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Abstract
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1 Introduction
Let N be the set of positive integers and N0 = N∪{0}. The Stirling numbers of the first and
second kind, respectively denoted by s(n + k, k) and S(n + k, k), n, k ∈N0, can be defined in
various equivalent ways (see, for instance, Abramowitz and Stegun [1, p. 824] or Comtet
[2, Chap. 5]). Here, we consider the following definitions in terms of their respective gen-
erating functions:
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The Stirling numbers play an important role in many branches of mathematics and
physics as ingredients in the computation of diverse quantities. For this reason, one can
find in the literature many different explicit expressions and integral representations of
such numbers (see the references in Sects. 3 and 4).

In this paper, we give a probabilistic perspective by showing that the Stirling numbers
of both kinds are, in fact, the moments of appropriate random variables. This allows us to
obtain in a unified way a variety of old and new explicit expressions and integral represen-
tations of these numbers.
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It is worth noting that, very recently, various authors have established identities between
various kinds of special numbers and moments of suitable random variables by using the
generating function of such random variables. In this respect, we mention that Kim et
al. [3] connected extended Stirling polynomials and extended Bell polynomials with mo-
ments of Poisson random variables, and Kim et al. [4] showed that type 2 Bernoulli and
Euler polynomials can be written as moments of sums of independent random variables
having the Laplace distribution. Specially, this paper is close in spirit to that by Kim et
al. [5], where the authors use uniform and gamma distributed random variables to give
probabilistic representations of classical and degenerate Stirling numbers, derangement
numbers, higher-order Bernoulli numbers and Bernoulli numbers of the second kind (see
also Sect. 3).

More precisely, we will consider throughout the paper three sequences (Uj)j≥1, (Xj)j≥1,
and (Yj)j≥1 of independent identically distributed random variables such that U1 has the
uniform distribution on [0, 1], and X1 and Y1 have the exponential density ρ(θ ) = e–θ , θ ≥
0. We assume that these three sequences are mutually independent and denote

Sk = U1 + · · · + Uk , Tk = X1 + · · · + Xk , Wk = Y1U1 + · · · + YkUk , k ∈N0, (3)

where it is understood that S0 = T0 = W0 = 0. It is well known that the random variable Tk

has the gamma probability density (cf. Johnson et al. [6, p. 340])

ρk(θ ) =
1

(k – 1)!
θ k–1e–θ , θ ≥ 0, k ∈N. (4)

The probability densities of the random variables Sk and Wk are more involved and will
be given in Lemma 2.1 below. For any x ∈R, we denote the rising factorial as

〈x〉j = x(x + 1) · · · (x + j – 1), j ∈ N, 〈x〉0 = 1.

Let z ∈C and k ∈N0. From (4), it is readily seen that

ETn
k = 〈k〉n, n ∈N0, EezTk =

1
(1 – z)k , |z| < 1, (5)

where E stands for mathematical expectation. Using the independence and identical dis-
tribution of the random variables involved, we have from (2) and (3)
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On the other hand, by Fubini’s theorem, we have for |z| < 1
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thus implying, by virtue of (1) and (3),
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Identifying coefficients in (6) and (8), we can write the Stirling numbers of the first and
second kind in terms of moments of appropriate random variables as

S(n + k, k) =
(

n + k
k

)
ESn

k , s(n + k, k) = (–1)n
(
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EW n

k , n, k ∈N0. (9)

The first equality in (9) was obtained by Sun [7], whereas the second one can be found in
[8].

The probabilistic approach developed in this paper is motivated by the following con-
siderations. Denote by i the imaginary unit. Replacing z by itTk+1, t ∈R, in (6) and taking
into account (5), we get, at least formally,
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∞∑

n=0

S(n + k, k)
(it)n

ETn
k+1

〈k + 1〉n
=

∞∑
n=0

S(n + k, k)(it)n. (10)

A similar procedure in Eq. (8) leads us to
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Since 0 < Sk < k, Eq. (10) is a true power series for |t| < 1/k, whereas Eq. (11) is only a
formal power series. In any case, the left-hand sides in (10) and (11) always make sense and
constitute the first ingredient of our approach. The second ingredient is the generalized
difference operator defined in the following section. As shown in Sects. 3 and 4, Eqs. (10)
and (11) give us a variety of explicit expressions and integral representations for the Stirling
numbers.

2 Technical results
For any function f : R→R, we consider the difference operator

�1
y f (x) = f (x + y) – f (x),

(
�0

y f (x) = f (x)
)
, x, y ∈ R,

together with the iterates

�k
y1,...,yk

f (x) =
(
�1

y1 ◦ · · · ◦ �1
yk

)
f (x), x, y1, . . . , yk ∈R, k ∈N.

Such iterates were considered by Mrowiec et al. [9] in connection with Wright-convex
functions of order k and by Dilcher and Vignat [10] in the context of convolution identities
for Bernoulli polynomials. He [11] used these iterates for y1 = · · · = yk = β to deal with
Stirling numbers.
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Let x, y1, . . . , yk ∈R and k ∈N. It was shown in [12] that

�k
y1,...,yk

f (x) = (–1)kf (x) +
k∑

j=1

(–1)k–j
∑
Ik (j)

f (x + yi1 + · · · + yij ), (12)

where

Ik(j) =
{

(i1, . . . , ij) : {i1, . . . , ij} ⊆ {1, . . . , k}, iν �= is, if ν �= s
}

, j = 1, . . . , k.

In particular, the usual kth forward difference of f is defined as

�kf (x) := �k
1,...,1f (x) =

k∑
j=0

(
k
j

)
(–1)k–jf (x + j). (13)

If f is k times differentiable, we have (cf. [12])

�k
y1,...,yk

f (x) = y1 · · · ykEf (k)(x + y1U1 + · · · + ykUk). (14)

Denote by 1A the indicator function of the set A, by x+ = max(0, x), and by

gk,θ (y) = (y – θ )k–1
+ , θ , y ∈R, (15)

the truncated power function. The following auxiliary result gives us in a unified way the
probability densities of the random variables Sk and Wk defined in (3).

Lemma 2.1 Let k ∈N and y1, . . . , yk ∈R \ {0}. The random variable y1U1 + · · · + ykUk has
probability density

dk(θ ) =
1

(k – 1)!y1 · · · yk
�k

y1,...,yk
gk,θ (0), θ ∈R. (16)

In particular, the probability density of Sk is given by

τk(θ ) =
1

(k – 1)!

k∑
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(
k
j

)
(–1)k–j(j – θ )k–1

+ , 0 ≤ θ ≤ k. (17)

Moreover, the probability density of Wk is given by

νk(θ ) =
1

(k – 1)!

∫
(0,∞)k

�k
y1,...,yk

gk,θ (0)
e–(y1+···+yk )

y1 · · · yk
dy1 · · · dyk , θ ≥ 0. (18)

Proof Let θ ∈R and set f (k)(y) = 1(θ ,∞)(y), y ∈ R. Obviously,

f (y) =
(y – θ )k

+
k!

, y ∈R. (19)

We therefore have from (14), with x = 0,

P(y1U1 + · · · + ykUk > θ ) = E1(θ ,∞)(y1U1 + · · · + ykUk) =
1

y1 · · · yk
�k

y1,...,yk
f (0).
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Differentiating this expression with respect to to θ and taking into account (12) and (19),
we obtain (16). Choosing y1 = · · · = yk = 1 in (16) and recalling (13) and (15), we get (17).
Finally, since the sequences (Yj)j≥1 and (Uj)j≥1 are independent, we have from (16) and
Fubini’s theorem

P(Y1U1 + · · · + YkUk > θ )

=
∫

(0,∞)k
P(y1U1 + · · · + ykUk > θ )e–(y1+···+yk ) dy1 · · · dyk

=
∫ ∞

θ

dz
∫

(0,∞)k
dk(z)e–(y1+···+yk ) dy1 · · · dyk .

Differentiating this expression with respect to θ and using (16), we show (18). The proof
is complete. �

We point out that Eq. (17) is well known (see, for instance, Feller [13, p. 27]).
On the other hand, recall that the characteristic function or Fourier transform of a ran-

dom variable X is defined as

φ(t) = EeitX , t ∈R.

It is well known that φ(t) univocally determines the law of X (see, for instance, Billingsley
[14, p. 346]). If, in addition, φ(t) is absolutely integrable, then X has the probability density
ρ(θ ) given by (cf. Billingsley [14, p. 347])

ρ(θ ) =
1

2π

∫ ∞

–∞
e–itθφ(t) dt, θ ∈R. (20)

Lemma 2.2 Let k ∈ N0 and t ∈ R. Then

EeitSk Tk+1 = Eeit(X1+2X2+···+kXk ) =
1

(1 – it)(1 – i2t) · · · (1 – ikt)
.

Proof Using Fubini’s theorem, (4), and (6), we have

EeitSk Tk+1 =
1
k!

∫ ∞

0
EeitθSk θ ke–θ dθ =

1
(it)kk!

∫ ∞

0

(
eitθ – 1

)ke–θ dθ

=
1

(1 – it)(1 – i2t) · · · (1 – ikt)
,

where the last equality follows by applying successively integration by parts. On the other
hand, since (Xj)j≥1 is a sequence of independent identically distributed random variables,
we have from (4)

Eeit(X1+2X2+···+kXk ) = EeitX1Eei2tX2 · · ·EeiktXk =
1

(1 – it)(1 – i2t) · · · (1 – ikt)
.

The proof is complete. �
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Lemma 2.3 Let k ∈ N0 and t ∈ R. Then

Ee–itWk Tk+1 = Ee–it(Y1T1+···+Yk Tk ) = E
1

(1 + itT1)(1 + itT2) · · · (1 + itTk)
.

Proof Observe that Eq. (7) also holds for z = itθ , t, θ ∈ R. Therefore, by Fubini’s theorem
and (3), we have

Ee–itWk Tk+1 =
1
k!

∫ ∞

0
Ee–itθWk θ ke–θ dθ

=
1
k!

∫ ∞

0

(
Ee–itθU1Y1

)k
θ ke–θ dθ =

1
(it)kk!

∫ ∞

0
logk(1 + itθ )e–θ dθ . (21)

Applying successive integration by parts and interchanging integral and expectation signs,
we obtain

1
(it)kk!

∫ ∞

0
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=
1
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0
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0
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=
1

(it)k–2(k – 2)!
E

1
1 + itT1

∫ ∞

0
logk–2(1 + itθ )

e–θ (1+itT1)

1 + itθ
dθ

=
1

(it)k–2(k – 2)!
E

1
1 + itT1

∫ ∞

0
logk–2(1 + itθ )e–θ (1+itT2) dθ

= · · · = E
1

(1 + itT1)(1 + itT2) · · · (1 + itTk)
.

This, together with (21), shows the first equality in Lemma 2.3. On the other hand, since
the random variables (Yj)j≥1 are independent and exponentially distributed, we have for
any θ1, . . . , θk ∈R

Ee–it(Y1θ1+···+Ykθk ) = Ee–itθ1Y1 · · ·Ee–itθk Yk =
1

(1 + itθ1) · · · (1 + itθk)
. (22)

Replacing θj by Tj, j = 1, . . . , k, in (22) and then taking expectations, we obtain the second
equality in Lemma 2.3. The proof is complete. �

3 Explicit expressions
The following result gives probabilistic representations and explicit expressions for the
Stirling numbers of the second kind. Denote In(x) = xn, x ∈R, n ∈N0.

Theorem 3.1 For any n, k ∈N0, we have

S(n + k, k) =
(

n + k
k

)
ESn

k

=
1
n!
E(X1 + 2X2 + · · · + kXk)n
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=
(n + k)!

k!
∑

j1+···+jk =n

1
(j1 + 1)! · · · (jk + 1)!

=
∑

j1+···+jk =n

1j1 2j2 · · ·kjk =
1
k!

�kIn+k(0). (23)

Proof Let k ∈N0. The first equality was shown in (9). By Lemma 2.2, the random variables
SkTk+1 and X1 + 2X2 + · · · + kXk have the same characteristic function and, therefore, the
same law and the same moments. Hence, we have from (5)

1
n!
E(X1 + 2X2 + · · · + kXk)n =

1
n!
ESn

kETn
k+1 =

(
n + k

k

)
ESn

k .

Since EUj
1 = 1/(j + 1), j ∈N0, we have from the independence and identical distribution of

the random variables involved

ESn
k =

∑
j1+···+jk =n

n!
j1! · · · jk !

EUj1
1 · · ·EUjk

k = n!
∑

j1+···+jk =n

1
(j1 + 1)! · · · (jk + 1)!

,

thus showing the third equality in (23). On the other hand, choosing k = 1 in (5) we get
EXn

1 = 〈1〉n = n!, n ∈ N. Since the random variables (Xj)j≥1 are independent and identically
distributed, we thus have

E(X1 + 2X2 · · · + kXk)n

=
∑

j1+···+jk =n

n!
j1! · · · jk !

EXj1
1 2j2EXj2

2 · · ·kjkEXjk
k

= n!
∑

j1+···+jk =n

1j1 2j2 · · ·kjk .

Finally, choosing f (x) = In+k(x) in (13) and (14), we obtain

1
k!

�kIn+k(0) =
1
k!
EI(k)

n+k(Sk) =
(

n + k
k

)
ESn

k .

This shows the last equality in (23) and completes the proof. �

As already mentioned in the Introduction, the first equality in (23) was shown by Sun
[7]. The second and third ones seem to be new. The fourth is well known and can be found
in Comtet [2, Chap. 5] (see also Belbachir et al. [15] for a generalization of this formula to
r-Stirling numbers of the second kind). The last one is used in many occasions to define
the Stirling numbers of the second kind (see, for instance, Abramowitz and Stegun [1, p.
824]). For other explicit expressions we refer the reader to Cakić et al. [16], He [11], and
Sun [17]. We finally mention that the moments

E(X1 + 2X2 + · · · + kXk – k)n

can be used to describe higher-order convolutions of derangement polynomials, as shown
by Kim et al. [5].

The analogous result for the Stirling numbers of the first kind is the following.
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Theorem 3.2 For any n, k ∈N0, we have

s(n + k, k) = (–1)n
(

n + k
k

)
EW n

k

=
(–1)n

n!
E(Y1T1 + · · · + YkTk)n

= (–1)n (n + k)!
k!

∑
j1+···+jk =n

1
(j1 + 1) · · · (jk + 1)

= (–1)n
∑

j1+···+jk =n

〈1〉j1〈2〉j2 · · · 〈k〉jk

=
(–1)n

k!

∫
(0,∞)k

�k
y1,...,yk

In+k(0)
e–(y1+···+yk )

y1 · · · yk
dy1 · · · dyk . (24)

Proof Let k ∈ N0. The first equality was shown in (9). As follows from Lemma 2.3, the
random variables WkTk+1 and Y1T1 + · · · + YkTk have the same characteristic function
and, therefore, the same law and the same moments. Thus, we have from (5)

(–1)n

n!
E(Y1T1 + · · · + YkTk)n =

(–1)n

n!
EW n

k ETn
k+1 = (–1)n

(
n + k

k

)
EW n

k .

As in the proof of Theorem 3.1, EY j
1 = EXj

1 = j!, j ∈N0. We therefore have from (3)

EW n
k =

∑
j1+···+jk =n

n!
j1! · · · jk !

EUj1
1 EY j1

1 · · ·EUjk
k EY jk

k

= n!
∑

j1+···+jk =n

1
(j1 + 1) · · · (jk + 1)

,

thus showing the third equality in (24). Similarly, we have from (5)

E(Y1T1 + · · · + YkTk)n =
∑

j1+···+jk =n

n!
j1! · · · jk !

EY j1
1 ETj1

1 · · ·EY jk
k ETjk

k

= n!
∑

j1+···+jk =n

〈1〉j1 · · · 〈k〉jk ,

which shows the fourth equality in (24). Finally, choosing f (y) = In+k(y) and x = 0 in (14),
we have

(–1)n
(

n + k
k

)
E(y1U1 + · · · + ykUk)n

=
(–1)n

k!y1 · · · yk
�k

y1,...,yk
In+k(0), y1, . . . , yk > 0.

Replacing in this formula yj by Yj, j = 1, . . . , k, and then taking expectations, we obtain
from (3)

(–1)n
(

n + k
k

)
EW n

k =
(–1)n

k!

∫
(0,∞)k

�k
y1,...,yk

In+k(0)
e–(y1+···+yk )

y1 · · · yk
dy1 · · · dyk .

This shows the last equality in (24) and completes the proof. �
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The first probabilistic representations in (24) was given in [8]. T. Kim et al. [5] extended
such a representation to degenerate Stirling numbers of the first kind. The second equality
in (24) seems to be new. The third expression in (24) was obtained by Adamchik [18]
(see also Qi [19]). A multitude of expressions of similar type can be found in Katriel [20].
Analogous formulas to the fourth one in (24) were given in Cakić [16] and Sun [17]. The
last formula in (24) is new. In contraposition to the last expression in (23), this formula is
not useful to perform computations. However, it shows that both Stirling numbers of the
first and second kinds can be written in terms of generalized difference operators. Finally,
other explicit expressions are given in He [11], Qi [19], and Blagouchine [21].

4 Integral representations
The integral representations for the Stirling numbers will be mainly based on Eq. (20),
which requires the absolute integrability of the characteristic function φ(t) under consid-
eration. This is the reason why we consider integral representations for S(n + k, k) and
s(n + k, k) for k = 2, 3, . . . .

Theorem 4.1 For any n ∈N0 and k = 2, 3, . . . , we have

S(n + k, k) =
(

n + k
k

)∫ k

0
θnτk(θ ) dθ

=
1

2π

(
n + k

k

)∫ k

0
θn dθ

∫ ∞

–∞
e–itθ

(
eit – 1

it

)k

dt

=
1

n!2π

∫ ∞

0
θn dθ

∫ ∞

–∞
e–itθ

(1 – it)(1 – i2t) · · · (1 – ikt)
dt, (25)

where τk(θ ) is defined in (17).

Proof The first equality in (25) readily follows from (17) and the first equality in Theo-
rem 3.1. As seen in (6), the characteristic function of Sk is given by

φ̃k(t) = EeitSk =
(

eit – 1
it

)k

, t ∈R.

Thus, the second equality in (25) is a consequence of the first one and Eq. (20). Finally,
denote by hk(θ ), θ ≥ 0, the probability density of the random variable X1 + 2X2 + · · · + kXk .
By (20) and Lemma 2.2, we have

hk(θ ) =
1

2π

∫ ∞

–∞
e–itθ

(1 – it)(1 – i2t) · · · (1 – ikt)
dt. (26)

On the other hand, the second equality in Theorem 3.1 gives us

S(n + k, k) =
1
n!

∫ ∞

0
θnhk(θ ) dθ .

This, together with (26), shows the last integral representation in (25) and completes the
proof. �
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The first and third integral expressions in (25) appear to be new, while a very similar
integral representation to the second one was considered in Wegner [22] and used in the
location of the maximum of S(n + k, k).

Recalling (3) and Lemma 2.3, the characteristic function of Y1T1 + · · · + YkTk is given by

φk(t) = Eeit(Y1T1+···+YkTk )

=
∫

(0,∞)k

e–(x1+···+xk ) dx1 · · · dxk

(1 – itx1)(1 – it(x1 + x2)) · · · (1 – it(x1 + · · · + xk))
, (27)

where t ∈R and k ∈N.

Theorem 4.2 For any n ∈N0 and k = 2, 3, . . . , we have

s(n + k, k) = (–1)n
(

n + k
k

)∫ ∞

0
θnνk(θ ) dθ

=
(–1)n+k

2π

(
n + k

k

)∫ ∞

0
θn dθ

∫ ∞

–∞

(
log(1 – it)

it

)k

dt

=
(–1)n

n!2π

∫ ∞

0
θn dθ

∫ ∞

–∞
φk(t) dt, (28)

where νk(θ ) and φk(t) are defined in (18) and (27), respectively.

Proof The first equality in (28) is a direct consequence of the first expression in Theo-
rem 3.2 and (17). As in (8), the characteristic function of Wk is given by

EeitWk = (–1)k
(

log(1 – it)
it

)k

, t ∈R.

Hence, the second equality in (28) follows from the first equality in Theorem 3.2 and (20).
Analogously, the third equality in (28) follows from the third equality in Theorem 3.2, (20),
and (27). This concludes the proof. �

The first and third representation in Theorem 4.2 are new. The second one was shown
in [8]. For other integral expressions of different character, we refer the reader to Qi [23]
and Agoh and Dilcher [24].

A comparison between Theorems 4.1 and 4.2 reveals that the integral representations
for the Stirling numbers of the first kind are, in general, more involved than those for the
Stirling numbers of the second kind. This is explained by the more involved probability
densities of the random variables describing the Stirling numbers of the first kind.
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