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Abstract
In this paper, we present a stabilized coupled algorithm for solving elliptic interface
problems, mainly by introducing the jump of the solutions along the interface.
A framework of theoretical proofs is provided to show the optimal error estimates of
this stabilized method. Several numerical experiments are carried out to demonstrate
the computational stability and effectiveness of the method.

Keywords: The interface problem; Stabilized method; Couple method; Optimal
error estimates

1 Introduction
The interface problem has always been a difficult issue in multi-physics and multi-phase
applications in science and engineering and has becoming focused recently. In real physi-
cal world, many phenomena need to be described using non-smooth or even discontinu-
ous functions/methods. A lot of methods have been put forward to improve the standard
numerical methods which may not be applied directly. Focusing on the approximation of
non-smooth solutions related to the present work, there are mainly two fundamentally
different approaches.

One approach of improvement is to enrich the approximation space or discrete form, for
instance, the immersed boundary method (IBM) [1], the immersed interface method (IIM)
[2–5] and some modified methods for them in the finite difference method (FDM). This
type of methods usually incorporates the interface conditions into the finite difference
scheme near the interface to achieve second- or higher-order accuracy based on a Taylor
expansion in a local coordinate system. Concentrated on the development of the high-
accuracy or augmented method [6], these methods can treat the irregular domain problem
on a rectangular domain so that fast solvers for Poisson/Helmholtz equations can be used.
Several methods of finite element versions, such as the immersed interface finite element
method (IIFEM) [7, 8], the weak Galerkin finite element method [9], the extended finite
element method (XFEM) [10, 11], the generalized finite element method (GFEM) [12], and
non-traditional finite element methods [13, 14] have also been developed. These methods
usually modify the basis function or add virtual nodes near the interface.

Another approach of improvement is to refine the discretization near the critical re-
gions, so the procedure of re-meshing is usually required in this case. For instance, by
placing more grid-points along the interface and around the intersection. Bernardi and
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Figure 1 Schematic diagram of problem domain

Verfurth proposed weighted-residual error estimators to deal with interfaces [15] and Cai
and Zhang proposed recovery-based error estimators [16, 17]. Note that, in the previous
method, the meshes were generated along the interface.

For many numerical methods, researchers often use stabilization to reduce the error
[18], which inspires us to solve the interface problem in such way. By combining the
two-level method and the partition of unity, the authors and their collaborators proposed
two local and parallel algorithms for the Stokes problem [19], elliptic equations [20], the
Stokes–Darcy model [21] and the fluid–fluid model [22, 23]. In this paper, we consider the
elliptic interface problem as a mixed elliptic–elliptic model. We will introduce the jump
of the solution along the interface as our stabilization term of the stabilized method and
then obtain the optimal error estimates for the method.

The rest of the article is organized as follows. In Sect. 2, some preliminary notations and
inequalities are introduced. As the main parts of this paper, in Sect. 3 and 4, the stabilized
coupled algorithm and its analysis are discussed. Then numerical tests are presented in
Sect. 5. Finally, some conclusions are given in Sect. 6.

2 Preliminaries
In this section, we will introduce some basic notations and inequalities. Let Ω ⊂ Rd (d =
2, 3) be a bounded domain with Lipschitz boundary and Ω = Ω1 ∪Γ ∪Ω2. Here Ω1 and Ω2

are two disjoint subdomains which are either convex or of class C1,1, and coupled by a fixed
interface Γ ⊆ ∂Ω (see Fig. 1 for example). Both boundaries ∂Ω1, ∂Ω2 and interface Γ are
assumed to be polygonal (d = 2) or polyhedral (d = 3) for the sake of avoiding analyzing
the effect caused by triangulation of domain into finite elements [24]. For any domain D,
we denote the norm for the Sobolev space Hk(D) by ‖ · ‖k,D with k > 0 (see for instance
[25]). When k = 0, we denote W 0,m(D) connected with the norm ‖ · ‖Lm(D) by Lm(D). In
particular, W 0,2(D) with the norm ‖ · ‖0,D is denoted by L2(D). The definitions of the space
H

1
2

00(Γ ) and its dual space H– 1
2

00 (Γ ) will also be used and are referred to [26].
We then define two spaces by

Xi =
{

vi ∈ H1(Ωi); vi|∂Ωi\Γ = 0
}

, i = 1, 2,

and their tensor space by

X := X1 × X2.
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For i = 1, 2, let π i
h be a regular partition of each subdomain Ωi, which consists of K that

are tetrahedral elements for d = 3 and triangles for d = 2. We denote the diameter of the
element K ∈ πh = π1

h ∪ π2
h by hK and mesh scale h = maxK∈πh hK . Accordingly, we define

the following finite element spaces on π i
h:

Xi,h = Xi ∩
{

vi,h ∈ H1(Ωi); vi,h|K ∈ Pk(K), K ∈ π i
h
} ⊂ Xi, i = 1, 2,

where Pk(K) is the space of polynomials of order k on K with k ≥ 1, and tensor space

Xh := X1,h × X2,h ⊂ X.

Some useful inequalities are listed in the end of this section. We refer to [26, 27] for such
inequalities.

A1: (Trace inequality) For any vi ∈ Xi,

‖vi‖Γ ≤ C̃tr‖vi‖
1
2
0 ‖vi‖

1
2
1 . (1)

A2: (Interpolation inequalities) For any ui ∈ Xi ∩ Hk+1(Ωi) with k ≥ 1, there exists
Ihui ∈ Xi,h such that

‖ui – Ihui‖0,Ωi + h‖ui – Ihui‖1,Ωi ≤ CIhk+1‖ui‖k+1,Ωi . (2)

3 The elliptic interface problem
The model of the elliptic interface problem considered in this paper is as follows:

–∇ · (νi∇ui) = fi, in Ωi, i = 1, 2, (3)

ui = 0, on ∂Ωi \ Γ , (4)

u1 – u2 = 0, on Γ , (5)

n1 · ν1∇u1 + n2 · ν2∇u2 = g, on Γ . (6)

Here for i = 1, 2, ni is the unit outward normal to Γ of domain Ωi, f is the given source
term, and ui is the restriction of u in Ωi.

The variational formulation of the problem (3)–(6) is: for any given h, find ui ∈ Xi satis-
fying

ai(ui, vi) +
δ

h

∫

Γ

(u1 – u2)(v1 – v2) ds

–
1
2

∫

Γ

(ν1∇u1 · n1 – ν2∇u2 · n2)(v1 – v2) ds

= (fi, vi) +
1
2

∫

Γ

gv1 ds +
1
2

∫

Γ

gv2 ds, ∀vi ∈ Xi, i = 1, 2, (7)

where

ai(ui, vi) = (νi∇ui,∇vi)Ωi .



Yu et al. Advances in Difference Equations        (2019) 2019:400 Page 4 of 13

Since in the present situation u1 – u2 = 0 on Γ , we actually add a zero term δ
h
∫
Γ

(u1 –
u2)(v1 – v2) ds in the variational formulation to (3)–(6) comparing with the standard weak
formulation. However, this modification will be very useful and important as shown in our
later analysis in the next section and also numerical simulations.

By introducing some important notations for u = (u1, u2), v = (v1, v2) ∈ X

[u] = (u1 – u2)|Γ ,

a(u, v) = a1(u1, v1) + a2(u2, v2),

(ui, vi)Γ =
∫

Γ

ui · vi ds,

(g, v) = (g, v1)Γ + (g, v2)Γ ,

the above variational formulation (7) can be equivalently rewritten as: Find u ∈ X satisfy-
ing

a(u, v) +
δ

h
(
[u], [v]

)
Γ

+
1
2
(
[ν∇u · n], [v]

)
Γ

= (f , v) +
1
2

(g, v), ∀v ∈ X. (8)

We also need the inverse and trace inequality as follows [26, 27]:

‖vi,h‖Γ ≤ C̃invh–1/2‖vi,h‖0, ∀vi,h ∈ Xi,h. (9)

4 The coupled algorithm for the interface model and error estimates
In this section, we will present our algorithm for solving the coupled problem (3), which
is referred as the coupled scheme.

Algorithm 1 (The coupled scheme) Find ui,h ∈ Xi,h, i = 1, 2, such that

2∑

i=1

ai(ui,h, vi,h) +
δ

h

∫

Γ

(u1,h – u2,h)(v1,h – v2,h) ds

–
1
2

∫

Γ

(ν1∇u1,h · n1 – ν2∇u2,h · n2)(v1,h – v2,h) ds

=
2∑

i=1

(fi, vi,h) +
1
2

2∑

i=1

∫

Γ

gvi,h ds, ∀vi,h ∈ Xi,h. (10)

Remark 1 In the present work, to keep the briefness of introducing our coupled method
and proving its optimal error estimates, we only consider both homogeneous non-
interface boundary condition (4) and homogeneous interface jump condition (5). The
extension to the general conditions ui = φi, on ∂Ωi \ Γ , u1 – u2 = ψ on ∂Γ as studied
in [9] is trivial. Actually, we only need modify two places in the numerical scheme (10):
(i) adding δ

h
∫
Γ

ψ(v1,h – v2,h) ds in the right side of (10); (ii) replacing solution spaces Xi,h by
X̃i,h = X̃i ∩{vi,h ∈ H1(Ωi); vi,h|K ∈ Pk(K), K ∈ π i

h}, with X̃i = H1(Ωi), and searching ui,h ∈ X̃i,h

with ui,h|∂Ωi\Γ = Ji,hφi, here Ji,h are standard interpolation operator associated with π i
h. The

analysis in the following two theorems is nearly same for this non-homogeneous case.
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We can also equivalently rewrite this scheme as: Find uh ∈ Xh satisfying

a(uh, vh) +
δ

h
(
[uh], [vh]

)
Γ

+
1
2
(
[ν∇uh · n], [vh]

)
Γ

= (f , vh) +
1
2

(g, vh), ∀vh ∈ Xh. (11)

In the remaining part of this section, we will focus on deriving the optimal error esti-
mates for the coupled Algorithm 1. Actually, Theorem 1 and Theorem 2 will provide the
error estimates of the numerical solutions in H1 norm and L2 norm, respectively.

Theorem 1 Let u be the solution of the variational formulation (8) and uh be the finite
element solution deduced by Algorithm 1. Under the hypothesis that u ∈ X ∩ Hk+1(Ω), the
following estimate holds:

‖u – uh‖1,Ω ≤ Chk . (12)

Proof For convenience, we separate the errors into two parts,

ui – ui,h = (ui – Ihui) + (Ihui – ui,h) := φi + θh
i , i = 1, 2.

Then by denoting Φ = (φ1,φ2),Θh = (θh
1 , θh

2 ), we obviously have

u – uh = Φ + Θh.

Subtracting (11) from (8) gives the error equations as

a(u – uh, vh) +
δ

h
(
[u – uh], [vh]

)
Γ

+
1
2
([

ν∇(u – uh) · n
]
, [vh]

)
Γ

= 0, ∀vh ∈ Xh. (13)

Then taking vh = Θh in (13) it follows

a
(
Θh,Θh) +

δ

h
([

Θh],
[
Θh])

Γ
+

1
2
([

ν∇Θh · n
]
,
[
Θh])

Γ

= –a
(
Φ ,Θh) –

δ

h
(
[Φ],

[
Θh])

Γ
–

1
2
([

ν∇(Φ) · n
]
,
[
Θh])

Γ
. (14)

Using the inverse inequality (9), the Hölder inequality and denoting two positive con-
stants

νmax = sup
x∈Ω1,y∈Ω2

{
ν1(x),ν2(y)

}
, νmin = inf

x∈Ω1,y∈Ω2

{
ν1(x),ν2(y)

}
,

we can derive the following estimates for (14):

1
2
([

ν∇Θh · n
]
,
[
Θh])

Γ
≤ ∥∥[

ν∇Θh · n
]∥∥

Γ

∥∥[
Θh]∥∥

Γ

≤ C̃invh–1/2∥∥ν∇Θh∥∥
0

∥∥[
Θh]∥∥

Γ

≤ 1
4
∥∥√

ν∇Θh∥∥2
0 +

C̃2
invνmax

h
∥∥[

Θh]∥∥2
Γ

, (15)

a
(
Φ ,Θh) ≤ ‖ν∇Φ‖0

∥∥∇Θh∥∥
0 ≤ 1

4
∥∥√

ν∇Θh∥∥2
0 + νmax‖∇Φ‖2

0, (16)
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δ

h
(
[Φ],

[
Θh])

Γ
≤ δ

h
∥∥[Φ]

∥∥
Γ

∥∥[
Θh]∥∥

Γ
≤ δ

2h
∥∥[

Θh]∥∥2
Γ

+
δ

2h
∥∥[Φ]

∥∥2
Γ

, (17)

1
2
([

ν∇(Φ) · n
]
,
[
Θh])

Γ
≤ ∥∥[ν∇Φ · n]

∥∥
Γ

∥∥[
Θh]∥∥

Γ

≤ C̃invh–1/2‖ν∇Φ‖0
∥∥[

Θh]∥∥
Γ

≤ νmax

4
‖∇Φ‖2

0 +
C̃2

invνmax

h
∥∥[

Θh]∥∥2
Γ

. (18)

Then combining (14) with (15)–(18), and applying the trace inequality A1, we can obtain

1
2
∥∥√

ν∇Θh∥∥2
0 +

δ – 4C̃2
invνmax

2h
∥∥[

Θh]∥∥2
Γ

≤ 5νmax

4
‖∇Φ‖2

0 +
δ

2h
∥∥[Φ]

∥∥2
Γ

≤ 5C0νmax

4
‖Φ‖2

1 +
C̃trδ

h
(‖Φ‖0‖Φ‖1

)
, (19)

here C0 is defined as a constant associated with the equivalence of two norms on Ω ,
namely, ‖∇(·)‖0 ≤ C0‖ · ‖1.

From (19), we can see that if selecting δ ≥ 4C̃2
invνmax, by interpolation inequality A2

νmin

2
∥∥∇Θh∥∥2

0 ≤ 1
2
∥∥√

ν∇Θh∥∥2
0

≤ 5C0νmax

4
‖Φ‖2

1 +
C̃trδ

h
(‖Φ‖0‖Φ‖1

)

≤
(

5C0νmax

4
+ C̃trδ

)
C2

I ‖u‖2
k+1,Ωh2k , (20)

which yields

∥∥∇Θh∥∥
0 ≤

(
5C0

2
νmax

νmin
+

2C̃tr

νmin
δ

)1/2

CI‖u‖k+1,Ωhk . (21)

Due to the triangle inequality and the interpolation inequality A2, we finally arrive at

∥∥∇(u – uh)
∥∥

0 ≤ ∥∥∇Θh∥∥
0 + ‖∇Φ‖0 ≤ Chk , (22)

with

C =
[

1 +
(

5C0

2
νmax

νmin
+

2C̃tr

νmin
δ

)1/2]
CI‖u‖k+1,Ω . (23)

Noting that in the estimate (22), δ appears in C, the right side of (22), this parameter δ

cannot be too large to ensure a good approximation result. Compared with the term before
δ in C, we can select

4C̃2
invνmax ≤ δ ≤ max

{
5C0νmax

4C̃tr
, 4C̃2

invνmax

}
. (24)

The proof is completed. �
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Remark 2 For the stabilization parameter δ selected above, we always have C ≤ [1 +
(5C0

νmax
νmin

)1/2]CI‖u‖k+1,Ω , which is independent of the mesh size h.

In the end, we present the error estimate in L2(Ωi) for the coupled scheme.

Theorem 2 Let u be the solution of the variational formulation (8) and uh be the finite
element solution deduced by Algorithm 1. Assuming that u ∈ X ∩ Hk+1(Ω), we have the
following estimate:

‖u – uh‖0 ≤ Chk+1. (25)

Proof Firstly we construct a dual problem of (3) as follows:

–∇ · (νi∇zi) = ui – ui,h, in Ωi, i = 1, 2, (26)

zi = 0, on ∂Ωi \ Γ , (27)

z1 – z2 = 0, on Γ , (28)

n1 · ν1∇z1 + n2 · ν2∇z2 = r, on Γ . (29)

Choosing r = 0, we have

‖u – uh‖2
0 = a(z, u – uh) +

δ

h

∫

Γ

[z][u – uh] ds

–
1
2

∫

Γ

[ν∇z · n][u – uh] ds. (30)

Thanks to (13), we know that

‖u – uh‖2
0 = a(z – Ihz, u – uh) +

δ

h

∫

Γ

[z – Ihz][u – uh] ds

–
1
2
([

ν∇(u – uh) · n
]
, [Ihz]

)
Γ

–
1
2

∫

Γ

[ν∇z · n][u – uh] ds. (31)

Noting that [Ihz] = 0, [ν∇z · n] = 0 on Γ , by the Hölder inequality, the trace inequality
A1 and the interpolation inequalities A2, we can obtain that

‖u – uh‖2
0 = a(z – Ihz, u – uh) +

δ

h

∫

Γ

[z – Ihz][u – uh] ds

≤ C
∥∥∇(z – Ihz)

∥∥
0

∥∥∇(u – uh)
∥∥

0 +
Cδ

h
‖z – Ihz‖L2(Γ )‖u – uh‖L2(Γ )

≤ Ch‖z‖2
∥∥∇(u – uh)

∥∥
0 + Cδh1/2‖z‖2‖u – uh‖1/2

0
∥∥∇(u – uh)

∥∥1/2
0 . (32)

Since the domain and the interface are both convex, we can derive from (26) that, while
r = 0,

‖z‖2 ≤ C‖u – uh‖0.
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Then we arrive at

‖u – uh‖2
0

≤ Ch‖u – uh‖0
∥∥∇(u – uh)

∥∥
0 + Cδh1/2‖u – uh‖3/2

0
∥∥∇(u – uh)

∥∥1/2
0

≤ Ch2∥∥∇(u – uh)
∥∥2

0 +
1
2
‖u – uh‖2

0, (33)

which immediately yields

‖u – uh‖0 ≤ Chk+1.

The proof is completed. �

5 Numerical tests
In this section, several numerical examples are carried out to illustrate our theoretical
results. We select the stabilization parameter δ = 1.0 in the first three testing examples, and
δ = 0.1 in the last case. The code is implemented and executed using the software package
FreeFEM++ [28]. The linear solver UMFPACK is used for solving linear equations of the
resulting system discretized by the finite element method for (10).

Example 1 Firstly we consider a stationary heat conduction problem in a single solving
domain Ω = [0, 1] × [0, 2] with analytic solution as follows:

u =
(
2 – π sin(πx)

)(
1 – y – cos(πy)

)
.

By introducing a straight internal boundary Γ = (0, 1) × {1}, we divide the domain Ω into
two subdomains Ω1 = [0, 1] × [0, 1] and Ω2 = [0, 1] × [1, 2]. In this example g = 0 in (3),
ν1 = ν2, and the right hand sides fi and other boundary conditions are derived from the
exact solution. To this end, we can say that the present algorithm can be regarded as a
special domain decomposition method for this problem.

A sequence of uniform triangular meshes are generated by aligning with the interface
Γ . Based on these meshes, the H1 and L2 errors for numerical solutions by the present
method are reported in Table 1 with P1 (k = 1, linear) and P2 (k = 2, quadratic) elements.
From this table and the plotted convergence results in Fig. 2, the numerical orders of k
and k + 1 respectively in the sense of H1 and L2 norms are observed clearly.

Noting that in general, u1 – u2 = ψ is usually not zero. However, in the non-zero case,
we only need to add another additional term in the right hand side related to ψ , which
will not obviously affect our analysis since ψ is some prescribed function. To this end, we
follow [29] in the next three examples to carry out our testings to verify theoretical results.
For simplicity, we only consider the P1 element hereafter.

Example 2 Now we consider a circular interface problem. The domain Ω1 consists of a
circle with its center at the origin and a radius of 0.5. Let Ω = [–1, 1]× [–1, 1] and Ω2 = Ω \
Ω1. The coefficients νi for different domains Ωi are chosen as ν1 = 10,ν2 = 1, respectively.
The analytical solution is chosen as

u1 = 10 – x2 – y2, u2 = sin(πx) sin(πy).
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Table 1 Convergence order with respect to h of the stabilized method for Example 1 with P1 and P2
elements

‖u – uh‖0 Order (h) ‖u – uh‖1 Order (h)

h (P1)
1
16 1.04210e–1 – 2.70631 –
1
32 2.68904e–2 1.954 1.36429 0.988
1
64 6.79800e–3 1.984 0.683551 0.997
1
128 1.70751e–3 1.993 0.341947 0.999

h (P2)
1
8 3.10623e–2 – 0.823449 –
1
16 4.63642e–3 2.744 0.209248 1.976
1
32 6.15439e–4 2.913 0.0522218 2.002
1
64 7.83590e–5 2.973 0.0130404 2.002

Figure 2 Plots of orders of convergence for Example 1. Left: P1 elements; Right: P2 elements

Table 2 Convergence order with respect to h of the stabilized method for Example 2

h ‖u – uh‖0 Order (h) ‖u – uh‖1 Order (h)
1
16 6.02324e–2 – 6.43806e–1 –
1
32 1.64189e–2 1.885 3.22031e–1 1.005
1
64 4.16997e–3 1.996 1.62769e–1 0.994
1
128 1.14220e–3 1.861 8.15625e–2 0.993
1
256 3.02782e–4 1.904 4.07209e–2 0.996

The numerical results of the stabilized method are listed in Table 2, the computed orders
of convergence are plotted in Fig. 3. As h decreases, it is easy to see that the numerical
convergence orders are very close to 2 in L2 norm and 1 in H1 norm, respectively. These
numerical results are consistent with our theoretical ones as proved in Theorem 1 and
Theorem 2.

Example 3 In this example, we select Ω = [0, 1] × [0, 1] and Ω1 = [0.2, 0.8] × [0.2, 0.8]
with Ω2 = Ω \ Ω1. The coefficient functions νi and the analytic solutions ui in different
subdomains are chosen as the following bounded functions:

ν1 = 1, ν2 = 2 + sin(x + y);

u1 = 5 + 5
(
x2 + y2), u2 = x2 + y2 + sin(x + y).
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Figure 3 Plots of orders of convergence for
Example 2 by P1 elements

Table 3 Convergence order with respect to h of the stabilized method for Example 3 with
coefficient functions

h ‖u – uh‖0 Order (h) ‖u – uh‖1 Order (h)
1
16 4.14523e–3 – 1.78752e–1 –
1
32 8.37080e–4 2.313 9.03064e–2 0.987
1
64 1.91750e–4 2.114 4.41597e–2 1.026
1
128 4.17206e–5 2.144 2.22359e–2 0.964
1
256 1.00927e–5 2.078 1.11664e–2 1.008

Figure 4 Plots of orders of convergence for
Example 3 by P1 elements

The approximate results are shown in Table 3, with successive mesh refinements, and also
plotted in Fig. 4. Obviously, the theoretical orders, i.e., O(h2) in L2 norm and O(h) in H1-
norm, respectively, are verified based on such P1 elements, as provided in Theorem 1 and
Theorem 2.

Example 4 As the last testing case, we consider a problem on domain Ω = [0, 1]2 with an
interface of flower petal, whose parametric form is given as (cf. Example 9 of Ref. [9]):

x(θ ) =
(
a + b cos(mθ )

)
sin(nθ ) cos(θ ),

y(θ ) =
(
a + b cos(mθ )

)
sin(nθ ) sin(θ ), θ ∈ [0, 2π ].
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Table 4 Convergence order with respect to h of the stabilized method for Example 4 with
coefficient functions

h ‖u – uh‖0 Order (h) ‖u – uh‖1 Order (h) ‖u – uh‖0,∞ Order (h) CPU (s)
1
16 4.39386e–3 – 3.84330e–2 – 8.04136e–3 - 0.725
1
32 1.25230e–3 1.870 1.85753e–2 1.083 2.49653e–3 1.742 1.609
1
64 2.30183e–4 2.441 8.35445e–3 1.151 5.91155e–4 2.076 7.721
1
128 6.05530e–5 1.923 4.01170e–3 1.057 1.45916e–4 2.015 29.335
1
256 1.48867e–5 2.008 1.95483e–3 1.029 3.48517e–5 2.050 99.845

Figure 5 Plots of orders of convergence for
Example 4 by P1 elements

Here we take a = 0.50012563, b = 0.250012563, m = 0, and n = 10. The coefficient function
and the analytical solution are chosen as

ν1 = (xy + 2)/5, ν2 =
(
x2 – y2 + 3

)
/7;

u1 = x + y + 1, u2 = sin(x + y) + cos(x + y) + 1.

For this testing case, the error in L2, H1 and L∞ norms and corresponding CPU time are
listed in Table 4. Meanwhile, the numerical orders of convergence with respect to decreas-
ing mesh size h are plotted in Fig. 5. We can observe how the optimal convergence results
emerge.

6 Conclusions
In this paper we have proposed a stabilized coupled algorithm for the elliptic interface
problem. The main contribution of the present work is the analysis of the optimal error
estimates for the present algorithm. Due to its simplicity of scheme construction, it can
be generalized to even higher-order accuracy schemes for more complicated interfaces
related to time and space. Several numerical experiments have also been conducted to
demonstrate the computational stability and effectiveness of the present algorithm. In the
next step we will be concerned with some moving interface problems for more compli-
cated fluid models.
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