu
∥

∥

b2), (64)

where X(t) = ‖Λ1+su‖2 + ‖Λ1+sθ‖2 and c1 = min{νλ2α ,κλ2β}. By (20), (26), (27), and (39),
we know that

∫ t

0

(‖u‖2 + ‖θ‖2 + ‖u‖b1
∥

∥Λ1+αu
∥

∥

b2)dτ ≤ C. (65)

Applying a variant of the uniform Gronwall lemma again and (65), in the case (c1 – 1
2 ) > 0,

we have uniform estimates of ‖Λ1+su‖2 and ‖Λ1+sθ‖2, for all t ∈ [0, +∞). Integrating (62)
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over [0, t], we have

∥

∥Λ1+su(t)
∥

∥

2 +
∥

∥Λ1+sθ (t)
∥

∥

2 + ν

∫ t

0

∥

∥Λ1+s+αu(τ )
∥

∥

2 dτ

+ κ

∫ t

0

∥

∥Λ1+s+βθ (τ )
∥

∥

2 dτ

≤ ∥

∥Λ1+su0
∥

∥

2 +
∥

∥Λ1+sθ0
∥

∥

2 + C +
1
2

∫ t

0

(∥

∥Λ1+sθ
∥

∥

2 +
∥

∥Λ1+su
∥

∥

2)dτ . (66)

Using Gronwall inequality, we find that, for all t ∈ [0, T],

∥

∥Λ1+su(t)
∥

∥

2 +
∥

∥Λ1+sθ (t)
∥

∥

2 + ν

∫ t

0

∥

∥Λ1+s+αu(τ )
∥

∥

2 dτ

+ κ

∫ t

0

∥

∥Λ1+s+βθ (τ )
∥

∥

2 dτ

≤ e
t
2
(∥

∥Λ1+su0
∥

∥

2 +
∥

∥Λ1+sθ0
∥

∥

2 + C
)

≤ e
T
2
(∥

∥Λ1+su0
∥

∥

2 +
∥

∥Λ1+sθ0
∥

∥

2 + C
)

≤ C, (67)

where C = C(‖Λ1+su0‖,‖Λ1+sθ0‖,ν,κ , s, T) is a positive constant. �

3.2 Uniqueness
With the global regularity established in Lemmas 4–6, we are able to prove the uniqueness
of the solution.

Lemma 7 Under the assumptions of Theorem 1, the solution of Boussinesq equations (1)
is unique.

Proof For any fixed T > 0, suppose there are two solutions (u1, θ1, P1) and (u2, θ2, P2) to
Boussinesq equations (1). Setting ũ = u1 – u2, θ̃ = θ1 – θ2 and P̃ = P1 – P2, we get that
(ũ, θ̃ , P̃) satisfies

ũt + νΛ2αũ + u1 · ∇ũ + ũ · ∇u2 + ∇P̃ = θ̃e2, e2 = (0, 1), (68)

div ũ = 0, (69)

θ̃t + κΛ2β θ̃ + u1 · ∇ θ̃ + ũ · ∇θ2 = 0, (70)

ũ(x, 0) = 0, θ̃ (x, 0) = 0. (71)

Taking the L2-inner product of (68) with ũ and (70) with θ̃ , respectively, we get

1
2

d
dt

(‖ũ‖2 + ‖θ̃‖2) + ν‖∇ũ‖2 + κ‖∇ θ̃‖2

≤
∫

Ω

θ̃e2 · ũ dx –
∫

Ω

ũ · ∇u2 · ũ dx –
∫

Ω

ũ · ∇θ2θ̃ dx. (72)
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Using Hölder and Cauchy–Schwarz inequalities, a standard calculation gives us the fol-
lowing:

∫

Ω

θ̃e2 · ũ dx ≤ 1
2
‖θ̃‖2 +

1
2
‖ũ‖2, (73)

–
∫

Ω

ũ · ∇u2 · ũ dx ≤
∣

∣

∣

∣

–
∫

Ω

ũ · ∇u2 · ũ dx
∣

∣

∣

∣

≤ ‖∇u2‖‖ũ‖2
L4

≤ C‖∇u2‖‖ũ‖‖∇ũ‖

≤ C‖∇u2‖2‖ũ‖2 +
ν

4
‖∇ũ‖, (74)

and

–
∫

Ω

ũ · ∇θ2 · θ̃ dx

≤
∣

∣

∣

∣

–
∫

Ω

ũ · ∇θ2 · θ̃ dx
∣

∣

∣

∣

≤ ‖∇θ2‖‖θ̃‖L4‖ũ‖L4

≤ C‖∇θ2‖‖θ̃‖1/2‖∇ θ̃‖1/2‖ũ‖1/2‖∇ũ‖1/2

≤ C
(‖∇θ2‖‖θ̃‖‖∇ θ̃‖ + ‖∇θ2‖‖ũ‖‖∇ũ‖)

≤ C‖∇θ2‖2‖θ̃‖2 +
ν

4
‖∇ θ̃‖ + C‖∇θ2‖2‖ũ‖2 +

κ

2
‖∇ũ‖2. (75)

Inserting (73)–(75) into (72), we obtain

d
dt

(‖ũ‖2 + ‖θ̃‖2) + ν‖∇ũ‖2 + κ‖∇ θ̃‖2

≤ C
(‖∇θ2‖2 + ‖∇u2‖2 + 1

)(‖θ̃‖2 + ‖ũ‖2). (76)

Using Gronwall inequality and the estimates for θ2 and u2, (76) implies that, for any t ≥ 0,

e–CT(‖ũ‖2 + ‖θ̃‖2) ≤ ∥

∥ũ(0)
∥

∥

2 +
∥

∥θ̃ (0)
∥

∥

2 = 0,

i.e., ũ = 0, θ̃ = 0, θ1 = θ2, u1 = u2. So the solution of Boussinesq equations (1) is unique. �

4 Proof of Theorem 2
The goal of this section is to prove Theorem 2. First of all, we multiply the first equation
in (1) with u|u|p–2 (p > 2) and, integrating it over R2, have

1
p

d
dt

‖u‖p
Lp +

∫

Ω

Λ2u · u|u|p–2 dx

= –
∫

Ω

(u · ∇u) · u|u|p–2 dx –
∫

Ω

∇P · u|u|p–2 dx



Su et al. Advances in Difference Equations        (2019) 2019:420 Page 13 of 19

+
∫

Ω

θe2 · u|u|p–2 dx. (77)

Since u is divergence-free, by Lemma 2 and using Hölder inequality, we can get

1
p

d
dt

‖u‖p
Lp +

4(p – 2)
p2

∥

∥∇|u| p
2
∥

∥

2
L2 ≤ ‖∇P‖Lp‖u‖p–1

Lp + ‖θ‖Lp‖u‖p–1
Lp . (78)

Taking the divergence of the first equation in (1), we can obtain

–
P = div(u · ∇u) – ∂x2θ . (79)

Hence

∇P = ∇(–
)–1(div(u · ∇u) – ∂x2θ
)

. (80)

Applying Calderón–Zygmund theorem, we get

‖∇P‖Lp ≤ C
(‖u · ∇u‖Lp + ‖θ‖Lp

)

≤ C
(‖u‖L∞‖∇u‖Lp + ‖θ‖Lp

)

≤ C
(‖u‖W 1,p‖∇u‖Lp + ‖θ‖Lp

)

≤ C
(‖u‖Lp + ‖∇u‖Lp

)‖∇u‖Lp + C‖θ‖Lp

≤ C
(‖u‖Lp + ‖ω‖Lp

)‖ω‖Lp + C‖θ‖Lp . (81)

Multiplying the third equation in (1) with θ |θ |p–2 (p > 2) and integrating it over R2, we
deduce that

1
p

d
dt

‖θ‖p
Lp +

∫

Ω

Λ2βθ · θ |θ |p–2 dx = 0, (82)

where we have used the divergence-free condition again. By Lemma 2 and integrating over
[0, t], we have, for all t ∈ [0, T],

‖θ‖p
Lp +

4(p – 2)
p

∫ t

0

∥

∥Λβ |θ | p
2
∥

∥

2
L2 dτ = ‖θ0‖p

Lp . (83)

Combining (78) with (81) and (83) leads to

1
p

d
dt

‖u‖p
Lp +

4(p – 2)
p2

∥

∥∇|u| p
2
∥

∥

2
L2 ≤ C

(‖u‖Lp‖ω‖Lp + ‖ω‖2
Lp + 1

)‖u‖p–1
Lp . (84)

Taking the Lp-inner product of (27) with ω|ω|p–2 (p > 2) and integrating it over R2, we
arrive at

1
p

d
dt

‖ω‖p
Lp +

∫

Ω

Λ2αω · ω|ω|p–2 dx =
∫

Ω

∂x1θ · ω|ω|p–2 dx. (85)

Using Lemma 2 again, we know that

1
p

d
dt

‖ω‖p
Lp +

4(p – 2)
p2

∥

∥∇|ω| p
2
∥

∥

2 ≤
∫

Ω

∂x1θ · ω|ω|p–2 dx. (86)
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By Hölder and Young inequalities, and using Lemma 2 with m = 2, we have

∫

Ω

∂x1θ · ω|ω|p–2 dx ≤ (p – 1)
∣

∣

∣

∣

∫

Ω

θ · ∂x1ω|ω|p–2 dx
∣

∣

∣

∣

≤ (p – 1)
∣

∣

∣

∣

∫

Ω

θ · ∇ω|ω| p–2
2 |ω| p–2

2 dx
∣

∣

∣

∣

≤ 2(p – 1)
p

‖θ‖Lp
∥

∥∇|ω| p
2
∥

∥

L2‖ω‖
p–2

2
Lp

≤ 2(p – 1)
p2

∥

∥∇|ω| p
2
∥

∥

2
L2 + C‖θ‖2

Lp‖ω‖p–2
Lp , (87)

where constant C depends on p. Inserting (87) into (86), we can obtain

1
p

d
dt

‖ω‖p
Lp +

2(p – 2)
p2

∥

∥∇|ω| p
2
∥

∥

2 ≤ C‖θ‖2
Lp‖ω‖p–2

Lp . (88)

Hence, by Young inequality, we get

d
dt

‖ω‖p
Lp +

2(p – 2)
p

∥

∥∇|ω| p
2
∥

∥

2 ≤ C
(‖θ‖p

Lp + ‖ω‖p
Lp

)

. (89)

Integrating over [0, t], we have, for all t ∈ [0, T],

‖ω‖p
Lp +

2(p – 2)
p

∫ t

0

∥

∥∇|ω| p
2
∥

∥

2 dτ

≤ ‖ω0‖p
Lp + C

∫ t

0

(‖θ‖p
Lp + ‖ω‖p

Lp
)

dτ

≤ ‖ω0‖p
Lp + CT‖θ0‖p

Lp + C
∫ t

0
‖ω‖p

Lp dτ . (90)

Using Gronwall inequality, we find from (90) that, for all t ∈ [0, T],

‖ω‖p
Lp +

2(p – 2)
p

∫ t

0

∥

∥∇|ω| p
2
∥

∥

2 dτ ≤ eCt(‖ω0‖p
Lp + CT‖θ0‖p

Lp
)

≤ eCT(‖ω0‖p
Lp + CT‖θ0‖p

Lp
)

≤ C. (91)

Then inequality (84), together with (91), implies that

‖u‖p
Lp +

4(p – 2)
p2

∫ t

0

∥

∥∇|u| p
2
∥

∥

2
L2 dτ ≤ C. (92)

Taking the derivative D = (∂x1 , ∂x2 ) of both sides of (27), and then multiplying the result
equation array by Dω|Dω|p–2, after integration by parts, we obtain

1
p

d
dt

‖Dω‖p
Lp +

4(p – 2)
p2

∥

∥∇|Dω| p
2
∥

∥

2 ≤ –
∫

Ω

D(u · ∇ω) · Dω|Dω|p–2 dx

–
∫

Ω

Dθx1 · Dω|Dω|p–2 dx. (93)
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Using Hölder and Cauchy–Schwarz inequalities, a standard calculation gives us the fol-
lowing:

–
∫

Ω

D(u · ∇ω) · Dω|Dω|p–2 dx

≤ C
∣

∣

∣

∣

∫

Ω

u · ∇ω · D2ω|Dω|p–2 dx
∣

∣

∣

∣

≤ (p – 1)
∣

∣

∣

∣

∫

Ω

u · ∇ω · D2ω|Dω| p–2
2 |Dω| p–2

2 dx
∣

∣

∣

∣

≤ 2(p – 1)
p

‖u‖Lp
∥

∥∇|Dω| p
2
∥

∥

L2‖Dω‖
p–2

2
Lp

≤ p – 1
p2

∥

∥∇|Dω| p
2
∥

∥

2
L2 + C‖u‖2

Lp‖Dω‖p–2
Lp (94)

and

–
∫

Ω

Dθx1 · Dω|Dω|p–2 dx

≤
∣

∣

∣

∣

∫

Ω

Dθx1 · Dω|Dω|p–2 dx
∣

∣

∣

∣

≤ (p – 1)
∣

∣

∣

∣

∫

Ω

Dθx1 · Dω|Dω|p–2 dx
∣

∣

∣

∣

≤ 2(p – 1)
p

‖Dθ‖Lp
∥

∥∂x1 |Dω| p
2
∥

∥

L2‖Dω‖
p–2

2
Lp

≤ p – 1
p2

∥

∥∇|Dω| p
2
∥

∥

2
L2 + C‖Dθ‖2

Lp‖Dω‖p–2
Lp

≤ p – 1
p2

∥

∥∇|Dω| p
2
∥

∥

2
L2 + C

(‖∇θ‖p
Lp + ‖Dω‖p

Lp
)

. (95)

Inserting (94) and (95) into (93), we obtain

1
p

d
dt

‖Dω‖p
Lp +

2(p – 2)
p2

∥

∥∇|Dω| p
2
∥

∥

2

≤ C
(‖u‖p

Lp + ‖∇θ‖p
Lp + ‖Dω‖p

Lp
)

. (96)

Taking the derivative ∇⊥ = (–∂x2 , ∂x1 ) of both sides of (1)3, we can show that

∇⊥θt + κΛ2β∇⊥θ + ∇⊥(u · ∇θ ) = 0. (97)

Multiplying (96) by ∇⊥θ |∇⊥θ |p–2, after integration by parts, we obtain

1
p

d
dt

∥

∥∇⊥θ
∥

∥

p
Lp +

∫

Ω

Λ2β∇⊥θ · ∇⊥θ
∣

∣∇⊥θ
∣

∣

p–2 dx

= –
∫

Ω

∇⊥(u · ∇θ ) · ∇⊥θ
∣

∣∇⊥θ
∣

∣

p–2 dx. (98)
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Since u is divergence-free, using Lemma 2 again, we know that

1
p

d
dt

∥

∥∇⊥θ
∥

∥

p
Lp +

4(p – 2)
p2

∥

∥Λβ
∣

∣∇⊥θ
∣

∣

p
2
∥

∥

2
L2

≤ –
∫

Ω

∇u · ∇⊥θ · ∇⊥θ
∣

∣∇⊥θ
∣

∣

p–2 dx

≤ ‖∇u‖L∞
∥

∥∇⊥θ
∥

∥

p
Lp . (99)

By Lemma 3, we know that

‖∇u‖L∞ ≤ C
(

1 + ‖Dω‖2
L2

)(

1 + log+(‖Dω‖p
Lp

))

+ C‖ω‖L2 . (100)

By (91) for p = 2, and inserting (100) into (99), we obtain

1
p

d
dt

∥

∥∇⊥θ
∥

∥

p
Lp +

4(p – 2)
p2

∥

∥Λβ
∣

∣∇⊥θ
∣

∣

p
2
∥

∥

2
L2

≤ C
(

1 + ‖Dω‖2
L2

)(

1 + log+(‖Dω‖p
Lp

))∥

∥∇⊥θ
∥

∥

p
Lp . (101)

Using the obvious identity ‖∇θ‖Lp = ‖∇⊥θ‖Lp , and summing up (96) and (101), we ob-
tain that

1
p

d
dt

(‖Dω‖p
Lp + ‖∇θ‖p

Lp
)

+
2(p – 2)

p2

∥

∥∇|Dω| p
2
∥

∥

2 +
4(p – 2)

p2

∥

∥Λβ |∇θ | p
2
∥

∥

2
L2

≤ C
(

1 + ‖Dω‖2
L2

)(

1 + log+(‖Dω‖p
Lp

))(‖∇θ‖p
Lp + ‖Dω‖p

Lp
)

≤ C
(

1 + ‖Dω‖2
L2

)(

1 + log+(‖Dω‖p
Lp + ‖∇θ‖p

Lp
))(‖Dω‖p

Lp + ‖∇θ‖p
Lp

)

. (102)

Setting X(t) = ‖Dω‖p
Lp + ‖∇θ‖p

Lp , we easily show that

d
dt

X ≤ C
(

1 + ‖Dω‖2
L2

)(

1 + log+ X
)

X. (103)

Setting Y = log+ X, we know that

d
dt

X = X
d
dt

Y . (104)

So, inequality (103), along with (104), implies that

d
dt

Y ≤ C
(

1 + ‖Dω‖2
L2

)

(1 + Y ). (105)

By (91) for p = 2, and integrating over [0, t], we have, for all t ∈ [0, T],

Y (t) ≤ Y (0) + C
∫ t

0

(

1 + ‖Dω‖2
L2

)

dτ + C
∫ t

0

(

1 + ‖Dω‖2
L2

)

Y dτ . (106)

Using Gronwall inequality, from (105) we find that, for all t ∈ [0, T],

Y (t) ≤ C
(

Y (0) +
∫ t

0

(

1 + ‖Dω‖2
L2

)

dτ

)

eC
∫ t

0 (1+‖Dω‖2
L2 ) dτ
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≤ C
(

Y (0) +
∫ T

0

(

1 + ‖Dω‖2
L2

)

dτ

)

eC
∫ T

0 (1+‖Dω‖2
L2 ) dτ

≤ C
(

Y (0) + CT
)

eCT , (107)

which implies

X(t) ≤ eC(log+ X(0)+CT)eCT
. (108)

This thus completes the proof of Theorem 2.

5 Conclusions
In this paper, we study the well-posedness and related problem on Boussinesq equations
with fractional dissipation which have recently attracted considerable interest. This paper
proves the persistence of global well-posedness of strong solutions and their long-time de-
cay, as well as investigates the existence of the solutions in Sobolev spaces. The obtained
results will not only further improve the theory of fractional nonlinear evolution equa-
tions, but also provide support for the innovation on research methods and the related
properties of fluid dynamics models.

Funding
The work was in part supported by the NNSF of China (No. 11801133), Natural Science Foundation of Hebei Province of
China (No. A2018207030, F2017207010) and Youth Key Program of Hebei University of Economics and Business
(2018QZ07).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed equally to this work. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 December 2018 Accepted: 21 September 2019

References
1. Abidi, H., Hmidi, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233(1), 199–220 (2007)
2. Adhikari, D., Cao, C., Wu, J.: The 2D Boussinesq equation with vertical viscosity and vertical diffusivity. J. Differ. Equ.

249, 1078–1088 (2010)
3. Adhikari, D., Cao, C., Wu, J.: Global regularity results for the 2D Boussinesq equation with vertical dissipation. J. Differ.

Equ. 251, 1637–1655 (2011)
4. Boldrini, J.L., Climent-Ezquerra, B., Rojas-Medar, M.D., Rojas-Medar, M.A.: On an iterative method for approximate

solutions of a generalized Boussinesq model. J. Math. Fluid Mech. 13(1), 33–53 (2011)
5. Boldrini, J.L., Fernandez-Cara, E., Rojas-Medar, M.A.: An optimal control problem for a generalized Boussinesq model:

the time dependent case. Rev. Mat. Complut. 20(2), 339–366 (2007)
6. Boldrini, J.L., Rojas-Medar, M.A., Rocha, M.S.D.: Existence of relaxed weak solutions of a generalized Boussinesq system

with restriction on the state variables. SeMA J. 47, 63–72 (2009)
7. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun.

Partial Differ. Equ. 5(7), 773–789 (1980)
8. Cannon, J.R., DiBenedetto, E.: The initial value problem for the boussinesq equation with data in Lp . In: Approximation

Methods for Navier–Stokes Problems, pp. 129–144. Springer, Berlin (1980)
9. Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equation with vertical dissipation. Arch. Ration.

Mech. Anal. 208(3), 985–1004 (2013)
10. Cattani, C.: Sinc-fractional operator on Shannon wavelet space. Front. Phys. (2018)
11. Chae, D.: Global regularity for the 2D Boussinesq equation with partial viscosity terms. Adv. Math. 203(2), 497–513

(2006)
12. Chae, D., Kim, S.K., Nam, H.S.: Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq

equation. Nagoya Math. J. 155, 55–80 (1999)
13. Chae, D., Nam, H.S.: Local existence and blow-up criterion for the Boussinesq equation. Proc. R. Soc. Edinb. 127A,

935–946 (1997)



Su et al. Advances in Difference Equations        (2019) 2019:420 Page 18 of 19

14. Choi, J., Agarwal, P.: A note on fractional integral operator associated with multiindex Mittag-Leffler functions. Filomat
30(7), 1931–1939 (2016)

15. Constantin, P., Doering, C.R.: Infinite Prandtl number convection. J. Stat. Phys. 94, 159–172 (1999)
16. Danchin, R., Paicu, M.: Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces. Phys.

D, Nonlinear Phenom. 237, 1444–1460 (2008)
17. Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models

Methods Appl. Sci. 21(3), 421–457 (2011)
18. Engler, H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)
19. Fang, D., Qian, C., Zhang, T.: Global well-posedness for 2D Boussinesq system with general supercritical dissipation.

Nonlinear Anal., Real World Appl. 27, 326–349 (2016)
20. Gao, F.: General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion

phenomena in heat transfer problems. Therm. Sci. 21(s1), 11–18 (2017)
21. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, London (1982)
22. Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero–Bogoyavlenskii–Schiff equation narray in

(2 + 1) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus 133, 248 (2018)
23. Hassainia, Z., Hmidi, T.: On the inviscid Boussinesq system with rough initial data. J. Math. Anal. Appl. 430, 777–809

(2015)
24. Hmidi, T., Keraani, S.: On the global well-posedness of the Boussinesq system with zero viscosity. Indiana Univ. Math.

J. 58(4), 1591–1618 (2009)
25. Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dissipation.

Commun. Partial Differ. Equ. 36, 420–445 (2011)
26. Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equation. Discrete Contin. Dyn. Syst. 12(1), 1–12

(2005)
27. Hu, W., Kukavica, I., Ziane, M.: On the regularity for the Boussinesq equation in a bounded domain. J. Math. Phys.

54(8), 081507 (2013)
28. Hu, W., Kukavica, I., Ziane, M.: Persistence of regularity for the viscous Boussinesq equation with zero diffusivity.

Asymptot. Anal. 91, 111–134 (2015)
29. Huang, A.: The 2D Euler–Boussinesq equation in planar polygonal domains with Yudovich’s type data. Commun.

Math. Stat. 2(3–4), 369–391 (2014). arXiv:1405.2631
30. Huang, A.: The global well-posedness and global attractor for the solutions to the 2D Boussinesq system with

variable viscosity and thermal diffusivity. Nonlinear Anal. TMA 113, 401–429 (2015)
31. Jia, J., Peng, J., Li, K.: On the global well-posedness of a generalized 2D Boussinesq equation. NoDEA Nonlinear Differ.

Equ. Appl. 22, 911–945 (2015)
32. Jin, L., Fan, J.: Uniform regularity for the 2D Boussinesq system with a slip boundary condition. J. Math. Anal. Appl.

400(1), 96–99 (2013)
33. Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The 2D incompressible Boussinesq equation with general dissipation. Soc. Sci.

Electron. Publ. 17(4), 1132–1157 (2012) arXiv:1212.3227v1
34. Jiu, Q., Miao, C., Wu, J., Zhang, Z.: The two-dimensional incompressible Boussinesq equation with general critical

dissipation. SIAM J. Math. Anal. 46(5), 3426–3454 (2014)
35. Jiu, Q., Wu, J., Yang, W.: Eventual regularity of the two-dimensional Boussinesq equation with supercritical dissipation.

J. Nonlinear Sci. 25, 37–58 (2015)
36. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equation. Commun.

Math. Phys. 255(1), 161–181 (2005)
37. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equation. Commun. Pure Appl. Math. 41,

891–907 (1988)
38. KC, D.: A study on the global well-posedness for the two-dimensional Boussinesq and Lans-Alpha

magnetohydrodynamics equation, Dissertations and Theses-Gradworks, Oklahoma State University, 2014
39. KC, D., Regmi, D., Tao, L., Wu, J.: Generalized 2D Euler–Boussinesq equation with a singular velocity. J. Differ. Equ. 257,

82–108 (2014)
40. Kukavica, I., Wang, F., Ziane, M.: Persistence of regularity for solutions of the Boussinesq equation in Sobolev spaces.

Adv. Differ. Equ. 21, 1/2 (2016)
41. Lai, M., Pan, R., Zhao, K.: Initial boundary value problem for two-dimensional viscous Boussinesq equation. Arch.

Ration. Mech. Anal. 199(3) 739–760 (2011)
42. Larios, A., Lunasin, E., Titi, E.S.: Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and

without heat diffusion. J. Differ. Equ. 255(9), 2636–2654 (2013)
43. Li, H., Pan, R., Zhang, W.: Initial boundary value problem for 2D Boussinesq equation with temperature-dependent

heat diffusion. J. Hyperbolic Differ. Equ. 12(3), 469–488 (2015)
44. Li, J., Titi, E.S.: Global well-posedness of the 2D Boussinesq equation with vertical dissipation. Arch. Ration. Mech. Anal.

220(3), 983–1001 (2016)
45. Li, Y.: Global regularity for the viscous Boussinesq equation. Math. Methods Appl. Sci. 27(3), 363–369 (2004)
46. Liskevich, V.A., Semenov, Y.A.: Some problems on Markov semigroups. Schrodinger operators, Markov semigroups,

wavelet analysis, operator algebras. In: Math. Top., vol. 11, pp. 163–217. Akademie Verlag, Berlin (1996)
47. Lorca, S.A., Boldrini, J.L.: The initial value problem for a generalized Boussinesq model: regularity and global existence

of strong solutions. Mat. Contemp. 11, 71–94 (1996)
48. Lorca, S.A., Boldrini, J.L.: The initial value problem for a generalized Boussinesq model. Nonlinear Anal. TMA 36(4),

457–480 (1999)
49. Miao, C., Xue, L.: On the global well-posedness of a class of Boussinesq–Navier–Stokes systems. NoDEA Nonlinear

Differ. Equ. Appl. 18, 707–735 (2011)
50. Morales-Delgado, V.F., Gomez-Aguilar, J.F., Saad, K.M., AltafKhan, M., Agarwal, P.: Analytic solution for oxygen diffusion

from capillary to tissues involving external force effects: a fractional calculus approach. Phys. A, Stat. Mech. Appl.
523(1), 48–65 (2019)

51. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

http://arxiv.org/abs/arXiv:1405.2631
http://arxiv.org/abs/arXiv:1212.3227v1


Su et al. Advances in Difference Equations        (2019) 2019:420 Page 19 of 19

52. Qin, Y., Su, X., Wang, Y., Zhang, J.: Global regularity for a two-dimensional nonlinear Boussinesq system. Math.
Methods Appl. Sci. (2016). https://doi.org/10.1002/mma.4118

53. Ruzhansky, M., Je, C.Y., Cho, Y.J., Agarwal, P., Area, I.: Advances in Real and Complex Analysis with Applications.
Springer, Singapore (2017)

54. Saad, K.M., Iyiola, O.S., Agarwal, P.: An effective homotopy analysis method to solve the cubic isothermal
auto-catalytic chemical system. AIMS Math. 3(1), 183–194 (2018)

55. Shi, Q., Wang, S.: Nonrelativistic approximation in the energy space for KGS system. J. Math. Anal. Appl. 462(2),
1242–1253 (2018)

56. Stefanov, A., Wu, J.: A global regularity result for the 2D Boussinesq equation with critical dissipation. Mathematics
29(1), 195–205 (2014)

57. Su, X.: The global attractor of the 2D Boussinesq system with fractional vertical dissipation. Bound. Value Probl.
2016(1), 1 (2016)

58. Sun, Y., Zhang, Z.: Global regularity for the initial-boundary value problem of the 2D Boussinesq system with variable
viscosity and thermal diffusivity. J. Differ. Equ. 255(6), 1069–1085 (2013)

59. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive
fractional q-difference equation. Adv. Differ. Equ. 2015, 18 (2015)

60. Wang, C., Zhang, Z.: Global well-posedness for the 2D Boussinesq system with the temperature-dependent viscosity
and thermal diffusivity. Adv. Math. 228(1), 43–62 (2011)

61. Wu, G., Zheng, X.: Golbal well-posedness for the two-dimensional nonlinear Boussinesq equation with vertical
dissipation. J. Differ. Equ. 255, 2891–2926 (2013)

62. Wu, J.: Generalized MHD equation. J. Differ. Equ. 195, 284–312 (2003)
63. Wu, J., Xu, X.: Well-posedness and inviscid limits of the Boussinesq equation with fractional Laplacian dissipation.

Nonlinearity 27, 2215–2232 (2014)
64. Xiang, Z., Yan, W.: Global regularity of solutions to the Boussinesq equation with fractional diffusion. Adv. Differ. Equ.

18, 11/12 (2013)
65. Xu, F., Yuan, J.: On the global well-posedness for the 2D Euler–Boussinesq system. Nonlinear Anal., Real World Appl.

17, 137–146 (2014)
66. Xu, X.: Global regularity of solutions of 2D Boussinesq equation with fractional diffusion. Nonlinear Anal. 72, 677–681

(2010)
67. Xu, X., Xue, L.: Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation.

J. Differ. Equ. 256, 3179–3207 (2014)
68. Yamazaki, K.: On the global regularity of N-dimensional generalized Boussinesq system. Appl. Math. 60(2), 109–133

(2015)
69. Yang, A., Yang, H., Li, J., Liu, W.: On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative

without singular kernel. Therm. Sci. 20(suppl. 3), 717–721 (2016)
70. Yang, W., Jiu, Q., Wu, J.: Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation. J. Differ.

Equ. 257, 4188–4213 (2014)
71. Yang, X.: New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc.

Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 19(1), 45–52 (2018)
72. Yang, X.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)
73. Yang, X., Feng, Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay

exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)
74. Yang, X., Gao, F., Ju, Y., Zhou, H.: Fundamental solutions of the general fractional-order diffusion equations. Math.

Methods Appl. Sci. 41(18), 9312–9320 (2018)
75. Yang, X., Gao, F., Srivastava, H.: Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets.

Fractals 25(04), 1740002 (2007)
76. Yang, X., Gao, F., Srivastava, H.: New rheological models within local fractional derivative. Rom. Rep. Phys. 69(3), 113

(2017)
77. Yang, X., Gao, F., Srivastava, H.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput.

Appl. Math. 339, 285–296 (2017)
78. Yang, X., Gao, F., Tenreiro, M., Dumitru, B.: A new fractional derivative involving the normalized sinc function without

singular kernel. Eur. Phys. J. Spec. Top. 226(16–18), 3567–3575 (2017)
79. Yang, X., Machado, J.: A new fractional operator of variable order: application in the description of anomalous

diffusion. Phys. A, Stat. Mech. Appl. 481, 276–283 (2017)
80. Yang, X., Machado, J., Baleanu, D.: On exact traveling-wave solution for local fractional Boussinesq equation in fractal

domain. Fractals 25(4), 1740006 (2017)
81. Yang, X., Mahmoud, A., Cattani, C.: A new general fractional-order derivative with Rabotnov fractional-exponential

kernel applied to model the anomalous heat transfer. Therm. Sci. 23 1677–1681 (2019)
82. Yang, X., Srivastava, H., Tenreiro, J.: A new fractional derivative without singular kernel: application to the modelling of

the steady heat flow. Therm. Sci. 20(2), 753–756 (2015)
83. Ye, Z., Xu, X.: Remarks on global regularity of the 2D Boussinesq equation with fractional dissipation. Nonlinear Anal.

TMA 125, 715–724 (2015)
84. Ye, Z., Xu, X.: Global regularity results of the 2D Boussinesq equation with fractional Laplacian dissipation. J. Math.

Fluid Mech. 260(8), 1–20 (2015)
85. Zhang, X., Agarwal, P., Liu, Z., Peng, H.: The general solution for impulsive differential equation with Riemann–Liouville

fractional-order q ∈ (1, 2). Open Math. 13(1), 2391–5455 (2015)
86. Zhao, K.: 2D inviscid heat conductive Boussinesq equation on a bounded domain. Mich. Math. J. 59, 329–352 (2010)
87. Zhou, D., Li, Z.: Global well-posedness for the 2D Boussinesq Equation with Zero Viscosity (2016). arXiv:1603.08301v2

[math.AP]

https://doi.org/10.1002/mma.4118
http://arxiv.org/abs/arXiv:1603.08301v2

	Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
	Abstract
	Keywords

	Introduction
	Preliminaries
	Proof of Theorem 1
	Global existence
	Uniqueness

	Proof of Theorem 2
	Conclusions
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


