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Abstract
In this paper, we propose three fractional chaotic maps based on the well known 3D
Stefanski, Rössler, and Wang maps. The dynamics of the proposed fractional maps are
investigated experimentally by means of phase portraits, bifurcation diagrams, and
Lyapunov exponents. In addition, three control laws are introduced for these
fractional maps and the convergence of the controlled states towards zero is
guaranteed by means of the stability theory of linear fractional discrete systems.
Furthermore, a combined synchronization scheme is introduced whereby the
fractional Rössler map is considered as a drive system with the response system being
a combination of the remaining two maps. Numerical results are presented
throughout the paper to illustrate the findings.
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1 Introduction
Chaotic discrete-time systems (maps) have received considerable attention over the last
two decades due to their many applications in secure communications [1–4] and con-
trol [5]. Numerous maps have been proposed throughout the years including Hénon map
[6], Lozi system [7], generalized Hénon map [8], Baier–Klein system [9], Stefanski map
[10], Rössler map [11], and Wang map [12]. These maps exhibit a chaotic behavior in the
sense that their trajectories are highly dependent on the system’s initial conditions. Very
recently, interest has grown from the research community in the study and applications
of fractional discrete calculus. Fractional discrete systems have a major advantage over
their conventional counterparts due to the infinite memory they feature, which allows for
more flexibility in modeling and leads to a higher degree of chaotic behavior. In addition,
fractional maps usually exhibit a chaotic attractor over a range of fractional orders, which
increases their applicability in secure communications. Several studies have attempted to
develop a complete framework for discrete fractional calculus and generalize the stability
theory of conventional discrete calculus to the fractional domain [13–17]. However, since
the topic of fractional discrete calculus is still new, to the best of our knowledge, very few
fractional order chaotic maps have been proposed in the literature such as [18–21].
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When talking about chaotic systems in general, two of the main concerns are their con-
trol and synchronization. Control refers to the adaptive control of a given chaotic sys-
tem with the aim of forcing its states to be asymptotically stable, usually converging to-
wards zero [22, 23]. One of the applications of this topic is in robotics where the con-
trol of the chaotic motion of a rigid body is considered. No studies can be found in the
literature regarding the control of fractional chaotic maps. The second major aspect of
chaotic systems is their synchronization. In the revolutionary work of Pecora and Car-
roll [24], the authors showed that two Lorenz systems with different initial conditions
can be controlled to follow the exact same trajectory. This was the seed that started the
long use of chaotic systems in the field of communications. Throughout the years, many
studies have considered the synchronization of integer-order chaotic and hyperchaotic
maps including [25–29] but very few can be found for those of fractional-order [30–
34].

In this paper, we propose three fractional chaotic maps based on the Stefanski, Rössler,
and Wang maps and study the existence of chaos and its control and synchronization.
The following section reviews some important theory related to fractional discrete calcu-
lus, including the necessary notation and notes on the stability of linear fractional maps.
Section 3 introduces the proposed fractional map based on the Stefanski discrete-time
system, discusses its dynamics, and presents the related control scheme. Sections 4 and
5 present and investigate the dynamics and control of the fractional Rössler and Wang
maps, respectively. Section 6 discusses the combined synchronization scheme and es-
tablishes the convergence of the synchronization errors, both analytically and numer-
ically. Finally, Sect. 7 summarizes the results of the paper and poses ideas for future
work.

2 Fractional discrete-time calculus
Before we start talking about chaotic fractional discrete-time systems and their control
and synchronization, let us first recall some of the necessary theory related to the subject.
Throughout our work, we will denote by C�υ

a X(t) the υ-Caputo type delta difference of a
function X(t) : Na →R with Na = {a, a + 1, a + 2, . . . } [14], which is of the form

C�υ
a X(t) = �–(n–υ)

a �nX(t) =
1

Γ (n – υ)

t–(n–υ)∑

s=a

(
t – σ (s)

)(n–υ–1)
�nX(s), (1)

for υ /∈ N being the fractional order, t ∈ Na+n–υ , and n = �υ� + 1. In (1), the υth fractional
sum of X(t) is defined similar to [13] as

�–υ
a X(t) =

1
Γ (υ)

t–υ∑

s=a

(
t – σ (s)

)(υ–1)X(s), (2)

with υ > 0, σ (s) = s + 1. The term t(υ) denotes the decreasing function defined in terms of
the Gamma function Γ as

t(υ) =
Γ (t + 1)

Γ (t + 1 – υ)
. (3)
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The following theorems provide the basis for the numerical analysis and stability theory
that we will require later on when dealing with the proposed fractional-order discrete-time
systems.

Theorem 1 ([21]) For the delta fractional difference equation

⎧
⎨

⎩

C�υ
a u(t) = f (t + υ – 1, u(t + υ – 1)),

�ku(t) = uk , n = �υ� + 1, k = 0, 1, . . . , n – 1
(4)

the equivalent discrete integral equation can be obtained as

u(t) = u0(t) +
1

Γ (υ)

t–υ∑

s=a+n–υ

(
t – σ (s)

)(υ–1)f
(
s + υ – 1, u(s + υ – 1)

)
, t ∈Na+n, (5)

where

u0(t) =
m–1∑

k=0

(t – a)k

k
�ku(a). (6)

Theorem 2 ([35]) The zero equilibrium of the linear fractional-order discrete-time system

C�υ
a X(t) = MX(t + υ – 1), (7)

where X(t) = (x1(t), . . . , xn(t))T , 0 < υ ≤ 1, M ∈ R
n×n and ∀t ∈ Na+1–υ , is asymptotically

stable if

λ ∈
{

z ∈C : |z| <
(

2 cos
| arg z| – π

2 – υ

)υ

and | arg z| >
υπ

2

}
, (8)

for all the eigenvalues λ of M.

3 Fractional-order Stefanski map
3.1 System model and dynamics
In [10], Stefanski introduced a generalization of the standard Hénon map into 3-
dimensional space. The system is of the form

⎧
⎪⎪⎨

⎪⎪⎩

x(n + 1) = 1 + z(n) – αy2(n),

y(n + 1) = 1 + βy(n) – αx2(n),

z(n + 1) = βx(n),

(9)

where x(n), y(n), and z(n) are the states, α > 0, and 0 < β < 1. The system has been studied
extensively in the literature and is known to exhibit a hyperchaotic behavior for the bi-
furcation parameters β = 0.2, and α ∈ [1.22, 1.40]. The resulting attractor for α = 1.4 and
β = 0.2 is depicted in Fig. 1.
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Figure 1 Phase portraits of the classical Stefanski attractor

Taking the first order difference of (9) yields

⎧
⎪⎪⎨

⎪⎪⎩

�x(n) = 1 + z(n) – αy2(n) – x(n),

�y(n) = 1 + (β – 1)y(n) – αx2(n),

�z(n) = βx(n) – z(n).

(10)

The υ-Caputo type delta differences (1) can, therefore, be formulated for time t ∈Na+1–υ

and fractional order 0 < υ ≤ 1 as

⎧
⎪⎪⎨

⎪⎪⎩

C�υ
a x(t) = 1 + z(t – 1 + υ) – αy2(t – 1 + υ) – x(t – 1 + υ),

C�υ
a y(t) = 1 + (β – 1)y(t – 1 + υ) – αx2(t – 1 + υ),

C�υ
a z(t) = βx(t – 1 + υ) – z(t – 1 + υ).

(11)

We will call system (11) the fractional-order Stefanski map. Suppose that a = 0. Using
Theorem 1, the numerical formulas for (11) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = x(0) + 1
Γ (υ)

∑t–υ
s=a+1–υ(t – σ (s))(υ–1)

× (1 + z(s – 1 + υ) – αy2(s – 1 + υ) – x(s – 1 + υ)),

y(t) = y(0) + 1
Γ (υ)

∑t–υ
s=a+1–υ(t – σ (s))(υ–1)

× (1 + βy(s – 1 + υ) – αx2(s – 1 + υ) – y(s – 1 + υ)),

z(t) = z(0) + 1
Γ (υ)

∑t–υ
s=a+1–υ(t – σ (s))(υ–1)

× (βx(s – 1 + υ) – z(s – 1 + υ)),

(12)
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with (t–σ (s))(υ–1)

Γ (υ) being a certain discrete kernel function. From (3), we obtain the kernel

(
t – σ (s)

)(υ–1) =
Γ (t – s)

Γ (t – s – υ + 1)
. (13)

Replacing t – υ by n and s + υ by j, (12) and (13) yield

⎧
⎪⎪⎨

⎪⎪⎩

x(n) = x(0) + 1
Γ (υ)

∑n
j=1

Γ (n–j+υ)
Γ (n–j+1) (1 + z(j – 1) – αy2(j – 1) – x(j – 1)),

y(n) = y(0) + 1
Γ (υ)

∑n
j=1

Γ (n–j+υ)
Γ (n–j+1) (1 + (β – 1)y(j – 1) – αx(j – 1)),

z(n) = z(0) + 1
Γ (υ)

∑n
j=1

Γ (n–j+υ)
Γ (n–j+1) (βx(j – 1) – z(j – 1)),

(14)

where x(0), y(0), and z(0) are the initial conditions.
Before we go ahead and present control and synchronization schemes for the frac-

tional map (11), let us first examine some important dynamics. Let a = 0 and x(0) = y(0) =
z(0) = 0. The phase portraits are displayed in Figs. 2 and 3 for different fractional orders.
For the numerical simulation, we choose the step size �α = 0.001. The bifurcation di-
agrams are plotted in Fig. 4 for different values of fractional order υ . When υ = 0.97,
the bifurcation diagrams show a period-doubling cascade route to chaos in the range
α ∈ [1.1, 1.4]. As the value of υ decreases, the bifurcation diagram of the fractional or-
der map (11) expands along the α axis and gradually shift to the left.

In addition to visualizing the effect of parameter α on the dynamics of the map, we
have seen that the value of the fractional order υ has an impact on the dynamics. This
has been further investigated by plotting the bifurcation of the fractional Stefanski map
(11) taking υ as the critical parameter. The resulting bifurcation diagram when (α,β) =
(1.4, 0.2) and (x(0), y(0)z(0)) = (0, 0, 0) is depicted in Fig. 5. We see that chaos is apparent
for the interval υ ∈ [0.915, 1]. As soon as υ drops below 0.915, the states diverge towards
infinity.

Figure 2 Phase portraits of the fractional-order Stefanski map with υ = 0.97
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Figure 3 Phase space of the fractional-order Stefanski map for υ = 0.969

Figure 4 Bifurcation diagrams corresponding to the fractional Stefanski map with α as the critical parameter,
β = 0.2, and different fractional orders υ

Although bifurcation plots clearly indicate the existence of chaos in the fractional map, it
is usually more convenient to calculate or estimate the map’s Lyapunov exponents. These
are basically measures of the exponential divergence of two trajectories starting from in-
finitesimally close initial settings. A common method to estimate Lyapunov exponents for
standard maps is by means of a QR decomposition of the time-varying Jacobian matrix.
For fractional maps, the Jacobian matrix is subject to the same discrete memory effect as
the map’s states and thus can be calculated in a similar manner, see [36]. Figure 6 shows
the estimated Lyapunov exponents for different values of the fractional order υ . We see
that the results agree with those of the bifurcation in the sense that lowering υ below 1
yields lower exponents to the point where they become negative, which coincides with a
stable system.
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Figure 5 Bifurcation diagram of the fractional Stefanski map with υ ∈ [0, 1] as the critical parameter,
(α,β) = (1.4, 0.2) and (x(0), y(0)z(0)) = (0, 0, 0)

Figure 6 Estimated Lyapunov exponents of the fractional Stefanski map for (α,β) = (1.4, 0.2),
(x(0), y(0)z(0)) = (0, 0, 0), and different fractional orders

3.2 Control laws
When dealing with chaotic dynamical systems in general, particular interest is paid to
our ability to control or stabilize these systems. By control, we refer to the addition of
new adaptively updated terms to the chaotic system in order to force its states towards
zero asymptotically. The following theorem proposes control laws for the fractional-order
Stefanski map (11).
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Theorem 3 The 3D fractional-order Stefanski map (11) is stable under the 2D control law

⎧
⎨

⎩
ux(t) = αy2(t) – z(t) – 1,

uy(t) = αx2(t) – 1.
(15)

Proof Adding two control terms ux(t) and uy(t) to the fractional-order Stefanski map (11)
results in the modified system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C�υ
a x(t) = 1 + z(t – 1 + υ) – αy2(t – 1 + υ) – x(t – 1 + υ)

+ ux(t – 1 + υ),
C�υ

a y(t) = 1 + (β – 1)y(t – 1 + υ) – αx2(t – 1 + υ)

+ uy(t – 1 + υ),
C�υ

a z(t) = βx(t – 1 + υ) – z(t – 1 + υ).

(16)

Substituting the control law (15) yields the new dynamics

⎧
⎪⎪⎨

⎪⎪⎩

C�υ
a x(t) = –x(t – 1 + υ),

C�υ
a y(t) = (β – 1)y(t – 1 + υ),

C�υ
a z(t) = βx(t – 1 + υ) – z(t – 1 + υ),

(17)

which can be described more compactly as

C�υ
a
(
x(t), y(t), z(t)

)T = M
(
x(t), y(t), z(t)

)T , (18)

with

M =

⎛

⎜⎝
–1 0 0
0 β – 1 0
β 0 –1

⎞

⎟⎠ . (19)

We aim to show that the zero solution of (18) is globally asymptotically stable, which guar-
antees that all states converge towards zero at infinite time. In order to do so, we make use
of the stability theory of linear fractional-order maps as described in Theorem 2. Simply,
we can show that the eigenvalues of the matrix M are λ1 = λ3 = –1 and λ2 = β – 1. It is easy
to see that all the eigenvalues of the matrix M satisfy

| argλi| = π >
υπ

2

and

|λi| <
(

2 cos
| argλi| – π

2 – υ

)υ

for i = 1, 2, 3. According to Theorem 2, the zero solution of (18) is globally asymptotically
stable. Hence, the system is stabilized by means of control laws (15). �
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Figure 7 The time evolution of the controlled states for the fractional Stefanski map

In order to verify the result of Theorem 3, we implemented it numerically in Matlab.
The discrete-time states are shown in Fig. 7. Clearly, the system is asymptotically stable
and its states converge towards zero.

4 Fractional-order discrete-time Rössler system
4.1 System model and dynamics

The second map we are going to consider here is the 3D Rössler map introduced in [11]
and given by

⎧
⎪⎪⎨

⎪⎪⎩

x(n + 1) = b1x(n)(1 – x(n)) – b2(z(n) + b3)(1 – 2y(n)),

y(n + 1) = b4y(n)(1 – y(n)) + b5z(n),

z(n + 1) = b6(1 – b7x(n))[(z(n) + b3)(1 – 2y(n)) – 1],

(20)

with states x(n), y(n), and z(n), and parameters b1 = 3.8, b2 = 0.05, b3 = 0.35, b4 = 3.78,
b5 = 0.2, b6 = 0.1, and b7 = 1.9. The Rössler map is well known and has been exam-
ined and applied in countless studies found in the literature. The phase-space portraits
of the Rössler map for initial conditions (x(0), y(0), z(0)) = (0.1, 0.2, –0.5) are displayed in
Fig. 8.

The fractional-order map corresponding to (20) may be obtained in a similar manner to
the fractional Stefanski map. Using the fractional discrete calculus notation in Sect. 2, we
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Figure 8 Phase space portraits of the standard Rössler map for b1 = 3.8, b2 = 0.05, b3 = 0.35, b4 = 3.78,
b5 = 0.2, b6 = 0.1, and b7 = 1.9

can write

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C�υ
a x(t) = b1x(t – 1 + υ)(1 – x(t – 1 + υ))

– b2((z(t – 1 + υ) + b3)(1 – 2y(t – 1 + υ))) – x(t – 1 + υ),
C�υ

a y(t) = b4y(t – 1 + υ)(1 – y(t – 1 + υ)) + b5z(t – 1 + υ)

– y(t – 1 + υ),
C�υ

a z(t) = b6(1 – b7x(t – 1 + υ))

× [(z(t – 1 + υ) + b3)(1 – 2y(t – 1 + υ)) – 1] – z(t – 1 + υ),

(21)

for t ∈Na–υ+1, where 0 < υ ≤ 1. The corresponding numerical formulas follow from The-
orem 1 and may be given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n) = x(a) + 1
Γ (υ)

∑n
j=1

Γ (n–j+υ)
Γ (n–j+1)

× (b1x(j – 1)(1 – x(j – 1)) – b2(z(j – 1) + b3)(1 – 2y(j – 1)) – x(j – 1)),

y(n) = y(a) + 1
Γ (υ)

∑n
j=1

Γ (n–j+υ)
Γ (n–j+1)

× (b4y(j – 1)(1 – y(j – 1)) + b5z(j – 1) – y(j – 1)),

z(n) = z(a) + 1
Γ (υ)

∑n
j=1

Γ (n–j+υ)
Γ (n–j+1)

× (b6(1 – b7x(j – 1))[(z(j – 1) + b3)(1 – 2y(j – 1)) – 1] – z(j – 1)).

(22)

In order to ensure that the fractional Rössler map (21) is chaotic, it helps to visual-
ize its bifurcation plot. Let us consider a simple case where a = 0 and (x(0), y(0), z(0)) =
(0.1, 0.2, –0.5). Figures 9 and 10 depict the phase portraits for fractional orders υ = 0.97
and υ = 0.91, respectively. Through an experimental sweep of the fractional order, we
found that the minimum value of υ for which the system exhibits a chaotic behavior is
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Figure 9 Phase portraits of the fractional order Rössler map for υ = 0.97

Figure 10 Phase portraits of the fractional order Rössler map for υ = 0.91

0.903. Figure 11 shows the bifurcation diagram for υ = 0.97 with b1 as the critical pa-
rameter and (b2, b3, b4, b5, b6, b7) = (0.05, 0.35, 3.78, 0.2, 0.1, 1.9). The critical parameter was
varied with the step size �b1 = 0.001. Figure 12 shows the bifurcation diagram of the
fractional Rössler map with υ ∈ [0.9, 1] as the critical parameter, (b2, b3, b4, b5, b6, b7) =
(0.05, 0.35, 3.78, 0.2, 0.1, 1.9) and (x(0), y(0), z(0)) = (0.1, 0.2, –0.5). We see that chaos is only
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Figure 11 Bifurcation diagram of Rössler system
with a as the critical parameter and υ = 0.97

Figure 12 Bifurcation diagram of the fractional Rössler map with υ ∈ [0, 1] as the critical parameter,
(b2,b3,b4,b5,b6,b7) = (0.05, 0.35, 3.78, 0.2, 0.1, 1.9) and (x(0), y(0), z(0)) = (0.1, 0.2, –0.5)

observed for υ > υ0 ≈ 0.933. Below υ0, the map becomes unstable and the states diverge
towards infinity.

Using the same parameters and initial conditions, Fig. 13 shows the estimated Lyapunov
exponents using the Jacobian matrix. For υ = 1, we observe that λ1 ≈ λ2 > 0, indicating a
hyperchaotic nature of the fractional Rössler map. Similar to Stefanski map, as υ reduces,
so do the Lyapunov exponents.

4.2 Control laws
In much the same way followed in the previous section, let us now propose adaptive laws
to control the fractional Rössler map (21) and drive all of its states towards zero asymp-
totically.

Theorem 4 The fractional-order Rössler map becomes asymptotically stable subject to the
control laws

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ux(t) = –b1x(t) + b1x2(t) – 2b2z(t)y(t) + b2b3,

uy(t) = –b4y(t) + b4y2(t),

uz(t) = 2b6b3y(t) + 2b6z(t)y(t) + b6(1 – b3) + b6b7x(t)z(t)

– 2b6b7x(t)y(t)z(t) – 2b3b6b7x(t)y(t).

(23)
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Figure 13 Estimated Lyapunov exponents of the fractional Rössler map for with
(b2,b3,b4,b5,b6,b7) = (0.05, 0.35, 3.78, 0.2, 0.1, 1.9), (x(0), y(0), z(0)) = (0.1, 0.2, –0.5), and different fractional
orders υ

Proof The controlled system corresponding to (21) is of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C�υ
a x(t) = b1x(t – 1 + υ)(1 – x(t – 1 + υ))

– b2((z(t – 1 + υ) + b3)(1 – 2y(t – 1 + υ)))

– x(t – 1 + υ) + ux(t – 1 + υ),
C�υ

a y(t) = b4y(t – 1 + υ)(1 – y(t – 1 + υ)) + b5z(t – 1 + υ)

– y(t – 1 + υ) + uy(t – 1 + υ),
C�υ

a z(t) = b6(1 – b7x(t – 1 + υ))

× [(z(t – 1 + υ) + b3)(1 – 2y(t – 1 + υ)) – 1]

– z(t – 1 + υ) + uz(t – 1 + υ).

(24)

Substituting the control parameters stated in (23) yields the system dynamics

C�υ
a
(
x(t), y(t), z(t)

)T = M
(
x(t), y(t), z(t)

)T , (25)

where

M =

⎛

⎜⎝
–1 2b2b3 –b2

0 –1 b5

0 0 b6 – 1

⎞

⎟⎠ . (26)
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Figure 14 The time evolution of the controlled states for the fractional Rössler map

It is easy to see that the eigenvalues of M satisfy stability condition (8). By means of The-
orem 2, we know that the zero solution is asymptotically stable and thus the system is
stabilized. �

Theorem 4 was put to the test using the same parameters and initial conditions stated
at the beginning of this section and the control laws (23). Figure 14 shows the time evo-
lution of the states, which clearly converge towards zero indicating successful stabiliza-
tion.

5 Fractional-order Wang map
5.1 System model and dynamics
Another 3D chaotic map that has an interesting attractor is the hyperchaotic Wang map
proposed in [12] and given by

⎧
⎪⎪⎨

⎪⎪⎩

x(n + 1) = a3y(n) + (a4 + 1)x(n),

y(n + 1) = a1x(n) + y(n) + a2z(n),

z(n + 1) = (a7 + 1)z(n) + a6y(n)z(n) + a5.

(27)

Figure 15 shows the phase portraits for the following set of parameters:

(a1, a2, a3, a4, a5, a6, a7) = (–1.9, 0.2, 0.5, –2.3, 2, –0.6, –1.9).

It is easy to see that the system exhibits chaos, a result that has been reported and studied
in the literature.
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Figure 15 Phase portraits of the standard discrete-time Wang system

We follow the same lines of the previous two sections to arrive at the fractional-order
discrete-time Wang map given by

⎧
⎪⎪⎨

⎪⎪⎩

C�υ
a x(t) = a3y(t – 1 + υ) + a4x(t – 1 + υ),

C�υ
a y(t) = a1x(t – 1 + υ) + a2z(t – 1 + υ),

C�υ
a z(t) = a7z(t – 1 + υ) + a6y(t – 1 + υ)z(t – 1 + υ) + a5.

(28)

The numerical formulas can be obtained in a similar fashion to the previous two sec-
tions by means of Theorem 1. It can be easily shown that the fractional Wang map (28) is
chaotic. Consider the case a = 0 and initial conditions (x(0), y(0), z(0)) = (0.05, 0.03, 0.02).
Figures 16 and 17 show the resulting attractors for the fractional orders υ = 0.97 and
υ = 0.969, respectively. We have also plotted the bifurcation diagram with the critical
parameter a3 being varied at steps of �a.3 = 0.001 and the remaining parameters cho-
sen as (a1, a2, a4, a5, a6, a7) = (–1.9, 0.2, –2.3, 2, –0.6, –1.9). The bifurcation duration was
set to n = 200. The bifurcation diagrams are depicted in Fig. 18 for different fractional
orders υ . In Fig. 19, we show the bifurcation diagram of the fractional Wang map (28)
with υ ∈ [0.9, 1] as the critical parameter. We see that the map exhibits a chaotic be-
havior over a short interval of fractional orders. Chaos clearly disappears completely for
υ < υ0 ≈ 0.915. In fact, when υ < 0.968, the chaotic behavior is intermittent and has a very
short range.

The Lyapunov exponents of the fractional Wang map (28) with the same previous pa-
rameters and initial conditions are depicted in Fig. 20. For υ = 1, we see that λ1 > λ2 > 0,
indicating hyperchaotic dynamics. This changes as the fractional order is made smaller.
In fact, for υ = 0.9, 0 > λ1 > λ2 > λ3, which leads to a stable map dynamic.
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Figure 16 Phase space portraits of the fractional-order Wang map for υ = 0.97

Figure 17 Phase space portraits of the fractional-order Wang map for υ = 0.969

5.2 Control laws
The following theorem presents the control laws to stabilize the fractional Wang map (28).
The proof has been omitted as it follows the same lines of Theorems 3 and 4. It suffices to
say that the eigenvalues of the resulting linear fractional error system is stable as a result
of Theorem 2 for specific parameter values including the parameter set considered earlier
in this section.
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Figure 18 Bifurcation diagrams of the fractional-order Wang map for different fractional orders

Figure 19 Bifurcation diagram of the fractional Rössler map with υ ∈ [0, 1] as the critical parameter,
(a1,a2,a4,a5,a6,a7) = (–1.9, 0.2, –2.3, 2, –0.6, –1.9) and (x(0), y(0), z(0)) = (0.05, 0.03, 0.02)

Theorem 5 The fractional-order Wang map (28) is stabilized subject to the control laws

⎧
⎪⎪⎨

⎪⎪⎩

ux(t) = 2x(t),

uy(t) = –a1x(t) – y(t),

uz(t) = z(t) – a6y(t)z(t) – a5.

(29)

Figure 21 depicts the time evolution of the states for the controlled fractional-order
discrete-time Wang system. The states are observed to converge towards zero asymptot-
ically, indicating that the system is stabilized.

6 A combined synchronization scheme
Although fractional-order discrete-time systems are still new and the literature related
to them is limited, they have found applications in a number of fields, including secure
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Figure 20 Estimated Lyapunov exponents of the fractional Wang map for with
(a1,a2,a4,a5,a6,a7) = (–1.9, 0.2, –2.3, 2, –0.6, –1.9), (x(0), y(0), z(0)) = (0.05, 0.03, 0.02), and different fractional
orders υ

Figure 21 The time evolution of the controlled states for the fractional Wang map
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communications and data encryption as shown in [37], for instance. The application of
this type of systems is mainly dependent on our ability to synchronize two systems start-
ing from different initial conditions such that they end up following the same trajectory
asymptotically. In this section, we propose a combined synchronization scheme for the
three fractional maps discussed herein. We consider as our drive system the fractional
Rössler map given for t ∈Na+1–υ by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C�υ
a xm(t) = b1xm(t – 1 + υ)(1 – xm(t – 1 + υ))

– b2(zm(t – 1 + υ) + b3)(1 – 2y(t – 1 + υ)) – xm(t – 1 + υ),
C�υ

a ym(t) = b4ym(t – 1 + υ)(1 – ym(t – 1 + υ))

+ b5zm(t – 1 + υ) – ym(t – 1 + υ),
C�υ

a zm(t) = b6(1 – b7xm(t – 1 + υ))

[(zm(t – 1 + υ) + b3)(1 – 2ym(t – 1 + υ)) – 1] – zm(t – 1 + υ).

(30)

As for the response system, we consider a combination of the fractional Stefanski map
described by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C�υ
a xs1 (t) = –xs1 (t – 1 + υ) + zs1 (t – 1 + υ) + 1 – αy2

s1 (t – 1 + υ)

+ u1(t – 1 + υ),
C�υ

a ys1 (t) = (β – 1)ys1 (t – 1 + υ) + 1 – αx2
s1 (t – 1 + υ) + u2(t – 1 + υ),

C�υ
a zs1 (t) = βxs1 (t – 1 + υ) – zs1 (t – 1 + υ) + u3(t – 1 + υ),

(31)

and the fractional Wang map given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C�υ
a xs2 (t) = a3ys2 (t – 1 + υ) + a4xs2 (t – 1 + υ) + u4(t – 1 + υ),

C�υ
a ys2 (t) = a1xs2 (t – 1 + υ) + a2zs2 (t – 1 + υ) + u5(t – 1 + υ),

C�υ
a zs2 (t) = a7zs2 (t – 1 + υ) + a6ys2 (t – 1 + υ)zs2 (t – 1 + υ) + a5

+ u6(t – 1 + υ),

(32)

where t ∈Na+1–υ , ui, i = 1, . . . , 6, are control parameters to be designed, and

⎧
⎪⎪⎨

⎪⎪⎩

(α,β) = (1.4, 0.2),

(a1, a2, a3, a4, a5, a6, a7) = (–1.9, 0.2, 0.5, –2.3, 2, –0.6, –1.9),

(b1, b2, b3, b4, b5, b6, b7) = (3.8, 0.05, 0.35, 3.78, 0.2, 0.1, 1.9).

(33)

The drive system (30) and the response systems (31)–(32) are said to be combination-
synchronized if there exist controllers u1(t), . . . , u6(t) such that the synchronization errors

⎧
⎪⎪⎨

⎪⎪⎩

e1(t) = xs1 (t) + xs2 (t) – xm(t),

e2(t) = ys1 (t) + ys2 (t) – ym(t),

e3(t) = zs1 (t) + zs2 (t) – zm(t),

(34)
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with t ∈ Na+1–υ , converge to zero asymptotically, i.e.,

lim
t→∞

∣∣ei(t)
∣∣ = 0, i = 1, 2, 3. (35)

The following theorem proposes suitable adaptive laws for controllers u1(t), . . . , u6(t) in
order to guarantee that (35) holds.

Theorem 6 Subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = –ys1 (t) + ym(t) – zs1 (t) – 1 + αy2
s1 (t) + b1xm(t)(1 – xm(t)),

u2(t) = –zs1 (t) – βys1 (t) – 1 + αx2
s1 (t) + b4ym(t)(1 – ym(t)),

u3(t) = –βxs1 (t) – a5 + b6(1 – b7xm(t))[(zm(t) + b3)(1 – 2ym(t)) – 1],

u4(t) = –(a3 + 1)ys2 (t) – (a4 + 1)xs2 (t) – b2(zm(t) + b3)(1 – 2ym(t)),

u5(t) = –ys2 (t) – a1xs2 (t) – (a2 + 1)zs2 (t) + (b5 + 1)zm(t),

u6(t) = –zs2 (t) – (a6ys2 (t) + a7)zs2 (t),

(36)

the drive system (30) and the response systems (31)–(32) are combination-synchronized.

Proof Taking the fractional differences of the synchronization errors (34) and substituting
the proposed controllers (36) yields the error dynamics

C�υ
a
(
e1(t), e2(t), e3(t)

)T = M
(
e1(t), e2(t), e3(t)

)T , (37)

where

M =

⎛

⎜⎝
–1 –1 0
0 –1 –1
0 0 –1

⎞

⎟⎠ . (38)

In order to ensure that the drive and response systems are synchronized, we must establish
that the errors in (37) converge towards zero asymptotically. It is easy to see that the matrix
M satisfies stability condition (8) of Theorem 2. Hence, we find that the zero solution of
the error system (37) is asymptotically stable and, consequently, the drive system (30) and
response systems (31)–(32) are combination-synchronized. �

Using the parameters specified in (33) with a = 0 and the same initial conditions from
previous sections, a Matlab program was implemented to track the time evolution of the
errors (34) and ensure they converge to zero asymptotically. The results are depicted in
Fig. 22. It is obvious that the combination-synchronization is successful. The errors clearly
decay to zero and the sums of the slave states match those of the master.

7 Concluding remarks and future work
In this paper, we have considered the generalization of three well known 3D chaotic maps,
namely the Stefanski, Rössler, and Wang maps, to fractional discrete calculus. The pro-
posed fractional maps exhibit a chaotic behavior over a range of fractional orders as
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Figure 22 Time evolution of the synchronization errors for the proposed combined synchronization scheme

demonstrated by the phase portraits, as well as the bifurcation analysis and the estima-
tion of Lyapunov exponents. The dynamics of these maps were analyzed by means of
numerical methods. In addition, we presented three distinct stabilization laws for the
proposed maps, whereby adaptive additive terms are included in the maps to drive their
states towards zero asymptotically. The stability and convergence of these schemes was
established by means of the stability theory of linear fractional discrete systems. Fur-
thermore, we proposed a combination-synchronization scheme considering the fractional
Rössler map as a drive system and a combination of the fractional Stefanski and Wang
maps as the response system. The convergence of the stabilized states as well as the syn-
chronization errors towards zero was illustrated by means of numerical simulation re-
sults.

It is well known that chaos is closely related to secure communications and data en-
cryption. This is mainly attributed to the random-like nature of the chaotic states and
trajectories. Throughout the last three decades a vast amount of literature has erupted in
relation to the use of chaos in encryption. Numerous studies have demonstrated the fea-
sibility of using chaotic maps in the generation of pseudo-random keys that may be used
with conventional encryption schemes such as the data encryption standard (DES), the
advanced encryption standard (AES), etc. Fractional chaotic maps come with the added
dimension of the fractional order and thus lead to a higher degree of chaotic random-like
behavior. In a future work, the proposed fractional maps will be utilized to encrypt data
and images and demonstrate the importance of this kind of systems.
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