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Abstract
In this paper, we develop a fundamental dynamic inequality, a generalization of
comparison theorem and reproduce the proofs of some nonlinear integral
Pachpatte’s inequalities by using their continuous analogue. We also unify and extend
these improved integral Pachpatte’s inequalities and their corresponding discrete
analogues on arbitrary time scales. The results are used to make qualitative analysis of
higher order dynamic equations.
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1 Introduction
Modeling of some real world problem requires using a dynamic system which involves
both discrete and continuous times. This is natural to see whether it is feasible to give
a framework which permits us to incorporate both dynamic systems simultaneously so
that one can obtain some insight and a better understanding of the subtle differences of
discrete and continuous domains. To answer this, a theory was formulated by Hilger [9].
The main objective of dynamic equations on time scales is that they build bridges between
continuous and discrete cases. Later on this theory was developed by many researchers
[3, 4].

Time scales calculus has many applications in applied as well as in pure mathematics.
In pure mathematics time scales calculus has been applied in mathematical inequalities to
unify discrete and continuous versions of inequalities. In the last few years a lot of work
has been done to unify and extend linear and nonlinear integral inequalities on time scales
[1, 8, 11, 19–22]. These integral inequalities are used in many applications for the bound-
edness, uniqueness, etc. of the solutions of different dynamic equations [6, 12, 13, 15].

Pachpatte’s inequalities on time scale, both linear and nonlinear, have also been a sub-
ject of discussion for quite some time. These Pachpatte’s inequalities have been developed
by several authors [2, 7, 10, 12], and [14]. Bohner formulated a number of dynamic in-
equalities that basically rely on Gronwall’s inequality [2]. In the literature these kinds of
inequalities are known as Pachpatte type inequalities. Also, the authors of the manuscript
[8] expounded some nonlinear integral inequalities on time scales, which unified and ex-
tended some inequalities established by Pachpatte. To illustrate the theoretical results,
it has been shown that the obtained inequalities can be used as important tools in the
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study of certain properties of dynamic equations on time scales. Assuming arbitrary time
scales, the authors of [14] established some new inequalities of Pachpatte type, incorpo-
rating two nonlinear integral terms, which are themselves the generalizations and refine-
ments of many existing results. These obtained results played a vital role in studying some
classes of integral and integro-differential equations. Moreover, this approach has various
applications in performing the stability analysis of some classes of dynamical systems on
time scales. The authors in [18] used some dynamic inequalities to show basic qualitative
properties of solutions of a certain nonlinear integrodifferential equation on time scales.
The main tools used in the analysis are based on the applications of the Banach fixed point
theorem and an inequality with explicit estimate on time scales.

In this paper we present a number of dynamic inequalities that are essentially based
on Gronwall’s inequality. Most of these inequalities are also known as being of Pachpatte
type. In the present assertion, nonlinear Pachpatte’s inequalities that we focus on are quite
different from the existing ones. Secondly, in the existing theory about Pachpatte’s inequal-
ities the authors utilize basic comparison theorem to establish most of the results. But in
our case it is not helpful and needs a generalization in the form of fundamental dynamic
inequality (see Theorem 3.1) to achieve our goal. Finally, from the application point of view
the results are applicable to analyze the qualitative properties of solutions of first order as
well as higher order dynamic equations.

The setup of this paper is as follows: Sect. 2 is confined to the basic definitions and pre-
liminary results of calculus on time scales (for further understanding, see [3, 4], and [5]).
In Sect. 3 a fundamental dynamic inequality (see Theorem 3.1) is established on an arbi-
trary time scale. From it we extract the fundamental integral inequality which helps us to
reproduce the proofs of nonlinear integral Pachpatte’s inequalities ([16], Theorems 2.7.1–
2.7.4). Section 4 is devoted to our main results, in which we accomplished some nonlinear
dynamic Pachpatte’s inequalities on general time scales. Lastly, we utilize them to study
the bounds of the solutions, asymptotic property of the solutions, and the rate at which
the solution is growing, of higher order dynamic equations under a few certain suitable
conditions.

2 Calculus on time scales
A time scale T is defined as a nonempty arbitrary closed subset of the real numbers R.
The following definitions and theorems are referred from [3, 4], and [5]. The proofs of the
theorems given below can also be found in the mentioned references.

Definition 2.1 Suppose T is a time scale. The forward jump operator σ is defined as
σ (τ ) := inf{s ∈ T : s > τ }, where σ : T → T for τ ∈ T; whereas the backward jump operator
ρ : T → T is defined in a similar manner by ρ(τ ) := sup{s ∈ T : s < τ }.

From the preceding definition, it can be said that if σ (τ ) > τ , then τ is right-scattered;
however, if ρ(τ ) < τ , then τ is left-scattered. Also σ (τ ) = τ if T has a maximum τ (i.e.,
infφ = supT). Similarly, ρ(τ ) = τ if T has a minimum τ (or supφ = infT). The points which
are both right-scattered and left-scattered at once are called isolated. Moreover, if τ < supT

and σ (τ ) = τ , then τ is a right-dense point, and if τ > infT and ρ(τ ) = τ , then τ is left-
dense. The simultaneously right-dense and left-dense points are known as dense. μ(τ )
is the graininess function determined by μ(τ ) := φ(τ ) – τ , where μ(τ ) : T → [0,∞). If T
contains a left-scattered maximum element τm, then T

k = T – {τm}; otherwise T
k = T.
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Definition 2.2 The Delta derivative f�(τ ) of f at τ , where f : T → R and τ ∈ T
k , is a

number such that for every ε > 0 there exists a neighborhood U with

∣
∣
[

f
(

σ (τ )
)

– f(s)
]

– f�(τ )
[

σ (τ ) – s
]∣
∣ ≤ ε

∣
∣σ (τ ) – s

∣
∣ for all s ∈ U .

If T = Z, then f� is the forward difference �f (defined by �f(τ ) = f(τ + 1) – f(τ )); whereas
f� becomes the usual derivative f ′ if T = R.

Theorem 2.3 Suppose f, g : T →R and τ ∈ T
k . The following results arise:

(i) If τ is right-scattered and f is continuous at τ , subsequently f is differentiable at τ

and f�(τ ) is given by

f�(τ ) =
f(σ )(τ ) – f(τ )

μ(τ )
.

(ii) If τ is right-dense, then

f�(τ ) = lim
s→τ

f(τ ) – f(s)
τ – s

.

(iii) If f is differentiable at τ , then f is continuous at τ .
(iv) If f is differentiable at τ , then

fσ (τ ) = f(τ ) + μ(τ )f�(τ ),

where fσ := f ◦ σ .
(v) If f and g are differential at τ , then so is fg with

(fg)�(τ ) = f�(τ )g(τ ) + fσ (τ )g�(τ ).

Definition 2.4 A right-dense continuous or rd-continuous function f : T → R is a func-
tion which is continuous at the right-dense points in T and its left-sided limits exist (finite)
at left-dense points in T. The set of all rd-continuous functions is denoted by Crd, while the
set of functions that are differentiable and whose derivative is rd-continuous is denoted
by C1

rd.

Theorem 2.5 Every rd-continuous function has an antiderivative. Let τ0 ∈ T, then f de-
fined by

f(τ ) :=
∫ τ

τ0

f(x)�x for τ ∈ T

is an antiderivative of f .

Theorem 2.6 If f ∈ Crd and τ ∈ T
k , then

∫ σ (τ )

τ0

f(x)�x = μ(τ )f(τ ).
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Theorem 2.7 If a and b ∈ T and f ∈ Crd provided f(τ ) ≥ 0 for all a ≤ τ ≤ b, then

∫ b

a
f(τ )�τ ≥ 0.

Theorem 2.8 Let f : R → R be continuously differentiable and g : R → R be continuous,
g : T→R is delta differentiable on T. Then there exists c ∈ [τ ,σ (τ )] with

(f ◦ g)�(τ ) = f ′(g(c)
)

g�(τ ).

Definition 2.9 A function p : T →R is regressive if 1 + μ(τ )p(τ ) 	= 0 for all τ ∈ T. The set
of all regressive and rd-continuous functions is denoted by R.

The set of all positive regressive functions is R+ = {p ∈ R : 1 + μ(τ )p(τ ) > 0 for all τ ∈ T}.
If p, q ∈ R, then we define

p(τ ) ⊕ q(τ ) = p(τ ) + q(τ ) + μ(τ )p(τ )q(τ ),

�q(τ ) = –
q(τ )

1 + μq(τ )
, and

p(τ ) � q(τ ) = p(τ ) ⊕ (�q(τ )
)

.

Theorem 2.10 If p ∈ Crd and p ∈ R, where p : T → R, then the exponential function
ep(·, τ0), for all τ0 ∈ T, is the unique solution of the initial value problem

y� = p(τ )y, y(τ0) = 1.

The following theorem exhibits some properties related to an exponential function.

Theorem 2.11 If p, q ∈ R, then
(i) ep(τ , τ ) = 1 and e0(τ , s) = 1;

(ii) ep(σ (τ ), s) = (1 + μ(τ )p(τ ))ep(τ , s);
(iii) 1

ep(τ ,s) = e�p(τ , s) = ep(s, τ );

(iv) ep(τ ,s)
eq(τ ,s) = ep�q(τ , s);

(v) ep(τ , s)eq(τ , s) = ep⊕q(τ , s);
(vi) If p ∈ R+, then ep(τ , τ0) > 0 for all τ ∈ T.

Example 2.12 We note that, if T = R, p : R →R is a continuous function and s, τ ∈R, the
exponential function is given by

ep(τ , s) = e
∫ τ

s p(x) dx.

If p is a constant α ∈R, the exponential function becomes

e
∫ τ

s α dx = eα(τ–s),

if s = 0, then we get

eα(τ–s) = eατ .
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We also give the exponential function for T = Z when p : Z → R is a sequence satisfying
p(τ ) 	= –1 for all τ ∈ Z and s, τ ∈ Z with s < τ as

ep(τ , s) =
τ–1
∏

x=s

[

1 + p(x)
]

.

When p = α, where α 	= –1 is a constant, then

τ–1
∏

x=s

[

1 + p(x)
]

= (1 + α)τ–s,

if s = 0,

(1 + α)τ–s = (1 + α)τ .

Given notation will be followed throughout the text for ease of reading:

τ0 ∈ T, T0 = [τ0,∞) ∩T.

3 Fundamental dynamic inequality
The following dynamic inequality plays a key role in inaugurating the main results of this
paper. The inequality is stated as follows.

Theorem 3.1 Let υ(τ ) be a positive function defined for τ ∈ T0, let b(τ ) and k(τ ) be non-
negative functions defined for τ ∈ T0, and let b(τ ) be regressive and α ≥ 0, α 	= 1 be a con-
stant. If

υ�(τ ) ≤ b(τ )υ(τ ) + k(τ )υα(τ ) (1)

for τ ∈ T0 and υ1–α(τ0) + (1 – α)
∫ τ

s=τ0
k(s)(e�b(σ (s), τ0))1–α�s > 0 for τ ∈ T0, then

υ(τ ) ≤ eb(τ , τ0)
{

υ1–α(τ0) + (1 – α)
∫ τ

s=τ0

k(s)
(

e�b
(

σ (s), τ0
))1–α

�s
} 1

1–α

(2)

for τ ∈ T0.

Proof We note that e�b(τ , τ0) satisfies the following equation as in [3]:

e�
�b(τ , τ0) = –b(t)e�b

(

σ (τ ), τ0
)

, e�b(τ0, τ0) = 1. (3)

Now multiplying (1) by e�b(σ (τ ), τ0), we obtain

υ�(τ )e�b
(

σ (τ ), τ0
)

– e�b
(

σ (τ ), τ0
)

b(τ )υ(τ ) ≤ e�b
(

σ (τ ), τ0
)

k(τ )υα(τ ). (4)

Using (3) in (4), we get

(

υ(τ )e�b(τ , τ0)
)� ≤ k(τ )υα(τ )e�b

(

σ (τ ), τ0
)

. (5)
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Set q = 1 – α and use the following mean value theorem:

(f ◦ χ )� = f ′(x)χ�(τ ), (6)

where x lies between χ (τ ) and χ (σ (τ )).
Take χ (τ ) = υ(τ )e�b(τ , τ0) > 0, then χ (σ (τ )) = υ(σ (τ ))e�b(σ (τ ), τ0).
From (6) we get

[(

υ(τ )e�b(τ , τ0)
)q]� = qx–α

[

υ(τ )e�b(τ , τ0)
]�. (7)

For f(τ ) = τ q f : R →R and χ (τ ) : T →R. For the estimation of the value of x in equation
(7), we have considered the following two factual cases:

Case I: If x ∈ (χ (τ ),χ (σ (τ ))), then x > υ(τ )e�b(τ , τ0) ≥ υ(τ )e�b(σ (τ ), τ0).
Case II: If x ∈ (χ (σ (τ )),χ (τ )), then x > υ(σ (τ ))e�b(σ (τ ), τ0) ≥ υ(τ )e�b(σ (τ ), τ0).
Depending on the value of q, we have two scenarios for the above mentioned two cases:

(i) q > 0 (0 ≤ α < 1).
Since

x ≥ υ(τ )e�b
(

σ (τ ), τ0
)

,

then

qx–αk(τ )υα(τ )e�b
(

σ (τ ), τ0
) ≤ q

[

υ(τ )e�b
(

σ (τ ), τ0
)]–αk(τ )υα(τ )e�b

(

σ (τ ), τ0
)

. (8)

Also, (5) can be written as

qx–α
(

υ(τ )e�b(τ , τ0)
)� ≤ qx–αk(τ )υα(τ )e�b

(

σ (τ ), τ0
)

,

so (7) becomes

[(

υ(τ )e�b(τ , τ0)
)q]� ≤ qx–αk(τ )υα(τ )e�b

(

σ (τ ), τ0
)

. (9)

Thus, from (8) and (9), it can be acquired that

[(

υ(τ )e�b(τ , τ0)
)q]� ≤ qk(τ )

[

e�b
(

σ (τ ), τ0
)]q. (10)

Setting τ = s and integrating from τ0 to τ , we get

(

υ(τ )e�b(τ , τ0)
)q ≤ υq(τ0) + q

∫ τ

τ0

k(s)
[

e�b
(

σ (s), τ0
)]q

�s.

Taking qth root, it follows that

υ(τ )e�b(τ , τ0) ≤
{

υq(τ0) + q
∫ τ

τ0

k(s)
[

e�b
(

σ (s), τ0
)]q

�s
} 1

q
.
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It implies that

υ(τ ) ≤ eb(τ , τ0)
{

υ1–α(τ0) + (1 – α)
∫ τ

τ0

k(s)
[

e�b
(

σ (s), τ0
)]1–α

�s
} 1

1–α

.

(ii) q < 0 (α > 1).
Again taking

x ≥ υ(τ )e�b
(

σ (τ ), τ0
)

,

we obtain

qx–αk(τ )υα(τ )e�b
(

σ (τ ), τ0
) ≥ q

[

υ(τ )e�b
(

σ (τ ), τ0
)]–αk(τ )υp(τ )e�b

(

σ (τ ), τ0
)

. (11)

Now (5) will take the following form:

qx–α
(

υ(τ )e�b(τ , τ0)
)� ≥ qx–αk(τ )υα(τ )e�b

(

σ (τ ), τ0
)

and (7) changes into

[(

υ(τ )e�b(τ , τ0)
)q]� ≥ qx–αk(τ )υα(τ )e�b

(

σ (τ ), τ0
)

. (12)

Hence, from (11) and (12), we obtained

[(

υ(τ )e�b(τ , τ0)
)q]� ≥ qk(τ )

[

e�b
(

σ (τ ), τ0
)]q. (13)

Putting τ = s and taking integral from τ0 to τ , we attain

(

υ(τ )e�b(τ , τ0)
)q ≥ υq(τ0) + q

∫ τ

τ0

k(s)
[

e�b
(

σ (s), τ0
)]q

�s.

On applying qth root on both sides, it results into

υ(τ )e�b(τ , τ0) ≤
{

υq(τ0) + q
∫ τ

τ0

k(s)
[

e�b
(

σ (s), τ0
)]q

�s
} 1

q
.

It infers that

υ(τ ) ≤ eb(τ , τ0)
{

υ1–α(τ0) + (1 – α)
∫ τ

τ0

k(s)
[

e�b
(

σ (s), τ0
)]1–α

�s
} 1

1–α

.

Thus the proof is completed. �

On an arbitrary time scale T, one can see that the inequality proved above is a general-
ization of some existing results.

Remark 3.2
• If T = Z, Theorem 3.1 implies Theorem 2.3.4 established by Pachpatte in [17].
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• For an arbitrary time scale, if α = 0, Theorem 3.1 reduces to Theorem 5.4, also known
as Comparison Theorem, proved by Agarwal, Bohner, and Peterson [1].

Corollary 3.3 Let T = R and assume υ(τ ) is a positive function defined for τ ∈ R, let b(τ )
and k(τ ) be nonnegative functions defined for τ ∈R and α ≥ 0, α 	= 1 be a constant. If

υ ′(τ ) ≤ b(τ )υ(τ ) + k(τ )υα(τ ) (14)

for τ ∈R and υ1–α(τ0) + (1 – α)
∫ τ

s=0 k(s)e–(1–α)
∫ s

0 b(ξ ) dξ ds > 0 for τ ∈R, then

υ(τ ) ≤ e
∫ τ

0 b(ξ ) dξ

{

υ1–α(τ0) + (1 – α)
∫ τ

s=0
k(s)e–(1–α)

∫ τ
0 b(ξ ) dξ ds

} 1
1–α

(15)

for τ ∈R.

Remark 3.4 The next part of this section is related to reproduction of the proofs of non-
linear Pachpatte’s inequalities (Theorems 2.7.1–2.7.4) proved by Pachpatte in [16]. These
inequalities are reproduced here via Corollary 3.3. Only the proof of Theorem 2.7.1 is
given below, the rest of the inequalities can be proved in a similar way.

Theorem 3.5 Let υ , f , and g be nonnegative continuous functions on R+ and c > 0, α > 0,
and α 	= 1 be constants, and suppose

υ(τ ) ≤ c +
∫ τ

0
f(s)υ(s) ds +

∫ τ

0
f(s)

[∫ s

0
g(x)υα(x) dx

]

ds (16)

for τ ∈R+.
(i) If 0 < α < 1 and E0(τ ) is defined by

E0(τ ) = 1 + (1 – α)cα–1
∫ τ

0
g(t)

(

e–
∫ t

0 f(s) ds)(1–α) dt,

then

υ(τ ) ≤ c
[

1 +
∫ τ

0
f(s)

(

e
∫ s

0 f(x) dx)(E0(s)
)( 1

1–α ) ds
]

(17)

for τ ∈R+.
(ii) If 1 < α < ∞, then

υ(τ ) ≤ c
[

1 +
∫ τ

0
f(s)

(

e–
∫ s

0 f(x) dx)(E0(s)
)( –1

α–1 ) ds
]

(18)

for τ ∈ [0, j], where

E0(τ ) = 1 + (1 – α)cα–1
∫ τ

0
g(t)

(

e–
∫ t

0 f(s) ds)(1–α) dt

for 1 < α < ∞ and j = sup{τ ∈R+ : E0(τ ) > 0}. Furthermore, assume E0(τ ) > 0 for all
τ ∈R+, subsequently inequality (18) holds for all τ ∈R+.
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Proof (i) Let 0 < α < 1 and let

χ (τ ) = c +
∫ τ

0
f(s)υ(s) ds +

∫ τ

0
f(s)

[∫ s

0
g(x)υα(x) dx

]

ds,

then χ (0) = c, υ(τ ) ≤ χ (τ ) and

χ ′(τ ) ≤ f(τ )
(

υ(τ ) +
∫ τ

0
g(x)υα(x) dx

)

,

χ ′(τ ) ≤ f(τ )
(

χ (τ ) +
∫ τ

0
g(x)χα(x) dx

)

.
(19)

Define a function ψ(τ ) by

ψ(τ ) = χ (τ ) +
∫ τ

0
g(x)χα(x) dx, (20)

then ψ(0) = χ (0) = c, χ (τ ) ≤ ψ(τ ), χ ′(τ ) ≤ f(τ )ψ(τ ), and

ψ ′(τ ) ≤ χ ′(τ ) + g(τ )χα(τ )

≤ f(τ )ψ(τ ) + g(τ )ψα(τ ). (21)

Applying Theorem 3.3 to (21) yields

ψ(τ ) ≤ e–
∫ τ

0 f(x) dx
{

c1–α + (1 – α)
∫ τ

0
g(s).e–(1–α)

∫ s
0 f(x) dx ds

} 1
1–α

= ce–
∫ τ

0 f(x) dx
{

1 + (1 – α)cα–1
∫ τ

0
g(s).e–(1–α)

∫ s
0 f(x) dx ds

} 1
1–α

= ce–
∫ τ

0 f(x) dx{E0(τ )
} 1

1–α . (22)

Using (22) in (19), we get

χ ′(τ ) ≤ cf(τ )e–
∫ τ

0 f(x) dx(E0(τ )
) 1

1–α . (23)

The preceding inequality suggests the approximation for χ (τ ) such that

χ (τ ) ≤ c
[

1 +
∫ τ

0
f(s)e–

∫ s
0 f(x) dx(E0(s)

)( 1
1–α ) ds

]

. (24)

Now, using (24) and the fact υ(τ ) ≤ χ (τ ), we get the required inequality.
(ii) Let 1 < α < ∞. Further moving with similar steps like in the proof of case (i), it is

seen that inequalities (22) and (24) hold for τ ∈ [0, j), and hence we obtain inequality (18)
which holds for τ ∈ [0, j). The last conclusion is obvious. Thus the proof is complete. �

4 Nonlinear Pachpatte’s inequalities on time scales
The improved proofs of nonlinear Pachpatte’s inequalities (Theorems 2.7.1–2.7.4 in [16]),
discussed in Sect. 3, enable us to unify them along with their discrete analogues (Theo-
rems 2.4.1, 2.4.2, 2.4.4, and 2.4.5 in [17]) on an arbitrary time scale.
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Theorem 4.1 Let u, f , g ∈ Crd and be nonnegative on T0 and c > 0, α > 0, and α 	= 1 be
constants, and suppose

υ(τ ) ≤ c +
∫ τ

τ0

f(s)u(s)�s +
∫ τ

τ0

f(s)
[∫ s

τ0

g(x)υα(x)�x
]

�s (25)

for t ∈ T0.
(i) If 0 < α < 1 and E0(τ ) is defined by

E0(τ ) = 1 + (1 – α)cα–1
∫ τ

τ0

g(t)
(

e�f
(

σ (t), τ0
))(1–α)

�t,

then

υ(τ ) ≤ c
[

1 +
∫ τ

τ0

f(s)ef (s, τ0)
(

E0(s)
)( 1

1–α )
�s

]

(26)

for τ ∈ T0.
(ii) If 1 < α < ∞, then

υ(τ ) ≤ c
[

1 +
∫ τ

τ0

f(s)ef (s, τ0)
(

E0(s)
)(– 1

α–1 )
�s

]

(27)

for τ ∈ [τ0, j], where

E0(τ ) = 1 + (1 – α)cα–1
∫ τ

τ0

g(t)
(

e�f
(

σ (t), τ0
))(1–α)

�t

for 1 < α < ∞ and j = sup{τ ∈ T0 : E0(τ ) > 0}. Furthermore, assume E0(τ ) > 0 for all
t ∈ T0, subsequently inequality (27) still holds for all τ ∈ T0.

Theorem 4.2 Let υ, f , g, h ∈ Crd and be nonnegative on T0 and c > 0 be a constant, and
suppose

υ(τ ) ≤ c +
∫ τ

τ0

f(s)υ(s)�s +
∫ τ

τ0

g(s)υ(s)
[

υ(s) +
∫ s

τ0

h(x)υ(x)�x
]

�s (28)

for τ ∈ T0. Then

υ(τ ) ≤ ce(f(s)+cg(s)(E(s))–1e(f+h)(s,τ0))(τ , τ0) (29)

for τ ∈ [τ0, j1), where

E(τ ) = 1 – c
∫ τ

τ0

g(t)e(f+h)
(

σ (t), τ0
)

�t

and j1 = sup{τ ∈ T0 : E(τ ) > 0}. Furthermore, assume E(τ ) > 0 for all τ ∈ T0, subsequently
inequality (29) still holds for all τ ∈ T0.
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Theorem 4.3 Let υ , f , g, h, and c be as in Theorem 4.2 and α > 0, α 	= 1 be a constant, and
suppose

υ(τ ) ≤ c +
∫ τ

τ0

f(s)υ(s)�s +
∫ τ

τ0

g(s)υα(s)
[

υ(s) +
∫ s

τ0

h(x)υ(x)�x
]

�s (30)

for τ ∈ T0.
(i) If 0 < α < 1 and E1(τ )

E1(τ ) = 1 – αcα

∫ τ

τ0

g(t)
(

e�(f+h)
(

σ (t), τ0
))–α

�t, (31)

then

υ(τ ) ≤ cef (τ , τ0)
[

1 + (1 – α)cα

∫ τ

τ0

e(f+h)(s, τ0)
(

E1(s)
)( –1

α )

× g(s)
(

e�f
(

σ (s), τ0
))1–α

�s
]( 1

1–α )

(32)

for τ ∈ [τ0, j2), where j2 = sup{τ ∈ T0 : E1(τ ) > 0}.
(ii) If 1 < α < ∞, then

υ(τ ) ≤ cef (τ , τ0)
[

1 – (α – 1)cα

∫ τ

τ0

e(f+h)(s, τ0)
(

E1(s)
)( –1

α )

× g(s)
(

e�f
(

σ (s), τ0
))1–α

�s
] –1

α–1
, (33)

where τ ∈ [τ0, j3], while

E1(τ ) = 1 – αcα

∫ τ

τ0

g(t)
(

e�(f+h)
(

σ (t), τ0
))–α

�t

for 1 < α < ∞ and j3 is the supremum of τ ∈ T0 for which E1(τ ) and the term
multiplied by cef (τ , τ0) in (33) are positive. Furthermore, assume (i) E1(τ ) > 0 and
(ii) E1(τ ) > 0 and the term multiplied by cef (τ , τ0) in (33) is positive for all τ ∈ T0;
subsequently, inequalities (32) and (33) hold respectively for all τ ∈ T0.

Remark 4.4 Since the proofs are similar to one another, the proofs of Theorems 4.1–4.3
can be accomplished by following the proof of Theorem 4.5. The details are given below.

Theorem 4.5 Let υ , f , g, h, and c be as in Theorem 4.3, and suppose

υ(τ ) ≤ c +
∫ τ

τ0

f(s)υ(s)�s +
∫ τ

τ0

g(s)υα(s)
[

υ(s) +
∫ s

τ0

h(x)υα+1(x)�x
]

�s (34)

for τ ∈ T0.
(i) If 0 < α < 1 and E2(τ ) is defined by

E2(τ ) = 1 – αcα

∫ τ

τ0

[

g(t) + h(t)
](

e�f
(

σ (t), τ0
))–α

�t, (35)
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then

υ(τ ) ≤ cef (τ , τ0)
[

1 + (1 – α)cα

∫ τ

τ0

g(s)ef (s, τ0)
(

E2(s)
)– 1

α

× (

e�f
(

σ (s), τ0
))1–α

�s
] 1

1–α

(36)

for τ ∈ [τ0, j4), where j4 = sup{τ ∈ T0 : E2(τ ) > 0}.
(ii) If 1 < α < ∞, then

υ(τ ) ≤ cef (τ , τ0)
[

1 – (α – 1)cα

∫ τ

τ0

g(s)ef (s, τ0)
(

E2(s)
)– 1

α

× (

e�f
(

σ (s), τ0
))1–α

�s
] –1

α–1
, (37)

where τ ∈ [τ0, j5] and

E2(τ ) = 1 – αcα

∫ τ

τ0

[

g(t) + h(t)
](

e�f
(

σ (t), τ0
))–α

�t

for 1 < α < ∞ and j5 is the supremum of τ ∈ T0 for which E2(τ ) and the term
multiplied by cef (τ , τ0) in (37) are positive. Furthermore, assume (i) E2(τ ) > 0 and
(ii) E2(τ ) > 0 and the term multiplied by cef (τ , τ0) in (37) is positive for all τ ∈ T0;
subsequently, inequalities (36) and (37) hold respectively for all τ ∈ T0.

Proof (i) Let 0 < α < 1, and we define a function χ (τ ) by

c +
∫ τ

τ0

f(s)υ(s)�s +
∫ τ

τ0

g(s)υα(s)
[

υ(s) +
∫ s

τ0

h(x)υα+1(x)�x
]

�s,

which is the right-hand side of (34). Then χ (τ0) = c, υ(τ ) ≤ χ (τ ) and

χ�(τ ) ≤ f(τ )χ (τ ) + g(τ )χα(τ )
(

χ (τ ) +
∫ τ

τ0

h(x)χα+1(x)�x
)

. (38)

Define a function ψ(τ ) by

ψ(τ ) = χ (τ ) +
∫ τ

τ0

h(x)χα+1(x)�x. (39)

From (38) and (39) and the fact χ (τ ) ≤ ψ(τ ) it follows that

ψ�(τ ) ≤ f(τ )ψ(τ ) +
(

g(τ ) + h(τ )
)

ψα+1(τ ). (40)

Now the application of Theorem 3.1 to inequality (40) yields

ψ(τ ) ≤ cef (τ , τ0)
(

E2(τ )
)– 1

α . (41)
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Using (41) in (38), we get

χ�(τ ) ≤ f(τ )χ (τ ) +
[

cef (τ , τ0)
(

E2(τ )
)– 1

α .g(τ )
]

χα(τ ). (42)

Again by applying Theorem 3.1 to inequality (42) implies the estimate for χ (τ ) such that

χ (τ ) ≤ cef (τ , τ0)
[

1 + (1 – α)cα

∫ τ

τ0

ef (s, τ0)
(

E2(s)
)– 1

α

× g(s)
(

e�f
(

σ (s), τ0
))1–α

�s
] 1

1–α

. (43)

Using (43) and the fact υ(τ ) ≤ χ (τ ), we get the required inequality:

υ(τ ) ≤ cef (τ , τ0)
[

1 + (1 – α)cα

∫ τ

τ0

ef (s, τ0)
(

E2(s)
)– 1

α g(s)
(

e�f
(

σ (s), τ0
))1–α

�s
] 1

1–α

.

(ii) For 1 < α < ∞, a function χ (τ ) is defined as follows:

χ (τ ) = c +
∫ τ

τ0

f(s)υ(s)�s +
∫ τ

τ0

g(s)υα(s)
[

υ(s) +
∫ s

τ0

h(x)υα+1(x)�x
]

�s.

Thereafter, applying a similar method to that used in the proof of the first case, it is ob-
served that every one of the inequalities from (38) to (42) holds for τ0 < τ < j5. Additionally,
for 1 < α < ∞, inequality (43) gives an estimate for χ (τ ) for τ0 ≤ τ < j5 in order that

χ (τ ) ≤ cef (τ , τ0)
[

1 – (α – 1)cα

∫ τ

τ0

ef (s, τ0)
(

E2(s)
)– 1

α

× g(s)
(

e�f
(

σ (s), τ0
))1–α

�s
](– 1

α–1 )

. (44)

Using (44) and the fact υ(τ ) ≤ χ (τ ), the requisite inequality is achieved in (37). The fi-
nal deduction is evident if the proofs of the first and second cases, mentioned above, are
followed. The proof is complete. �

Remark 4.6
• Theorems 4.1, 4.2, 4.3, and 4.5 reduce to Theorems 2.4.1, 2.4.5, 2.4.4, and 2.4.2,

respectively, if T = Z. These were established by Pachpatte in [17].
• Similarly, for T = R, Theorems 4.1, 4.2, 4.3, and 4.5 reduce to Theorems 2.7.1, 2.7.2,

2.7.3, and 2.7.4, respectively. These were established by Pachpatte in [16].

5 Applications
Certain specific nonlinear integral inequalities play their part in the exploration of qualita-
tive properties for solutions of certain differential, integral, and integro-differential equa-
tions [6]. This portion is related to the behavior of solutions of the higher order integro-
dynamic equations of the form

y�n
+

n
∑

i=1

ωi(τ )y�n–i
= yαg

(

τ , y,
∫ τ

τ0

h(τ , s, y)�s
)

(45)



Sarfaraz et al. Advances in Difference Equations        (2019) 2019:402 Page 14 of 18

by means of comparison with solutions of the dynamic equation

y�n
+

n
∑

i=1

ωi(τ )y�n–i
= 0, (46)

where ωi : T+ →R, h : T+ ×T+ ×T →R, g : T+ ×T×T→R are rd-continuous functions,
∑n

k=1(–μ)k–1ωk is regressive, and 0 < α < 1 is a constant. A considerable amount of studies
of various general and special versions of equation (45) have been done, and many results
have emerged in the literature. The theorems proved in the following present some results
which are established by the application of the special version of the inequality given in
Theorem 4.3. Here it will be assumed that every solution y(τ ) of (45) under discussion
exists on T+. In what follows, y1(τ ), . . . , yn(τ ) is a fundamental system for (46). Wronskian
of n functions y1(τ ), . . . , yn(τ ), all of them n – 1 times differentiable, is defined naturally
by

W (y1, . . . , yn)(τ ) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1 y2 · · · yn

y�
1 y�

2 · · · y�
n

. . . .

. . . .

. . . .
y�n–1

1 y�n–1
2 · · · y�n–1

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (47)

and W (τ , s) is the determinant of the matrix in (47) where the last row is replaced by
(y1(s) · · · yn(s)). The following result deals with the boundedness of the solution of (45)
under some suitable conditions on the functions involved in (45) and on the solutions of
equation (46).

Theorem 5.1 Suppose that

∣
∣
∣
∣
∣

n
∑

k=1

ckyk(τ )

∣
∣
∣
∣
∣
≤ c, τ ∈ T+, (48)

where c1, . . . , cn and c > 0 are constants.

∣
∣
∣
∣

W (σ (s), τ )
W (σ (s))

∣
∣
∣
∣
≤ M, 0 ≤ s ≤ τ < ∞, (49)

M > 0. Let the functions g and h in (45) be bounded by

∣
∣g(τ , y, z)

∣
∣ ≤ a(τ )

(|y| + |z|), τ ∈ T+, (50)
∣
∣h(τ , s, y)

∣
∣ ≤ b(s)|y|, 0 ≤ s ≤ τ < ∞, (51)

where a, b : T+ →R+ are rd-continuous functions. If

E1(τ ) = 1 – cααM
∫ τ

τ0

a(s)eαb(s, τ0)�s > 0 (52)
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for all τ ∈ T+ and

∫ ∞

τ0

a(s)
(

E1(s)
)– 1

α eb(s, τ0)�s < ∞, (53)

then all solutions of (45) are bounded on T+.

Proof By using the variations of constants formula from Theorem 5.119 in [4], the solu-
tions of (45) and (46) are related by the integral equation

y(τ ) =
n

∑

i=1

ciyi +
∫ τ

τ0

W (σ (s), τ )
W (σ (s))

yα(s)g
(

s, y(s),
∫ s

τ0

h
(

s, t, y(t)
)

�t
)

�s, (54)

where y1, . . . , yn are linearly independent solutions of (46). From (54) and (48)–(51) we
obtain

∣
∣y(τ )

∣
∣ ≤ c +

∫ τ

τ0

Ma(s)
∣
∣y(s)

∣
∣
α

(
∣
∣y(s)

∣
∣ +

∫ s

τ0

b(t)
∣
∣y(t)

∣
∣�t

)

�s. (55)

On application of a particular form of Theorem 4.3 (i.e., when f(τ ) = 0), we will get the
following:

∣
∣y(τ )

∣
∣ ≤ c

[

1 + (1 – α)cαM
∫ τ

τ0

a(s)
(

E1(s)
)– 1

α eb(s, τ0)�s
] 1

1–α

. (56)

The approximation from the above inequality and hypothesis (53) indicate the bounded-
ness of all the solutions of (45) on T+. �

The upcoming theorem illustrates that taking into account certain appropriate circum-
stances on the functions involved in (45) and on the solutions of equation (46), all the
solutions of (45) tend towards zero as τ tends towards ∞.

Theorem 5.2 Suppose that

∣
∣
∣
∣
∣

n
∑

k=1

ckyk(τ )

∣
∣
∣
∣
∣
≤ ce–β (τ , τ0), τ ∈ T+, (57)

where c1, . . . , cn and c > 0 are constants.

∣
∣
∣
∣

W (σ (s), τ )
W (σ (s))

∣
∣
∣
∣
≤ Me–β (τ , s), 0 ≤ s ≤ τ < ∞, (58)

M > 0. Let the functions g and h in (45) be bounded by

∣
∣g(τ , y, z)

∣
∣ ≤ a(τ )

(|y| + |z|), τ ∈ T+, (59)
∣
∣h(τ , s, y)

∣
∣ ≤ e–β (τ , τ0)b(s)|y|, 0 ≤ s ≤ τ < ∞, (60)
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where a, b : T+ →R+ are rd-continuous functions. If

E2(τ ) = 1 – cααM
∫ τ

τ0

e–αβ (t, τ0)a(t)
(

eb(ζ )e–β (ζ ,τ0)
(

σ (t), τ0
))α

�t > 0 (61)

for all τ ∈ T+ and

∫ ∞

τ0

a(s)e–αβ(s, τ0)
(

E2(s)
)– 1

α eb(t)e–β (t,τ0)(s, τ0)�s < ∞; (62)

as a consequence, the solutions of (45) tend towards zero as τ tends towards ∞.

Proof Let y1(τ ), . . . , yn(τ ) be linearly independent solutions of (46), then the solutions of
(45) and (46) are related by the integral equation (54). Using (57)–(60), we obtain

∣
∣y(τ )

∣
∣ ≤ ce–β (τ , τ0) +

∫ τ

τ0

Me–β (τ , s)p(s)
∣
∣y(s)

∣
∣
α

(
∣
∣y(s)

∣
∣ + e–β (s, τ0)

∫ s

τ0

q(t)
∣
∣y(t)

∣
∣�t

)

�s,

∣
∣y(τ )

∣
∣eβ (τ , τ0) ≤ c +

∫ τ

τ0

Mp(s)e–αβ (s, τ0)
(∣
∣y(s)

∣
∣eβ (s, τ0)

)α

×
(

∣
∣y(s)

∣
∣eβ (s, τ0) +

∫ s

τ0

q(t)e–β (t, τ0)
∣
∣y(t)

∣
∣eβ (t, τ0)�t

)

�s.

On application of a particular form of Theorem 4.3 (i.e., when f(τ ) = 0) and taking u(τ ) =
|y(τ )|eβ (τ , τ0), we obtain an inequality which on multiplication by e–β (τ , τ0) will provide
the following:

∣
∣y(τ )

∣
∣ ≤ ce–β (τ , τ0)

[

1 + (1 – α)cα

∫ τ

τ0

Mp(s)e–αβ(s, τ0)
(

E2(s)
)– 1

α

× eq(t)e–β (t,τ0)(s, τ0)�s
] 1

1–α

.

Taking in view hypothesis (62), the preceding approximation provides the required re-
sult. �

Definition 5.3 For a slowly growing function F(τ ), where F(τ ) is continuous, there exists
a constant Λ for every ε > 0 such that

∣
∣F(τ )

∣
∣ ≤ Λeε(τ , τ0), τ ∈ T0, (63)

where Λ may depend on ε.

The succeeding outcome signifies that compared to any positive exponential function,
all the solutions of (45) grow more slowly.

Theorem 5.4 Suppose that

∣
∣
∣
∣
∣

n
∑

k=1

ckyk(τ )

∣
∣
∣
∣
∣
≤ ceβ (τ , τ0), τ ∈ T+, (64)
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where c1, . . . , cn and c > 0 are constants.
∣
∣
∣
∣

W (σ (s), τ )
W (σ (s))

∣
∣
∣
∣
≤ Meβ (τ , s), 0 ≤ s ≤ τ < ∞, (65)

M > 0. Let the functions g and h in (45) be bounded by

∣
∣g(τ , y, z)

∣
∣ ≤ a(τ )

(|y| + |z|), τ ∈ T+, (66)
∣
∣h(τ , s, y)

∣
∣ ≤ eβ (τ , τ0)b(s)|y|, 0 ≤ s ≤ τ < ∞, (67)

where a, b : T+ →R+ are rd-continuous functions. If

E3(τ ) = 1 – cααM
∫ τ

τ0

eαβ (t, τ0)a(t)
(

eb(ζ )e–β (ζ ,τ0)
(

σ (t), τ0
))α

�t > 0 (68)

for all τ ∈ T+ and

∫ ∞

τ0

a(s)eαβ(s, τ0)
(

E3(s)
)– 1

α eb(t)e–β (t,τ0)(s, τ0)�s < ∞ (69)

results in proving that the solutions of (45) are growing steadily.

The above theorem can be easily proved by following an equivalent reasoning, which
was followed to prove Theorem 5.2, with suitable modifications.

6 Conclusion
It has been shown that by using mean value theorem, a fundamental dynamic inequality is
justifiable on any arbitrary time scale. The cases for some special time scales are as follows:
For T = Z, the inequality coincides with the fundamental finite difference inequality pre-
sented by Pachpatte in ([17], Theorem 2.3.4). For T = R, we make an addition with a new
fundamental integral inequality in classical analysis and use it in turn to reproduce the
proofs of nonlinear integral Pachpatte’s inequalities ([16], Theorems 2.7.1–2.7.4), which
were formerly accomplished by using basic analytical approach.

For nonlinear dynamic Pachpatte’s inequalities, we concluded that: If we take the time
scale T = Z, the inequalities coincide with the fundamental finite difference inequalities
presented by Pachpatte in ([17], Theorems 2.4.1, 2.4.2, 2.4.4, 2.4.5), and for T = R, the
inequalities matched with nonlinear integral Pachpatte’s inequalities produced in ([16],
Theorems 2.7.1–2.7.4) by Pachpatte in the continuous setting. The preset work distin-
guishes from the existing ones in three aspects. Firstly, nonlinear Pachpatte’s inequalities
which we discussed here are quite different from the existing ones. Secondly, the existing
literature about integral Pachpatte’s inequality utilized comparison theorem to establish
their inequalities and other results on time scales. But it is not helpful in our assertion and
needs a more generalized form of it to obtain our desire estimates. Finally, in the applied
sense, the existing manuals cover first order dynamic equations, while the feasibility of our
derived estimates is shown in first as well as in higher order dynamic equations.
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