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Abstract
We present the oscillation criteria for the following neutral dynamic equation on time
scales:

(y(t) – C(t)y(t – ζ ))� + P(t)y(t – η) – Q(t)y(t – δ) = 0, t ∈ T,

where C,P,Q ∈ Crd([t0,∞),R+), R+ = [0,∞), γ ,η,δ ∈ T and γ > 0, η > δ ≥ 0. New
conditions for the existence of nonoscillatory solutions of the given equation are also
obtained.
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1 Introduction
In the past two decades, there has been shown a growing interest in the study of oscillation
and stability of delay dynamic equations on time scales. Several excellent monographs
[1–5] on the topic indeed reflect its popularity. Some recent results on oscillation and
existence of nonoscillatory solutions for dynamic equations can be found in the articles
[6–23] and the references cited therein.

Motivated by aforementioned work, in this paper, we consider the following neutral dy-
namic equation on time scales:

(
y(t) – C(t)y(t – ζ )

)� + P(t)y(t – η) – Q(t)y(t – δ) = 0, t ∈ T, (1)

where C, P, Q ∈ Crd([t0,∞),R+), R+ = [0,∞), Crd denotes the class of right-dense contin-
uous functions, ζ ,η, δ ∈ T and ζ > 0, η > δ ≥ 0. Some conditions for oscillation of Eq. (1)
are obtained. We also discuss the existence of nonoscillatory solutions for Eq. (1).

A time scale is an arbitrary nonempty closed subset of the real numbers. We denote the
time scale by the symbol T. For t ∈ T we define the forward jump operator σ : T → T by
σ (t) := inf{s ∈ T : s > t}. Let Crd(T,R) denote the space of functions which are right-dense
continuous on T. In addition, we define the interval [t0,∞) in T by [t0,∞) := {t ∈ T : t0 ≤
t < ∞}.
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Definition 1.1 For h ≥ 0, we define the cylinder transformation ξh by

ξh(z) =

⎧
⎨

⎩

log(1+hz)
h , if h �= 0,

z, if h = 0.

Definition 1.2 A solution of (1) is said to be oscillatory if it is neither eventually positive
nor eventually negative, otherwise it is nonoscillatory.

Lemma 1.3 If f : T →R is differentiable and f � ≥ 0, then f is nondecreasing on T.

Lemma 1.4 If f : T →R is differentiable at t, then f is continuous at t.

2 Oscillation
In this section, we derive the main results for oscillation of Eq. (1). For that, we assume
the following conditions:

(c1) 0 ≤ C(t) +
∫ t–δ

t–η
Q(s + δ)�s ≤ 1;

(c2) R̄(t) = P(t) – Q(t – η + δ) ≥ 0 and lim inft→∞
∫ t

t–η
R̄(s)�s > γ > 0.

The following lemmas are useful in proving the main results of this section.

Lemma 2.1 Assume that the conditions (c1) and (c2) are satisfied. Let y(t) be an eventually
positive solution of (1) such that

u(t) = y(t) – C(t)y(t – ζ ) –
∫ t–δ

t–η

Q(s + δ)y(s)�s. (2)

Then eventually

u�(t) ≤ 0, u(t) > 0.

Proof Since y(t) is an eventually positive solution of (1), there exists t1 ≥ t0 such that y(t –
m) > 0 for t ≥ t1, where m = max{ζ ,η, δ}. In view of (1) and (2), we get

u�(t) =
(
y(t) – C(t)y(t – ζ )

)� –
(∫ t–δ

t–η

Q(s + δ)y(s)�s
)�

= –P(t)y(t – η) + Q(t)y(t – δ) – Q(t)y(t – δ) + Q(t – η + δ)y(t – η)

= –
(
P(t) – Q(t – η + δ)

)
y(t – η)

= –R̄(t)y(t – η)

≤ 0,

which implies that u(t) is decreasing. Next, we shall show that u(t) > 0. If u(t) → –∞ as
t → ∞, then y(t) must be unbounded. Therefore there exists {t′

n} with t′
n ≥ t2, t2 = t1 + m

such that

lim
n→∞ t′

n = ∞, lim
n→∞ y

(
t′
n
)

= ∞,
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and y(t′
n) = maxt2≤t≤t′n y(t). Hence, we have

u
(
t′
n
)

= y
(
t′
n
)

– C
(
t′
n
)
y
(
t′
n – ζ

)
–

∫ t′n–δ

t′n–η

Q(s + δ)y(s)�s

≥ y
(
t′
n
)(

1 – C
(
t′
n
)

–
∫ t′n–δ

t′n–η

Q(s + δ)�s
)

≥ 0.

In consequence, we get

lim
t→∞ u(t) = lim

n→∞ u
(
t′
n
) ≥ 0,

which is a contradiction. Hence limt→∞ u(t) = l exists. As before, if y(t) is unbounded,
then l ≥ 0. Now we consider the case when y(t) is bounded. Let l̄ = lim supt→∞ y(t) =
limt′→∞ y(t′). Then

y
(
t′) – u

(
t′) = C

(
t′)y

(
t′ – ζ

)
+

∫ t′–δ

t′–η

Q(s + δ)y(s)�s

≤ y(ξt′ )
(

C
(
t′) +

∫ t′–δ

t′–η

Q(s + δ)�s
)

,

where y(ξt′ ) = max{{y(s) : s ∈ (t′ – η, t′ – δ)}, y(t′ – ζ )}. Hence, it follows that ξt′ → ∞ as
t′ → ∞ and lim supt′→∞ y(ξt′ ) ≤ l̄. Thus, we get

y
(
t′) – u

(
t′) ≤ y(ξt′ ), (3)

which, on taking superior limit, leads to l̄ – l ≤ l̄. Therefore l ≥ 0. Hence u(t) > 0 eventually.
The proof is complete. �

Lemma 2.2 Suppose that the conditions (c1) and (c2) hold and that y(t) is an eventually
positive solution of (1) satisfying (2). Then the set Λ = {λ > 0 : u�(t)+λR̄u(t) ≤ 0, eventually}
is nonempty and there exists an upper bound of Λ which is independent of solution y(t).

Proof From the given assumptions, there exists a t1 ≥ t0, such that y(t – m) > 0 for t ≥ t1,
where m = {ζ ,η, δ}. It follows from (2) that u(t) ≤ y(t) for t ≥ t1. Then

u�(t) = –R̄(t)y(t – η) ≤ –R̄(t)u(t – η) ≤ –R̄(t)u(t), t ≥ t1 + m, (4)

that is, λ = 1 ∈ Λ. Therefore Λ is nonempty.
Let

3k = lim inf
t→∞

∫ t

t–η

R̄(s)�s.

By (c2), we have k > 0, and there exists a t2 > t1 + m such that

∫ t

t–η

R̄(s)�s > 2k := γ , t ≥ t2.
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Therefore, for any t ≥ t2, there exists t∗ > t > t∗ – η such that

∫ t∗

t
R̄(s)�s > k,

∫ t

t∗–η

R̄(s)�s > k.

Integrating (4) from t to t∗ and noting that u�(t) ≤ 0, u(t) > 0 for t ≥ t2, we find that

u(t) – u
(
t∗) ≤ –

∫ t∗

t
R̄(s)u(s – η)�s,

which implies that

u(t) ≥
∫ t∗

t
R̄(s)u(s – η)�s ≥ u

(
t∗ – η

)∫ t∗

t
R̄(s)�s > ku

(
t∗ – η

)
.

Next, integrating (4) from t∗ – η to t, we get

u
(
t∗ – η

)
> ku(t – η).

Hence

u(t) > k2u(t – η), t ≥ t2. (5)

Let us define

lim inf
t→∞ y(t – η) = I. (6)

Since y(t – m) > 0, (6) implies that I ≥ 0. On the other hand, there exists a sequence {t′
n}

such that t′
n ≥ t2 and t′

n → ∞ as n → ∞ and

lim inf
t→∞

∫ t

t–η

R̄(s)�s = lim
n→∞

∫ t′n

t′n–η

R̄(s)�s. (7)

From (4), we have

y(ξn – η)
∫ t′n

t′n–η

R̄(s)�s =
∫ t′n

t′n–η

R̄(s)y(s – η)�s = –u
(
t′
n
)

+ u
(
t′
n – η

)
, (8)

where ξn ∈ [t′
n – η, t′

n], and ξn → ∞ as n → ∞. Hence, we can find an increasing subse-
quence in {ξn} and so, without loss of generality, we may assume that the sequence num-
bers {ξn} is also increasing. Let

F(t) = inf
{

y(s – η) : s ≥ t
}

, t ≥ t2.

Then we have

lim
t→∞ F(t) = lim inf

t→∞ y(t – η).
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Since {ξn} is an increasing sequence of numbers, we get

{
y
(
ξ ′

n – η
)

: n′ ≥ n
} ⊂ {

y(s – η) : s ≥ ξn
}

.

Therefore

F(ξn) = inf
{

y(s – η) : s ≥ ξn
} ≤ inf

{
y
(
ξ ′

n – η
)

: n′ ≥ n
}

,

which implies that

lim inf
t→∞ y(t – η) = lim

n→∞ F(ξn) ≤ lim
n→∞ inf y(ξn – η),

that is,

lim inf
t→∞ y(t – η) ≤ lim

n→∞ inf y(ξn – η). (9)

On the other hand, limt→∞ u(t) exists and is a finite number. Therefore, it follows from
(7)–(9) that

I
(

lim inf
t→∞

∫ t

t–η

R̄(s)�s
)

=
(

lim inf
t→∞ y(t – η)

)(
lim inf

t→∞

∫ t

t–η

R̄(s)�s
)

≤
(

lim
n→∞ inf y(ξn – η)

)(
lim

n→∞

∫ t′n

t′n–η

R̄(s)�s
)

=
(

lim
n→∞ inf y(ξn – η)

)(
lim

n→∞ inf
∫ t′n

t′n–η

R̄(s)�s
)

≤ lim
n→∞ inf

(
y(ξn – η)

)∫ t′n

t′n–η

R̄(s)�s

= lim
n→∞ inf

∫ t′n

t′n–η

R̄(s)y(s – η)�s)

= – lim
n→∞ u

(
t′
n
)

+ lim
n→∞ u

(
t′
n – η

)

= 0,

that is,

I
(

lim inf
t→∞

∫ t

t–η

R̄(s)�s
)

≤ 0. (10)

From condition (c2), (10) and the fact that I ≥ 0, we deduce that I = 0. Thus, we obtain

lim inf
t→∞ y(t – η) = 0.

Hence there exists a sequence {sn} with sn ≥ t2 + 2m, such that y(sn) → 0 as n → ∞ and
y(sn – η) = mint2≤s≤sn–η y(s) for n = 1, 2, . . . . Then, from (4) for n = 1, 2, . . . , we have

u(sn) – u(sn – η) = –
∫ sn

sn–η

R̄(s)y(s – η)�s
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≤ –y(sn – η)
∫ sn

sn–η

R̄(s)�s

< –2ky(sn – η).

Hence

u(sn – η) > 2ky(sn – η), n = 1, 2, . . . . (11)

Also, from (4), (5) and (11), for n = 1, 2, . . . , we have

u�(sn) = –R̄(sn)y(sn – η) > –
1

2k
R̄(sn)u(sn – η) ≥ –

1
2k3 R̄(sn)u(sn),

which implies that

u�(sn) +
1

2k3 R̄(sn)u(sn) > 0, n = 1, 2, . . . . (12)

Now we may assert that 1
2k3 ∈̄Λ. In fact, if 1

2k3 ∈ Λ, then there exists some T ′ by the
definition of Λ such that, for all t ≥ T ′, the following inequality holds true:

u�(t) +
1

2k3 R̄(t)u(t) ≤ 0. (13)

On the other hand, in view of the fact that sn → 0 as n → ∞, from {sn} we find some s′
n

such that s′
n ≥ T ′. Then it follows from (12) that

u�
(
s′

n
)

+
1

2k3 R̄
(
s′

n
)
u
(
s′

n
)

> 0,

which contradicts (13). Therefore, 1
2k3 is an upper bound of Λ which is independent of

solution y(t). The proof is complete. �

Theorem 2.3 Assume that the conditions (c1) and (c2) are satisfied. In addition it is as-
sumed that there exist T ≥ t1 + m and λ > 0 such that

inf
t≥T ,λ>0

{
1
λ

exp

(
–

∫ t

t–η

ξμ

(
–λR̄(s)

)
�s

)
+ C(t – η) exp

(
–

∫ t

t–ζ

ξμ

(
–λR̄(s)

)
�s

)

+
∫ t–δ

t–η

Q(s + δ – η) exp

(
–

∫ t

s
ξμ

(
–λR̄(u)

)
�u

)
�s

}
> 1. (14)

Then every solution of Eq. (1) is oscillatory.

Proof On the contrary, let y(t) be a nonoscillatory solution of Eq. (1). Without loss of
generality, it can be assumed that y(t) is an eventually positive solution. Moreover, let u(t)
be the same as defined in (2) and the set Λ as given in Lemma 2.2. Then, by Lemma 2.2,
we see that there exists a t2 ≥ t0 such that

u�(t) ≤ 0, u(t) > 0, for t ≥ t2.
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From condition (14), there exists a constant α > 1 such that

inf
t≥T ,λ>0

{
1
λ

exp

(
–

∫ t

t–η

ξμ

(
–λR̄(s)

)
�s

)
+ C(t – η) exp

(
–

∫ t

t–ζ

ξμ

(
–λR̄(s)

)
�s

)

+
∫ t–δ

t–η

Q(s + δ – η) exp

(
–

∫ t

s
ξμ

(
–λR̄(u)

)
�u

)
�s

}
≥ α > 1. (15)

Let λ0 ∈ Λ. Then we shall show that αλ0 ∈ Λ. In fact, λ0 ∈ Λ implies that

u�(t) + λ0R̄(t)u(t) ≤ 0. (16)

Define

w(t) = u(t) exp

(
–

∫ t

t0

ξμ

(
–λ0R̄(s)

)
�s

)
(17)

and note that w(t) is well defined. Let us introduce

v(t) = exp

(∫ t

t0

ξμ

(
–λ0R̄(s)

)
�s

)

and note that

w�(t) =
(

u(t)
v(t)

)�

=
u�(t)v(t) – u(t)v�(t)

v(t)v(σ (t))

≤ –λ0R̄(t)u(t)v(t) – u(t)[–λ0R̄(t)v(t)]
v(t)v(σ (t))

=
–λ0R̄(t)u(t)v(t) + u(t)λ0R̄(t)v(t)

v(t)v(σ (t))
= 0.

Hence, w(t) is nonincreasing. From (2), we get u�(t) = –R̄(t)y(t – η), which together with
(16) yields y(t – η) ≥ λ0u(t). Therefore

u�(t) = –R̄(t)y(t – η)

= –R̄(t)
[

u(t – η) + C(t – η)y(t – η – ζ ) +
∫ t–η–δ

t–2η

Q(s + δ)y(s)�s
]

≤ –R̄(t)
[

u(t – η) + λ0C(t – η)u(t – ζ ) + λ0

∫ t–η–δ

t–2η

Q(s + δ)u(s + η)�s
]

= –R̄(t)
[

u(t – η) + λ0C(t – η)u(t – ζ ) + λ0

∫ t–δ

t–η

Q(s + δ – η)u(s)�s
]

= –R̄(t)
[

w(t – η) exp

(∫ t–η

t0

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0C(t – η)w(t – ζ ) exp

(∫ t–ζ

t0

ξμ

(
–λ0R̄(s)

)
�s

)
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+ λ0

∫ t–δ

t–η

Q(s + δ – η)w(s) exp

(∫ s

t0

ξμ

(
–λ0R̄(u)

)
�u

)
�s

]

≤ –R̄(t)
[

w(t) exp

(∫ t–η

t0

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0C(t – η)w(t) exp

(∫ t–ζ

t0

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0

∫ t–δ

t–η

Q(s + δ – η)w(s) exp

(∫ s

t0

ξμ

(
–λ0R̄(u)

)
�u

)
�s

]

= –R̄(t)
[

u(t) exp

(
–

∫ t

t–η

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0C(t – η)u(t) exp

(
–

∫ t

t–ζ

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0

∫ t–δ

t–η

Q(s + δ – η)u(s) exp

(
–

∫ t

s
ξμ

(
–λ0R̄(u)

)
�u

)
�s

]

≤ –R̄(t)
[

exp

(
–

∫ t

t–η

ξμ

(
–λ0R̄(s)

)
�s

)
+ λ0C(t – η) exp

(
–

∫ t

t–ζ

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0

∫ t–δ

t–η

Q(s + δ – η) exp

(
–

∫ t

s
ξμ

(
–λ0R̄(u)

)
�u

)
�s

]
u(t)

≤ – inf
t≥T

[
exp

(
–

∫ t

t–η

ξμ

(
–λ0R̄(s)

)
�s

)
+ λ0C(t – η) exp

(
–

∫ t

t–ζ

ξμ

(
–λ0R̄(s)

)
�s

)

+ λ0

∫ t–δ

t–η

Q(s + δ – η) exp

(
–

∫ t

s
ξμ

(
–λ0R̄(u)

)
�u

)
�s

]
R̄(t)u(t)

≤ –αλ0R̄(t)u(t).

Thus, αλ0 ∈ Λ. Repeating this procedure, one finds that αmλ0 ∈ Λ for any integer m, which
contradicts the boundedness of Λ. The proof is complete. �

Corollary 2.4 Assume that P(t) ≥ 0, lim inft→∞
∫ t

t–η
P(s)�s > 0 and there exist T and λ > 0

such that

inf
t≥T ,λ>0

{
1
λ

exp

(
–

∫ t

t–η

ξμ

(
–λR̄(s)

)
�s

)}
> 1.

Then every solution of the equation

y�(t) + P(t)y(t – η) = 0

is oscillatory.

3 Nonoscillation
Here we derive some results for the existence of a positive solution of (1).

Lemma 3.1 Assume that
(i) R̄(t) = P(t) – Q(t – η – δ) ≥ 0;
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(ii) the inequality

C(t)z(t – ζ ) +
∫ t–δ

t–η

Q(s + δ)z(s)�s +
∫ ∞

t–η

R̄(s + η)z(s)�s ≤ z(t), for t ≥ t1, (18)

has a continuous positive solution Z(t): [t1 – m,∞) → (0,∞) with limt→∞ Z(t) = 0.
Then the equation

C(t)y(t – ζ ) +
∫ t–δ

t–η

Q(s + δ)y(s)�s +
∫ ∞

t–η

R̄(s + η)y(s)�s = y(t), for t ≥ t1, (19)

has a continuous positive solution y(t) with 0 < y(t) ≤ Z(t) for t ≥ t1.

Proof Take T > t1 large enough so that z(t) > Z(t) for t ∈ [t1 – m, T). Define a set

Ω =
{
ω ∈ Crd

(
[t1 – m,∞)

,R+) : 0 ≤ ω(t) ≤ Z(t), t ≥ t1 – m
}

and introduce an operator S on Ω as follows:

(Sω)(t) =

⎧
⎨

⎩
C(t)ω(t – ζ ) +

∫ t–δ

t–η
Q(s + δ)ω(s)�s +

∫ ∞
t–η

R̄(s + η)ω(s)�s, t ∈ (T ,∞),

(Sω)(T) + z(t) – Z(T), t ∈ [t1 – m, T].

It is clear that SΩ ⊂ Ω , and ω1,ω2 ∈ Ω with ω1 ≤ ω2 implies Sω1 ≤ Sω2.
Define a sequence on Ω as

z0(t) = Z(t), zk(t) = Szk–1(t), k = 1, 2, . . . .

It is not difficult to prove that

0 ≤ zk(t) ≤ zk–1(t) ≤ · · · ≤ z1(t) ≤ z(t), t ∈ [t1 – m,∞).

Therefore, the sequence {zk(t)} has a limiting function y(t) with limt→∞ zk(t) = y(t) for
t ∈ [t1 – m,∞) and y(t) satisfies (19) by Lebesgue’s convergence theorem. It is easy to see
that y(t) > 0 for t ∈ [t1 – m, T] and hence y(t) > 0 for all t ∈ [t1 – m,∞) with 0 < y(t) ≤ Z(t).
The proof is complete. �

Theorem 3.2 Assume that
(i) R̄(t) = P(t) – Q(t – η – δ) ≥ 0;

(ii) there exist T ≥ t1 + m and λ∗ > 0 such that

sup
t≥T

{
1
λ∗ exp

(
–

∫ t

t–η

ξμ

(
–λ∗R̄(u)

)
�u

)
+ C(t – η) exp

(
–

∫ t

t–ζ

ξμ

(
–λ∗R̄(s)

)
�s

)

+
∫ t–δ

t–η

Q(s + δ – η) exp

(
–

∫ t

s
ξμ

(
–λ∗R̄(u)

)
�u

)
�s

}
≤ 1. (20)

Then Eq. (1) has a positive solution y(t) with limt→∞ y(t) = 0.
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Proof Set

z(t) = exp

(∫ t+η

t1

ξμ

(
–λ∗R̄(s)

)
�s

)
. (21)

Obviously z(t) is well defined, positive and continuous. From the condition (20), for t ≥
T ≥ T – η, we have

1
λ∗

{
exp

(
–

∫ t+η

t
ξμ

(
–λ∗R̄(u)

)
�u

)
+ C(t) exp

(
–

∫ t+η

t+η–ζ

ξμ

(
–λ∗R̄(s)

)
�s

)

+
∫ t–δ+η

t
Q(s + δ – η) exp

(
–

∫ t+η

s
ξμ

(
–λ∗R̄(u)

)
�u

)
�s

}
≤ 1. (22)

Substituting (21) into (22), we get

1
λ∗

z(t – η)
z(t)

+ C(t)
z(t – ζ )

z(t)
+

∫ t–δ+η

t
Q(s + δ – η)

z(s – η)
z(t)

�s ≤ 1. (23)

From (21), it is easy to see that z�(t) = –λ∗R̄(t + η)z(t), and hence we have

∫ ∞

t–η

R̄(s + η)z(s)�s = –
1
λ∗

∫ ∞

t–η

z�(s)�s =
z(t – η)

λ∗ . (24)

Combining (23) and (24), we obtain

∫ ∞

t–η

R̄(s + η)z(s)�s + C(t)z(t – ζ ) +
∫ t+η–δ

t
Q(s + δ – η)z(s – η) ≤ z(t).

Thus the desired conclusion follows by Lemma 3.1. The proof is complete. �
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