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Abstract
The key objective of this paper is to study the imprecise biological complexities in the
interaction of two species pertaining to harvesting threshold. It is explained by taking
the prey–predator model with imprecise biological parameters and fractional order
generalized Hukuhara (fgH) differentiability. In this vain, different possible systems of
the model are constructed, according to the increasing and decreasing behavior of
population growth. Feasibility and stability analyses of equilibrium points of the
stated models are also discussed by means of variational matrix with Routh–Hurwitz
conditions. In addition, the numerical elaborations are carried out by taking
parametric expansion of fuzzy fractional Laplace transform (FFLT). This significantly
helps the researchers in using a novel approach to analyze the constant solutions of
the dynamical systems in the presence of fractional index. This would allow the
avoidance of any intricacy that occurs while solving fractional order derivatives.
Furthermore, this attempt also provides numerical and pictorial results, obtained
through some well-known methods, namely fifth-forth Runge–Kutta method (FFRK),
Grunwald–Letnikov’s definition (GL) and Adams–Bashforth method (ABM) that are
deemed appropriate to scrutinize the dynamics of the system of equations.

Keywords: Fractional generalized Hukuhara differentiable; Routh–Hurwitz
condition; Triangular fuzzy number; Fuzzy fractional Laplace transform; Stability
analysis

1 Introduction
There has been considerable work done by researchers in associating real ecological situ-
ations with mathematical models to make it palpable. The model for population growth of
biological species, named the Lotka–Volterra equation, played an important role in math-
ematical biology [1, 2]. These equations, with interspecific competition, have been con-
sidered to be a prerequisite for those which are associated with biology. These equations
also aid the perceptions about the outcomes of competitive interactions between differ-
ent species [3–6]. Diversity of factors, such as environmental change, consumer-resource
interactions, and disease, not covered in the model can affect the upshot of competitive in-
teractions by affecting the dynamics of the respective populations. In theoretical ecology,
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many researchers have exhibited their models with exactly known biological parameters:
however, in reality, the values of all parameters cannot be known accurately for various
reasons like the lack of data, scarcity of information, oversight in the measurement oper-
ation and determining the initial conditions, etc. In order to overcome these limitations,
these models are deliberated with imprecise parameters to produce more realistic and fa-
vorable results. However, there are numerous ways to deal with models with imprecision
in parameters. Fuzzy theory is introduced to be utilized to a great extent. In this theory,
the parameters are replaced by fuzzy numbers or fuzzy functions that handle the impre-
cision. Despite of being very challenging, numerous remarkable innovations have caught
the sight of many researchers. For instance, Pal et al. [7] proposed three species prey–
predator harvesting model and used the logical hybridizing of the fuzzy numbers to derive
optimal equilibrium points and harvesting efforts. Nounou et al. [8] illustrated glycolytic-
glycogenolytic pathway model, purine metabolism pathway model, and a genetic pathway
using fuzzy systems strategy and developed model-free nonlinear intervention strategies.
Paul et al. [9] discussed the fuzzy quota harvesting of a single species Lotka–Volterra equa-
tion using generalized Hukuhara differentiability. Thus, many authors have utilized this
concept for modeling in mathematical biology [10–14].

Since the last decade, the phenomena of fractional calculus in modeling different as-
pects of real world have been widely increasing. For its nonlocal properties, this theory
has provided an exceptional tool in the interest of the scientific community. Khan et al.
[15] discussed a system of nonlinear fractional differential equations with imprecision and
performed Grunwald–Letnikov’s definition for the analysis. Kumar et al. [16] did an em-
pirical study for hyperthermia treatment therapy by using time fractional dual-phase-lag
bioheat transfer model. Meng et al. [17] described the efficiency of the variable order frac-
tional calculus for the prediction of the compression deformation of amorphous glassy
polymers. Singh [18] studied the dynamics of the rumor spreading in a social network
by means of Atangana–Baleanu derivative of non-integer order. He analyzed the effect
of the fractional order on various human behaviors such as ignorant, spreading, and sti-
fles. Thus, applications of heterogeneous fractional based equations, for instance, linear
and nonlinear fractional ordinary and partial differential equations, fuzzy fractional dif-
ferential equations, a system of fractional equations etc., greatly exist in various scientific
disciplines [19–31].

Although some attempts have already been made [7, 10–14], in this endeavor we car-
ried out the investigations with some new inputs and concepts, which brings a novelty in
this framework and provides appropriate applications. The key elements are described as
follows:

• The model is structured with the concept of fgH-differentiability.
• Elaborate conditions for the harvesting threshold affecting the population dynamics

of both species are given.
• The pioneering numerical illustrations of equilibrium points in the presence of

fractional index are incorporated.
• Innovatively, parametric expansion of fuzzy fractional Laplace transform is explained

to deal with the fractional order derivatives.
• It also contains numerical study of different techniques for solving fuzzy fractional

dynamical models.
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The model is classified with increasing and decreasing behavior of population growth
of the species, which may transpire due to the climate change, with the help of fgH-
differentiability [31–33]. This notion clearly describes all the possible cases of differen-
tiability of the fuzzy functions by breaking it into multiple systems of equations, where
each system elaborates a different scenario. These governing systems, which are advan-
tageous to be associated with the dynamics of any species, are taken into account. It also
has the capability to measure the linguistic phrases that are widely used for explaining any
imprecise attribute, e.g., a minor growth, very strong carrying capacity, etc.: whereas the
fractional derivative is substantially beneficial to scrutinizing the gradual rate of change in
per capita growth by detecting each slight change of the dynamical system. Moreover, the
significance of our model on including fractional and fuzzy perceptions with harvesting
threshold can be easily understood by considering a very common paradigm of ecological
study, i.e., the dynamics of caribou and wolf. If we take the example of Arctic people, they
are dependent on caribou for food, clothing, and shelter, so the hunting of caribou takes
place widely in this region. Since caribou’s body composition varies highly with season, un-
certainty occurs in their intrinsic growth or carrying capacity as the weather goes through
uncertain variations. Analogously, due to many reasons such as overhunting by humans,
catching bloodsucking diseases, or mating season, their population density possesses ei-
ther increasing or decreasing patterns. On the other hand, the wolves, which are hunted
by humans to save their livestock or for draught or security purposes in army in some re-
gions, are considered as predator. Their population density also varies due to nutritional
stress, diseases, and parasites or any other environmental change. It is widely known that
wolves become more active in autumn–spring season, therefore their intrinsic body also
alters within a year. So, it is more suitable to define the parameters with uncertain values,
which explains their level of increase or decrease, accordingly. As a consequence of the
aforementioned uncertainties, a minor change within a system gradually leads to major
change that may cause positive or negative impact on a body. Thus, this fractional rate
of change further remarkably discusses these minor changes along with the fuzziness oc-
curring within the body, instead of directly calculating a whole change. Moreover, to cope
with the fractional operator, we implement the parametric expansion of fuzzy fractional
Laplace transform [31, 34, 35]. The expansion of fractional Laplace transform greatly con-
verts the fractional order derivative into the integer order, which can be further scruti-
nized easily using any appropriate numerical-analytical methods. By means of variational
matrices in conjunction with Routh–Hurwitz conditions [36, 37], the analysis of stabil-
ity of equilibrium solutions is illustrated. Some equilibrium points with fractional index
are also obtained to further study the historical state of constant solutions. Additionally,
we explore a comparative analysis between FFRK, Grunwald–Letnikov’s definition (GL)
[15], and Adams–Bashforth method (ABM) [38]. These techniques are widely known ap-
proximators to fractional and integer order differential equations. These assessments are
examined on some illustrative examples and lucratively depicted increase or decrease in
the populations, phase trajectories, and limit cycles etc., of the systems.

Furthermore, the remaining structure of the paper is organized as follows. Detailed dis-
cussion on modeling of the prey–predator model using fgH-differentiability is described
in Sect. 2 and existence of equilibrium points is elaborated in Sect. 3. The stability analysis
for each equilibrium point along with the conditions for the harvesting parameter is given
in Sect. 4. Section 5 contains the implementation of FFLT, some numerical examples, and
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graphical deliberations, using FFRK, GL, and ABM methods. Finally, Sect. 6 concludes the
major findings of this work.

2 Prey–predator model formulation
Consider the following prey–predator model:

CDσ
t x(t) = x(t)

(
r1 –

b11

k1
x(t) – b12y(t) – q1E

)
,

CDσ
t y(t) = y(t)

(
r2 –

b22

k2
y(t) + b21x(t) – q2E

)
,

(1)

where CDσ
t represents Caputo-type fractional-order derivative for 0 < σ ≤ 1, x(t) and y(t)

represent the population density of prey and predator with the fractional variation in time,
respectively. In addition, ri, ki, bij, and qi for i, j = 1, 2 are all positive constants such that
ri are the intrinsic growth rates, ki are the carrying capacities, bij for i = j are the coef-
ficients of interspecific competition, bij for i �= j are the extents to which the availability
of jth species affects the growth of ith species, qi are the catchability coefficients of both
species. Furthermore, with the assumption that prey and predator are highly demanding
species, E is considered as the harvesting threshold of individuals over time for both the
species. More often, environmental or climate changes may induce imprecise upshots in
the population dynamics of the species. Therefore, taking the population of both species
in a crisp sense is not of interest nowadays. For instance, the carrying capacity k of any
species defines the maximum population of that species sustained by the environment.
After a time lag, it may slightly overshoot or undershoot due to the fluctuations in envi-
ronmental resources, but does not remain constant. Similarly, with the other parameters,
they are greatly affected by the encircling ecology, which itself is an imprecise context.
Hence, restructuring system (1), by considering x(t) and y(t) to be non-negative fuzzy
functions and all the parameters as fuzzy numbers except q1, q2, and E, the above system
turns into

CDσ
t x̃(t) = x̃(t)

(
r̃1 –

b̃11

k̃1
x̃(t) – b̃12ỹ(t) – q1E

)
,

CDσ
t ỹ(t) = ỹ(t)

(
r̃2 –

b̃22

k̃2
ỹ(t) + b̃21x̃(t) – q2E

)
,

(2)

with the initial conditions x̃(t0) = x̃0 and ỹ(t0) = ỹ0. From the properties of fuzzy calcu-
lus [31, 33], fuzzy functions and parameters can be represented in α-levels as [x̃(t)]α =
[xl(t;α), xu(t;α)], [ỹ(t)]α = [yl(t;α), yu(t;α)], [r̃i]α = [ril(α), riu(α)], [b̃ij]α = [bijl(α), biju(α)],
[k̃i]α = [kil(α), kiu(α)], with fuzzy initial conditions [x̃0]α = [x0l(α), x0u(α)] and [ỹ0]α =
[y0l(α), y0u(α)], for all α ∈ [0, 1] and i, j = 1, 2. It is well known that (ΛF , D) postulates a
complete metric space, where ΛF is the fuzzy space and D symbolizes the Hausdorff met-
ric [15]. Since the right-hand side of Eq. (2) is continuous, system (2) satisfies the following
theorem of Lipschitz condition, which concludes the stability and uniqueness of the sys-
tem.
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Theorem 2.1 Let f̃ be a fuzzy function defined as f̃ : � → ΛF , then f̃ is Lipschitz continu-
ous if there exists a real constant L > 0 such that, for all x̃ and ỹ in ΛF ,

D
(
f̃ (x̃), f̃ (ỹ)

) ≤ LD(x̃, ỹ).

The detailed proof of the theorem is found in many research papers [39, 40].
Moreover, using the concept of fgH-differentiability [31–33] and considering all the pos-

sible cases of fgH-differentiability of x̃(t) and ỹ(t), fuzzy model (2) can be further expanded
as, for all α ∈ [0, 1],

(a) If both x̃(t) and ỹ(t) are (i)-fgH-differentiable, then

CDσ
t xl(t;α) = xl(t;α)

(
r1l(α) –

b11u(α)
k1u(α)

xu(t;α) – b12u(α)yu(t;α) – q1E
)

,

CDσ
t xu(t;α) = xu(t;α)

(
r1u(α) –

b11l(α)
k1l(α)

xl(t;α) – b12l(α)yl(t;α) – q1E
)

,

CDσ
t yl(t;α) = yl(t;α)

(
r2l(α) –

b22u(α)
k2u(α)

yu(t;α) + b21l(α)xl(t;α) – q2E
)

,

CDσ
t yu(t;α) = yu(t;α)

(
r2u(α) –

b22l(α)
k2l(α)

yl(t;α) + b21u(α)xu(t;α) – q2E
)

.

(3)

(b) If x̃(t) is (i)-fgH-differentiable and ỹ(t) is (ii)-fgH-differentiable, then

CDσ
t xl(t;α) = xl(t;α)

(
r1l(α) –

b11u(α)
k1u(α)

xu(t;α) – b12u(α)yl(t;α) – q1E
)

,

CDσ
t xu(t;α) = xu(t;α)

(
r1u(α) –

b11l(α)
k1l(α)

xl(t;α) – b12l(α)yu(t;α) – q1E
)

,

CDσ
t yl(t;α) = yu(t;α)

(
r2u(α) –

b22l(α)
k2l(α)

yl(t;α) + b21l(α)xl(t;α) – q2E
)

,

CDσ
t yu(t;α) = yl(t;α)

(
r2l(α) –

b22u(α)
k2u(α)

yu(t;α) + b21u(α)xu(t;α) – q2E
)

.

(4)

(c) If x̃(t) is (ii)-fgH-differentiable and ỹ(t) is (i)-fgH-differentiable, then

CDσ
t xl(t;α) = xu(t;α)

(
r1u(α) –

b11l(α)
k1l(α)

xl(t;α) – b12l(α)yl(t;α) – q1E
)

,

CDσ
t xu(t;α) = xl(t;α)

(
r1l(α) –

b11u(α)
k1u(α)

xu(t;α) – b12u(α)yu(t;α) – q1E
)

,

CDσ
t yl(t;α) = yl(t;α)

(
r2l(α) –

b22u(α)
k2u(α)

yu(t;α) + b21u(α)xu(t;α) – q2E
)

,

CDσ
t yu(t;α) = yu(t;α)

(
r2u(α) –

b22l(α)
k2l(α)

yl(t;α) + b21l(α)xl(t;α) – q2E
)

.

(5)
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(d) If both x̃(t) and ỹ(t) are (ii)-fgH-differentiable, then

CDσ
t xl(t;α) = xu(t;α)

(
r1u(α) –

b11l(α)
k1l(α)

xl(t;α) – b12l(α)yl(t;α) – q1E
)

,

CDσ
t xu(t;α) = xl(t;α)

(
r1l(α) –

b11l(α)
k1l(α)

xl(t;α) – b12l(α)yl(t;α) – q1E
)

,

CDσ
t yl(t;α) = yu(t;α)

(
r2u(α) –

b22l(α)
k2l(α)

yl(t;α) + b21l(α)xl(t;α) – q2E
)

,

CDσ
t yu(t;α) = yl(t;α)

(
r2l(α) –

b22u(α)
k2u(α)

yu(t;α) + b21u(α)xu(t;α) – q2E
)

,

(6)

with the same initial conditions as outlined for system (2).

3 Equilibrium points
In this section, equilibrium points of each fgH-differential system (3)–(6) are illustrated
in conjunction with the feasibility conditions. In view of the fact that equilibrium points
represent the constant solutions of the system, assume CDσ xl(t;α) = 0, CDσ xu(t;α) = 0,
CDσ yl(t;α) = 0, and CDσ yu(t;α) = 0 in systems (3)–(6). On solving the remaining non-
linear equations on the right-hand side, the following equilibrium points for positive func-
tions are attained.

3.1 Trivial equilibrium point
The trivial equilibrium points, (0, 0, 0, 0) are always feasible for each system (3)–(6). Let,
these points be symbolized as, e10(x10l, x10u, y10l, y10u), e20(x20l, x20u, y20l, y20u), e30(x30l, x30u,
y30l, y30u) and e40(x40l, x40u, y40l, y40u) for systems (3)–(6), respectively.

3.2 Axial equilibrium point
Let the axial equilibria be denoted by e11(x11l, x11u, y11l, y11u), e21(x21l, x21u, y21l, y21u),
e31(x31l, x31u, y31l, y31u), and e41(x41l, x41u, y41l, y41u) for systems (3)–(6), respectively. For
the positive functions, each system (3)–(6) produces axial equilibrium point ( k1l(r1u–Eq1)

b11l
,

k1u(r1l–Eq1)
b11u

, 0, 0). This point is feasible if the harvesting threshold satisfies the following
conditions:

E <
r1u

q1
and E <

r1l

q1
, i.e. E < min

(
r1l

q1
,

r1u

q1

)
.

3.3 Coexistence equilibrium point
Assume that e12(x12l, x12u, y12l, y12u), e22(x22l, x22u, y22l, y22u), e32(x32l, x32u, y32l, y32u), and
e42(x42l, x42u, y42l, y42u) represent the coexistence equilibria of systems (3)–(6), respectively,
then

x12l =
k1l(b22lr1u – b12lk2lr2u – Eb22lq1 + Eb12lk2lq2)

b11lb22l + b12lb21lk1lk2l
,

x12u =
k1u(b22ur1l – b12uk2ur2l – Eb22uq1 + Eb12uk2uq2)

b11ub22u + b12ub21uk1uk2u
,

y12l =
k2l(b11lr2u + b21lk1lr1u – Eb11lq2 – Eb21lk1lq1)

b11lb22l + b12lb21lk2lk1l
,
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and

y12u =
k2u(b11ur2l + b21uk1ur1l – Eb11uq2 – Eb21uk1uq1)

b11ub22u + b12ub21uk2uk1u

are coexistence equilibrium points of system (3), and it is feasible if

max

(
b12lk2lr2u – b22lr1u

b12lk2lq2 – b22lq1
,

b12uk2ur2l – b22ur1l

b12uk2uq2 – b22uq1

)

< E < min

(
b12lk2lr2u – b22lr1u

b12lk2lq2 – b22lq1
,

b12uk2ur2l – b22ur1l

b12uk2uq2 – b22uq1

)
; whereas

x22l =
k1l(b22lr1u – b12lk2lr2u – Eb22uq1 + Eb12lk2lq2)

b11lb22u + b12lb21lk1lk2l
,

x22u =
k1u(b22ur1l – b12uk2ur2l – Eb22uq1 + Eb12uk2uq2)

b11ub22u + b12ub21uk1uk2u
,

y22l =
k2l(b11lr2u + b21lk1lr1u – Eb11lq2 – Eb21lk1lq1)

b11lb22u + b12lb21lk2lk1l
,

and

y22u =
k2u(b11ur2l + b21uk1ur1l – Eb11uq2 – Eb21uk1uq1)

b11ub22u + b12ub21uk2uk1u

are coexistence equilibrium points of system (4), and it is feasible if

max

(
b12lk2lr2u – b22lr1u

b12lk2lq2 – b22uq1
,

b12uk2ur2l – b22ur1l

b12uk2uq1 – b11uq2

)

< E < min

(
b21lk1lr1u + b11lr2u

b21lk1lq1 + b11lq2
,

b21uk1ur1l + b11ur2l

b21uk1uq1 + b11uq2

)
.

Similarly,

x32l =
k1l(b22ur1u – b12lk2lr2u – Eb22lq1 + Eb12lk2lq2)

b11lb22u + b12lb21lk1lk2l
,

x32u =
k1u(b22ur1l – b12uk2ur2l – Eb22uq1 + Eb12uk2uq2)

b11ub22u + b12lb21lk1lk2l
,

y32l =
k2l(b11lr2u + b21lk1lr1u – Eb11lq2 – Eb21lk1lq1)

b11lb22u + b12lb21lk2lk1l
,

and

y32u =
k2u(b11ur2l + b21uk1ur1l – Eb11uq2 – Eb21uk1uq1)

b11ub22u + b12ub21uk2uk1u

are of system (5), and it is feasible if

max

(
b12uk2ur2l – b22ur1l

b12uk2uq2 – b22uq1
,

b12lk2lr2u – b22ur1u

b12lk2lq2 – b22lq1

)

< E < min

(
b21lk1lr1u + b11lr2u

b21lk1lq1 + b11lq2
,

b21uk1ur1l + b11ur2l

b21uk1uq1 + b11uq2

)
.
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In addition,

x42l =
k2u(b11ur2l + b21uk1ur1l – Eb11uq2 – Eb21uk1uq1)

b11ub22u + b12ub21uk1uk2u
,

x42u =
k1l(b11lr2u + b21lk1lr1u – Eb11lq2 – Eb21lk1lq1)

b11lb22u + b12lb21lk1lk2l
,

y42l =
k1u(b22ur1l – b12uk2ur2l – Eb22uk1uq1 + Eb12uk1uk2uq2)

b11lb22u + b12lb21lk2lk1l
,

and

y42u =
k1l(b22ur1u – b12lk2lr2u – Eb22uq1 + Eb12lk2lq2)

b11lb22u + b12lb21lk2lk1l

are of system (6), and it is feasible if

E > max

(
b12lk1lk2lr2u – b22lk1lr1u

b12lk1lk2lq2 – b22lk1lq1
,

b12uk1uk2ur2l – b22uk1ur1l

b12uk1uk2uq2 – b22uk1uq1
,

b21lk2lk1lr1u – b11lk2lr2u

b21lk2lk1lq1 – b11lk2lq2
,

b21uk2uk1ur1l – b11uk2ur2l

b21uk2uk1uq1 – b11uk2uq2

)
.

4 Stability analysis
In this section, further classification of the equilibrium points is done with respect to the
local stability by constructing variational matrix at each equilibrium point and then calcu-
lating eigenvalues λ in conjunction with Routh–Hurwitz conditions [36, 37]. Accordingly,
if all the calculated eigenvalues λj, (j = 1, 2, 3, 4), for an equilibrium point are negative real
numbers, then the point is said to be stable or asymptotically stable. On the other hand, if
there exists at least one positive eigenvalue, then the equilibrium point is considered to be
unstable. Besides, if a pair of purely imaginary eigenvalues is attained with all other nega-
tive real numbers, then the system might produce limit cycles. Also, in case of character-
istic equation of the variational matrix, Routh–Hurwitz condition states that if the coeffi-
cients βn, (n = 1, 2, 3, 4), fulfill the conditions β1 > 0, β2 > 0, β3 > 0, and β1β2β3 > β2

3 + β2
1β4,

then the equilibrium point is considered to be stable.
Now, consider all the fgH-differential systems (3)–(6), then the variational matrices are

constructed follows:

V1 =

⎛
⎜⎜⎜⎝

r1l – b11u
k1u

xu – b12uyu – q1E – b11u
k1u

xl 0 –b12uxl

– b11l
k1l

xu r1u – b11l
k1l

xl – b12lyl – q1E –b12lxu 0
b21uyl 0 r2l – b22u

k2u
yu + b21uxl – q2E – b22u

k2u
yl

0 b21lyu – b22l
k2l

yu r2u – b22l
k2l

yl + b21lxu – q2E

⎞
⎟⎟⎟⎠ ,

V2 =

⎛
⎜⎜⎜⎝

r1l – b11u
k1u

xu – b12uyl – q1E – b11u
k1u

xl 0 –b12uxl

– b11l
k1l

xu r1u – b11l
k1l

xl – b12lyu – q1E –b12lxu 0
b21uyu 0 – b22u

k2u
yu r2l – b22u

k2u
yl + b21uxl – q2E

0 b21lyl r2u – b22l
k2l

yu + b21lxu – q2E – b22l
k2l

yl

⎞
⎟⎟⎟⎠ ,

V3 =

⎛
⎜⎜⎜⎝

– b11u
k1u

xu r1l – b11u
k1u

xl – b12uyu – q1E 0 –b12uxu

r1u – b11l
k1l

xu – b12lyl – q1E – b11l
k1l

xl –b12lxl 0
b21uyl 0 r2l – b22u

k2u
yu + b21uxl – q2E – b22u

k2u
yl

0 b21lyu – b22l
k2l

yu r2u – b22l
k2l

yl + b21lxu – q2E

⎞
⎟⎟⎟⎠ ,



Khan et al. Advances in Difference Equations        (2019) 2019:405 Page 9 of 34

and

V4 =

⎛
⎜⎜⎜⎝

– b11u
k1u

xu r1l – b11u
k1u

xl – b12uyu – q1E 0 –b12uxu

r1u – b11l
k1l

xu – b12lyl – q1E – b11l
k1l

xl –b12lxl 0
b21uyu 0 – b22u

k2u
yu r2l – b22u

k2u
yl + b21uxl – q2E

0 b21lyl r2u – b22l
k2l

yu + b21lxu – q2E – b22l
k2l

yl

⎞
⎟⎟⎟⎠ .

The stability analysis of each aforementioned equilibrium is elaborated sequentially in
the following section, pertaining to the harvesting parameter E.

4.1 Eigenvalues of variational matrices
4.1.1 Trivial equilibrium points
Calculating V1, V2, V3, and V4 at the corresponding trivial equilibrium points of the re-
spective systems, the following eigenvalues are attained, respectively:

λ1(e10) = r1l – q1E, λ2(e10) = r1u – q1E,

λ3(e10) = r2l – q2E, λ4(e10) = r2u – q2E,

λ1(e20) =
√

(r2l – q2E)(r2u – q2E), λ2(e20) = r1l – q1E, λ3(e20) = r1u – q1E,

λ4(e20) = –
√

(r2l – q2E)(r2u – q2E),

λ1(e30) = –
√

(r1l – q1E)(r1u – q1E), λ2(e30) = r2l – q2E, λ3(e30) = r2u – q2E,

λ4(e30) =
√

(r1l – q1E)(r1u – q1E),

and

λ1(e40) = –
√

(r1l – q1E)(r1u – q1E), λ2(e40) = –
√

(r2l – q2E)(r2u – q2E),

λ3(e40) =
√

(r1l – q1E)(r1u – q1E), λ4(e40) =
√

(r2l – q2E)(r2u – q2E).

4.1.2 Axial equilibrium points
The eigenvalues of V1(e11) for system (3) are obtained as follows:

λ1(e11) = –
√

(r1l – q1E)(r1u – q1E),

λ2(e11) = –
b11u(r2l – q2E) + b21uk1u(r1l – q1E)

b11u
,

λ3(e11) =
√

(r1l – q1E)(r1u – q1E), λ4(e11) = –
b11l(r2u – q2E) + b21lk1l(r1u – q1E)

b11l
.

From V2(e21) of system (4), we get the following characteristic equation:

λ4 + β2λ
2 + β4 = 0,

where

β1 = 0,

β2 = –
(

b11lk1u(r1l – q1E)
k1lb11u

)(
b11uk1l(r1u – q1E)

k1ub11l

)(
r2l – q2E +

b21lk1u(r1l – q1E)
k1lb11u

)

×
(

r2u – q2E +
b21lk1l(r1u – q1E)

k1ub11l

)
,
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β3 = 0,

β4 =
(

b11lk1u(r1l – q1E)
k1lb11u

)(
b11uk1l(r1u – q1E)

k1ub11l

)(
r2l – q2E +

b21lk1u(r1l – q1E)
k1lb11u

)

×
(

r2u – q2E +
b21lk1l(r1u – q1E)

k1ub11l

)
.

For system (5), calculating eigenvalues from V3(e31) at e31, we get

λ1(e31) = –
(

b11uk1l(r1u – q1E)
k1ub11l

)
, λ2(e31) = –

(
b11lk1u(r1l – q1E)

k1lb11u

)
,

λ3(e31) =
b11l(r2l – q2E) + b21uk1l(r1u – q1E)

b11l
,

λ4(e31) =
b11u(r2u – q2E) + b21lk1u(r1l – q1E)

b11u

and for system (6), the characteristic equation obtained from V4(e41) is

λ4 + β1λ
3 + β2λ

2 + β3λ + β4 = 0,

where

β1 =
b11lk1l(q1E – r1u)

k1ub11l
+

b11lk1u(q1E – r1l)
k1lb11u

,

β2 =
(

b11lk1u(r1l – q1E)
k1lb11u

)(
b11uk1l(r1u – q1E)

k1ub11l

)

–
(

r2l – q2E +
b21uk1u(r1l – q1E)

b11u

)(
r2u – q2E +

b21lk1l(r1u – q1E)
b11l

)
,

β3 =
(

b11lk1l(q1E – r1u)
k1ub11l

+
b11lk1u(q1E – r1l)

k1lb11u

)(
r2l – q2E +

b21uk1u(r1l – q1E)
b11u

)

×
(

r2u – q2E +
b21lk1l(r1u – q1E)

b11l

)
,

β4 =
(

b11lk1l(r1u – q1E)
k1ub11l

+
b11lk1u(r1l – q1E)

k1lb11u

)(
r2l – q2E +

b21uk1u(r1l – q1E)
b11u

)

×
(

r2u – q2E +
b21lk1l(r1u – q1E)

b11l

)
.

4.1.3 Coexistence equilibrium points
Furthermore, on simplifying V1(e12) for system (3), we get the characteristic equation

λ4 + β2λ
2 + β4 = 0,

where

β1 = 0,

β2 = –
(

b11lb11ux12lx12u

k1lk1u
– b21ub12lx12uy12l +

b22lb22uy12ly12u

k2lk2u
– b21lb12uy12ux12l

)
,
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β3 = 0,

β4 = x12lx12uy12ly12u

(
b11ub22u

k2u
+ b21ub12u

)(
b22lb11l

k1lk1l
+ b21lb12l

)
.

For system (4), the characteristic equation obtained from V2(e22) is

λ4 + β1λ
3 + β2λ

2 + β3λ + β4 = 0,

where

β1 =
b22uy22l

k2u
+

b22ly22u

k2l
,

β2 =
b22ub22ly22ly22u

k2uk2l
–

b11ub11lx22lx22u

k1uk1l
,

β3 =
(

b11lx22ly22lx22u

k1l

)(
b22ub11u

k1uk2u
+ b12ub21u

)

+
(

b11ux22ly22ux22u

k1u

)(
b22lb11l

k1lk2l
+ b12lb21l

)
,

β4 = –
b11ux22l

k1u

(
b11lb22ub22lx22uy22ly22u

k1uk2uk2l
+

b12lb21lb22ux22uy22uy22l

k2u

)

– b12ux22l

(
b11lb21ub22lx22uy22ly22u

k1uk2l
+ b12lb21lb21ux22uy22uy22l

)
.

The characteristic equation for system (5) obtained from V3(e32) is

λ4 + β1λ
3 + β2λ

2 + β3λ + β4 = 0,

where

β1 =
b11ux32l

k1u
+

b11lx32u

k2l
,

β2 =
b11ub11lx32lx32u

k1uk1l
–

b22ub22ly32ly32u

k2uk2l
,

β3 =
(

b22lx32ly32lx32u

k2l

)(
b22ub11u

k1uk2u
+ b12ub21u

)

+
(

b22ux32ly32lx32u

k2u

)(
b22lb11l

k1lk2l
+ b12lb21l

)
,

β4 = –
b11ub22ux32lx32uy32ly32u

k1uk2u

(
b22lb11l

k1lk2l
+ b12lb21l

)

– b12ux32l

(
b11lx32u

k1l
b21uy32l

b22ly32u

k2l
+ b12lb21lb21ux32uy32uy32l

)

and the characteristic equation for system (6), generated from V4(e42), is

λ4 + β1λ
3 + β2λ

2 + β3λ + β4 = 0,
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where

β1 = –
(

b11ux42l

k1u
+

b11lx42u

k1l
+

b22uy42l

k2u
+

b22uy42u

k2u

)
,

β2 =
b11ux42l

k1u

b11lx42u

k1l
+

b11lx42u

k1l

b22uy42l

k2u
+

b22uy42l

k2u

b22ly42u

k2u

+
b11ux42l

k1u

b22uy42l

k2u
– b12ux42lb12uy42l

× b11ux42l

k1u

b22ly42u

k2l
+

b11lx42u

k1l

b22ly42u

k2l
+ b12lx42ub12ly42u,

β3 =
b11ux42l

k1u

b11lx42u

k1l

b22uy42l

k2u
+

b11lx42u

k1l
b12ux42lb12uy42l

–
b11ux42l

k1u

(
b12lx42ub12ly42u +

b11lx42u

k1l

b22ly42u

k2l

)

–
b11ux42l

k1u

b22ly42u

k2l

b22uy42l

k2u
– b12ux42lb12uy42l

b22ly42u

k2l

–
b11lx42u

k1l

b22ly42u

k2l

b22uy42l

k2u
–

b22uy42l

k2u
b12lx42ub12ly42u,

β4 =
b11ux42l

k1u

(
b11lx42u

k1l

b22ly42u

k2l

b22uy42l

k2u
–

b22uy42l

k2u
b12lx42ub12ly42u

)

+ b12ux42lb12uy42l

(
b11lx42u

k1l

b22ly42u

k2l
– b12lx42ub12ly42u

)
.

4.2 Stability conditions
From the above mathematical discussion, we deduce the following results.

Theorem 4.1
(i) It can be clearly noticed that λi(e20) > 0 for i = 1, 2, 3, λi(e30) > 0 for i = 2, 3, 4, and

λi(e40) > 0 for i = 3, 4. Thus, from the Routh–Hurwitz condition, e20, e30, and e40 are
unstable. The trivial equilibrium point e10 for system (3) is stable, i.e., λi(e10) < 0 for
i = 0, 1, 2, 3, 4 only if

E >
r1l

q1
, E >

r1u

q1
, E >

r2l

q2
, E >

r2u

q2
.

Hence, e10 is locally asymptotically stable if E > max( r1l
q1

, r1u
q1

, r2l
q2

, r2u
q2

).
(ii) The axial equilibrium point e11 of system (3) shows instability in view of the fact that

λ3(e11) > 0, λ1(e11) < 0, λ2(e11) < 0, and λ4(e11) < 0. Additionally, β1 = 0, β3 = 0 for
the axial equilibrium point e21, hence from the Routh–Hurwitz condition e21 is also
not stable. On the other hand, e31 becomes stable, i.e., λi(e31) < 0 for i = 3, 4, only if

E >
b11lr2l + b21uk1lr1u

q2b11l + q1b21lk1l
, E >

b11ur2u + b21lk1ur1l

q2b11u + q1b21lk1u
,

E >
r1l

q1
, E >

r1u

q1
.
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Hence, e31 is locally asymptotically stable if

E > max

(
b11lr2l + b21uk1lr1u

q2b11l + q1b21lk1l
,

b11ur2u + b21lk1ur1l

q2b11u + q1b21lk1u
,

r1l

q1
,

r1u

q1

)
.

(iii) Correspondingly, an axial equilibrium point e41 for system (6) is locally
asymptotically stable, i.e., βi(e41) > 0 for i = 0, 1, 2, 3, 4, only if

b11lk1l(q1E – r1u)
k1ub11l

+
b11lk1u(q1E – r1l)

k1lb11u
> 0,

(
b11lk1u(r1l – q1E)

k1lb11u

)(
b11uk1l(r1u – q1E)

k1ub11l

)

–
(

r2l – q2E +
b21uk1u(r1l – q1E)

b11u

)(
r2u – q2E +

b21lk1l(r1u – q1E)
b11l

)
> 0,

(
b11lk1l(q1E – r1u)

k1ub11l
+

b11lk1u(q1E – r1l)
k1lb11u

)(
r2l – q2E +

b21uk1u(r1l – q1E)
b11u

)

×
(

r2u – q2E +
b21lk1l(r1u – q1E)

b11l

)
> 0,

(
b11lk1l(r1u – q1E)

k1ub11l
+

b11lk1u(r1l – q1E)
k1lb11u

)(
r2l – q2E +

b21uk1u(r1l – q1E)
b11u

)

×
(

r2u – q2E +
b21lk1l(r1u – q1E)

b11l

)
> 0,

where, after some manipulation, expressions for E can be established.
(iv) Evidently, the coexistence equilibrium point e12 is not stable in view of the fact that

β1 = 0, β3 = 0 of the corresponding characteristic equation. In the same way, e22, e32,
and e42 are unstable given that β4(e22) < 0, β4(e32) < 0, and β1(e42) < 0, respectively.

5 Methodological discussion
5.1 Implementation of fuzzy fractional Laplace transform
To start with, the Caputo-type fractional operator on the left-hand side of each system (3)–
(6) is approximated by using fuzzy fractional Laplace transform [31, 34, 35]. Let L denote
FFLT, then FFLT of Caputo-type fractional derivative of order 0 < σ ≤ 1 of the functions
x̃(t) and ỹ(t) is expanded as follows:

L
[CDσ

t x̃(t)
]

= pσ X(p)Θpσ–1x̃(0) (7)

if x̃(t) is (i)-fgH-differentiable and

L
[CDσ

t x̃(t)
]

= –pσ–1x(0)Θ
(
–pσ X(p)

)
(8)

if x̃(t) is (ii)-fgH-differentiable. Similarly,

L
[CDσ

t ỹ(t)
]

= pσ Y(p)Θpσ–1ỹ(0), (9)

L
[CDσ

t ỹ(t)
]

= –pσ–1ỹ(0)Θ
(
–pσ Y(p)

)
(10)
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for (i)-fgH-differentiable and (ii)-fgH-differentiable of ỹ(t), respectively. Following the
method of linearization [34, 35], we get the linearized form of pσ as follows:

pσ ≈ σp1 + (1 – σ )p0 = σp + (1 – σ ). (11)

On substitution of the above expansion of pσ in Eqs. (7)–(10) and employing the inverse
FFLT, systems (3)–(6) convert into integer-order nonlinear differential equations, i.e., if
both x̃(t) and ỹ(t) are (i)-fgH-differentiable, then system (3) turns into

σ
dxl(t;α)

dt
+ (1 – σ )

(
xl(t;α) – xu(0;α)

)

= xl(t;α)
(

r1l(α) –
b11u(α)
k1u(α)

xu(t;α) – b12u(α)yu(t;α) – q1E
)

,

σ
dxu(t;α)

dt
+ (1 – σ )

(
xu(t;α) – xl(0;α)

)

= xu(t;α)
(

r1u(α) –
b11l(α)
k1l(α)

xl(t;α) – b12l(α)yl(t;α) – q1E
)

,

σ
dyl(t;α)

dt
+ (1 – σ )

(
yl(t;α) – yu(0;α)

)

= yl(t;α)
(

r2l(α) –
b22u(α)
k2u(α)

yu(t;α) + b21l(α)xl(t;α) – q2E
)

,

σ
dyu(t;α)

dt
+ (1 – σ )

(
yu(t;α) – yl(0;α)

)

= yu(t;α)
(

r2u(α) –
b22l(α)
k2l(α)

yl(t;α) + b21u(α)xu(t;α) – q2E
)

(12)

and if x̃(t) is (i)-fgH-differentiable and ỹ(t) is (ii)-fgH-differentiable, then system (4)
changes into

σ
dxl(t;α)

dt
+ (1 – σ )

(
xl(t;α) – xu(0;α)

)

= xl(t;α)
(

r1l(α) –
b11u(α)
k1u(α)

xu(t;α) – b12u(α)yl(t;α) – q1E
)

,

σ
dxu(t;α)

dt
+ (1 – σ )

(
xu(t;α) – xl(0;α)

)

= xu(t;α)
(

r1u(α) –
b11l(α)
k1l(α)

xl(t;α) – b12l(α)yu(t;α) – q1E
)

,

σ
dyl(t;α)

dt
+ (1 – σ )

(
yu(t;α) – yu(0;α)

)

= yu(t;α)
(

r2u(α) –
b22l(α)
k2l(α)

yl(t;α) + b21u(α)xu(t;α) – q2E
)

,

σ
dyu(t;α)

dt
+ (1 – σ )

(
yl(t;α) – yl(0;α)

)

= yl(t;α)
(

r2l(α) –
b22u(α)
k2u(α)

yu(t;α) + b21l(α)xl(t;α) – q2E
)

.

(13)
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Similarly, if x̃(t) is (ii)-fgH-differentiable and ỹ(t) is (i)-fgH-differentiable, then system
(5) converts into

σ
dxl(t;α)

dt
+ (1 – σ )

(
xu(t;α) – xu(0;α)

)

= xu(t;α)
(

r1u(α) –
b11l(α)
k1l(α)

xl(t;α) – b12l(α)yl(t;α) – q1E
)

,

σ
dxu(t;α)

dt
+ (1 – σ )

(
xl(t;α) – xl(0;α)

)

= xl(t;α)
(

r1l(α) –
b11u(α)
k1u(α)

xu(t;α) – b12u(α)yu(t;α) – q1E
)

,

σ
dyl(t;α)

dt
+ (1 – σ )

(
yl(t;α) – yu(0;α)

)

= yl(t;α)
(

r2l(α) –
b22u(α)
k2u(α)

yu(t;α) + b21l(α)xu(t;α) – q2E
)

,

σ
dyu(t;α)

dt
+ (1 – σ )

(
yu(t;α) – yl(0;α)

)

= yu(t;α)
(

r2u(α) –
b22l(α)
k2l(α)

yl(t;α) + b21u(α)xl(t;α) – q2E
)

(14)

and if both x̃(t) and ỹ(t) are (ii)-fgH-differentiable, then system (6) becomes

σ
dxl(t;α)

dt
+ (1 – σ )

(
xu(t;α) – xu(0;α)

)

= xu(t;α)
(

r1u(α) –
b11l(α)
k1l(α)

xl(t;α) – b12l(α)yu(t;α) – q1E
)

,

σ
dxu(t;α)

dt
+ (1 – σ )

(
xl(t;α) – xl(0;α)

)

= xl(t;α)
(

r1l(α) –
b11l(α)
k1l(α)

xl(t;α) – b12u(α)yl(t;α) – q1E
)

,

σ
dyl(t;α)

dt
+ (1 – σ )

(
yu(t;α) – yu(0;α)

)

= yu(t;α)
(

r2u(α) –
b22l(α)
k2l(α)

yl(t;α) + b21u(α)xu(t;α) – q2E
)

,

σ
dyu(t;α)

dt
+ (1 – σ )

(
yl(t;α) – yl(0;α)

)

= yl(t;α)
(

r2l(α) –
b22u(α)
k2u(α)

yu(t;α) + b21l(α)xl(t;α) – q2E
)

(15)

with the same initial conditions as for system (2).

5.2 Numerical illustration
Considering time t in years and the population of species in billions, the experiment is car-
ried out for some assumed numerical values of the parameters. The numerical equilibrium
points of systems (12)–(15) for fractional indices σ = 0.5, 0.75, 0.95, 1, fuzzy parameter α =
0.5, ecological parameters q1 = 0.2, q2 = 0.5, E = 11, r̃1 = (2.5, 2.6, 2.7), r̃2 = (3, 3.3, 3.5), b̃11 =
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(0.2, 0.3, 0.6), b̃12 = (0.3, 0.6, 0.7), b̃21 = (0.1, 0.3, 0.5), b̃22 = (0.6, 0.8, 0.9), k̃1 = (50, 55, 60),
k̃2 = (30, 35, 40), and initial conditions x̃0 = (0.3, 0.5, 0.9) and ỹ0 = (0.4, 0.5, 0.7) are shown
in Table 1. It interprets the constant population densities of prey and predator with re-
spect to fractional variation in time. The elaborations include the perceptions of fgH-
differentiability, i.e., fractional variation in either increasing or decreasing growth rate
patterns of the species. For instance, some environmental factors or economical activities
that affect the survival of the species may precipitously cause the growth to be either in in-
creasing or decreasing motion. Furthermore, Tables 2–5 ratify stability and originality of

Table 1 Numerical equilibrium points for different values of the fractional index σ and α = 0.5

σ = 0.5 σ = 0.75 σ = 0.95 σ = 1

System (12) (19.8, 8.3, 0, 0) (45.5, 15.7, 0, 0) (84.9, 5.2, 0, 0.4) (0, 0, 0, 0)
(1.4, 1.8, 0.1, 0.1) (10.8, 16.9, 0.3, 0) (84.3, 38.5, 0, 0) (94.5, 44.7, 0, 0)
(0, 7.9, 0, 0) (11.1, 3.8, 0.4, 0.1) (11.8, 5.3, 0.8, 0.4) (11.8, 5.3, 0.9, 0.5)

System (13) (1.6, 1.6, 0.1, 0.1) (8.5, 4.9, 0.1, 0.4) (11.7, 0, 0.5, 0) (0, 0, 0, 0)
(1.1, 14.6, 0.1, 0) (47.5, 14.6, 0, 0) (84.3, 38.5, 0, 0) (94.5, 44.7, 0, 0)
(19.5, 0.9, 0, 0.1) (0, 5.2, 0, 0.5) (11.8, 5.3, 0.4, 0.8) (11.8, 5.3, 0.5, 0.9)

System (14) (0.84, 3.1, 0.1, 0.1) (2.4, 11.4, 0.4, 0) (0, 11.8, 0.8, 0) (0, 0, 0, 0)
(9.01, 2.3, 0.1, 0) (84.7, 38.4, 0, 0) (94.5, 44.7, 0, 0)
(0.4, 30.8, 0, 0.1) (5.2, 11.8, 0.8, 0.3) (5.3, 11.8, 0.9, 0.4)

System (15) (0.9, 2.5, 0.1, 0.2) (8.05, 5.02, 0.1, 0.4) (0, 5.2, 0, 0.9) (0, 0, 0, 0)
(0.6, 16.9, 0.1, 0) (48.7, 14.3, 0, 0) (84.3, 38.5, 0, 0) (94.5, 44.7, 0, 0)
(19.1, 1.7, 0, 0.2) (9.9, 0, 0.2, 0) (11.8, 5.3, 0.4, 0.8) (11.8, 5.3, 0.5, 0.9)

Table 2 Solutions of system (12) with the comparison to GL and ABM for σ = 0.95, α = 0.6

t LFFRK GL [15] ABM [38]

[x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α

0.0 [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800]
0.1 [0.4042, 0.6362] [0.4689, 0.5969] [0.4025, 0.6371] [0.4694, 0.5996] [0.4016, 0.6324] [0.4704, 0.5995]
0.2 [0.3888, 0.6131] [0.4777, 0.6136] [0.3859, 0.6152] [0.4777, 0.6175] [0.3838, 0.6057] [0.4805, 0.6186]
0.3 [0.3738, 0.5907] [0.4863, 0.6300] [0.3701, 0.5944] [0.4855, 0.6347] [0.3667, 0.5799] [0.4903, 0.6375]
0.4 [0.3593, 0.5690] [0.4946, 0.6462] [0.3549, 0.5744] [0.4929, 0.6515] [0.3501, 0.5551] [0.4999, 0.6559]
0.5 [0.3453, 0.5480] [0.5027, 0.6620] [0.3402, 0.5552] [0.4999, 0.6679] [0.3341, 0.5311] [0.5091, 0.6741]
0.6 [0.3317, 0.5277] [0.5106, 0.6776] [0.3262, 0.5366] [0.5068, 0.6841] [0.3187, 0.5081] [0.5181, 0.6918]
0.7 [0.3186, 0.5081] [0.5183, 0.6929] [0.3126, 0.5188] [0.5133, 0.6999] [0.3039, 0.4859] [0.5267, 0.7091]
0.8 [0.3059, 0.4890] [0.5257, 0.7078] [0.2996, 0.5015] [0.5196, 0.7154] [0.2898, 0.4647] [0.5350, 0.7259]
0.9 [0.2937, 0.4707] [0.5329, 0.7224] [0.2869, 0.4849] [0.5257, 0.7306] [0.2762, 0.4443] [0.5431, 0.7422]
1.0 [0.2819, 0.4529] [0.5399, 0.7366] [0.2748, 0.4688] [0.5315, 0.7455] [0.2632, 0.4247] [0.5508, 0.7581]

Table 3 Solutions of system (13) with the comparison to GL and ABM for σ = 0.95, α = 0.6

t LFFRK GL [15] ABM [38]

[x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α

0.0 [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800]
0.1 [0.4064, 0.6329] [0.4774, 0.5884] [0.4048, 0.6337] [0.4789, 0.5898] [0.4042, 0.6284] [0.4802, 0.5897]
0.2 [0.3929, 0.6068] [0.4943, 0.5968] [0.3901, 0.6088] [0.4961, 0.5985] [0.3888, 0.5982] [0.4997, 0.5993]
0.3 [0.3798, 0.5817] [0.5106, 0.6050] [0.3761, 0.5853] [0.5123, 0.6069] [0.3737, 0.5692] [0.5185, 0.6087]
0.4 [0.3670, 0.5575] [0.5265, 0.6132] [0.3625, 0.5628] [0.5278, 0.6151] [0.3590, 0.5415] [0.5367, 0.6181]
0.5 [0.3545, 0.5342] [0.5419, 0.6212] [0.3493, 0.5413] [0.5427, 0.6230] [0.3447, 0.5151] [0.5542, 0.6273]
0.6 [0.3423, 0.5118] [0.5568, 0.6291] [0.3366, 0.5208] [0.5571, 0.6308] [0.3309, 0.4898] [0.5711, 0.6363]
0.7 [0.3304, 0.4903] [0.5712, 0.6369] [0.3243, 0.5009] [0.5709, 0.6384] [0.3175, 0.4657] [0.5873, 0.6451]
0.8 [0.3189, 0.4696] [0.5852, 0.6445] [0.3123, 0.4820] [0.5843, 0.6458] [0.3045, 0.4427] [0.6029, 0.6536]
0.9 [0.3077, 0.4497] [0.5987, 0.6519] [0.3008, 0.4638] [0.5972, 0.6531] [0.2919, 0.4207] [0.6179, 0.6619]
1.0 [0.2968, 0.4307] [0.6117, 0.6591] [0.2896, 0.4462] [0.6097, 0.6602] [0.2799, 0.3998] [0.6322, 0.6701]
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Table 4 Solutions of system (14) with the comparison to GL and ABM for σ = 0.95, α = 0.6

t LFFRK GL [15] ABM [38]

[x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α

0.0 [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800]
0.1 [0.3973, 0.6431] [0.4738, 0.5905] [0.3964, 0.6432] [0.4748, 0.5925] [0.3938, 0.6402] [0.4759, 0.5923]
0.2 [0.3748, 0.6271] [0.4877, 0.6006] [0.3737, 0.6275] [0.4885, 0.6033] [0.3680, 0.6215] [0.4917, 0.6039]
0.3 [0.3526, 0.6121] [0.5015, 0.6101] [0.3517, 0.6128] [0.5017, 0.6133] [0.3426, 0.6040] [0.5075, 0.6151]
0.4 [0.3307, 0.5979] [0.5153, 0.6192] [0.3302, 0.5992] [0.5148, 0.6227] [0.3176, 0.5877] [0.5232, 0.6254]
0.5 [0.3090, 0.5846] [0.5290, 0.6277] [0.3092, 0.5865] [0.5278, 0.6314] [0.2929, 0.5726] [0.5389, 0.6352]
0.6 [0.2876, 0.5723] [0.5428, 0.6357] [0.2884, 0.5747] [0.5406, 0.6396] [0.2685, 0.5588] [0.5546, 0.6442]
0.7 [0.2662, 0.5609] [0.5565, 0.6431] [0.2679, 0.5638] [0.5535, 0.6473] [0.2443, 0.5461] [0.5702, 0.6525]
0.8 [0.2451, 0.5505] [0.5702, 0.6501] [0.2477, 0.5538] [0.5666, 0.6543] [0.2204, 0.5348] [0.5858, 0.6601]
0.9 [0.2241, 0.5410] [0.5839, 0.6564] [0.2277, 0.5446] [0.5791, 0.6608] [0.1966, 0.5247] [0.6014, 0.6669]
1.0 [0.2031, 0.5325] [0.5977, 0.6621] [0.2078, 0.5363] [0.5919, 0.6668] [0.1730, 0.5159] [0.6170, 0.6729]

Table 5 Solutions of system (15) with the comparison to GL and ABM for σ = 0.95, α = 0.6

t LFFRK GL [15] ABM [38]

[x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α [x̃(t)]α [ỹ(t)]α

0.0 [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800] [0.4200, 0.6600] [0.4600, 0.5800]
0.1 [0.3939, 0.6453] [0.4775, 0.5883] [0.3929, 0.6455] [0.4793, 0.5897] [0.3899, 0.6428] [0.4801, 0.5897]
0.2 [0.3682, 0.6315] [0.4949, 0.5962] [0.3670, 0.6318] [0.4971, 0.5978] [0.3603, 0.6266] [0.5001, 0.5989]
0.3 [0.3429, 0.6184] [0.5121, 0.6038] [0.3421, 0.6191] [0.5142, 0.6054] [0.3313, 0.6114] [0.5198, 0.6077]
0.4 [0.3181, 0.6061] [0.5291, 0.6111] [0.3178, 0.6072] [0.5308, 0.6126] [0.3029, 0.5974] [0.5393, 0.6159]
0.5 [0.2936, 0.5947] [0.5459, 0.6178] [0.2942, 0.5962] [0.5472, 0.6193] [0.2750, 0.5844] [0.5586, 0.6237]
0.6 [0.2695, 0.5842] [0.5627, 0.6242] [0.2710, 0.5859] [0.5632, 0.6256] [0.2476, 0.5727] [0.5776, 0.6308]
0.7 [0.2457, 0.5746] [0.5792, 0.6301] [0.2483, 0.5766] [0.5790, 0.6314] [0.2206, 0.5621] [0.5964, 0.6373]
0.8 [0.2222, 0.5659] [0.5956, 0.6354] [0.2259, 0.5680] [0.5946, 0.6368] [0.1939, 0.5527] [0.6149, 0.6431]
0.9 [0.1989, 0.5580] [0.6118, 0.6403] [0.2040, 0.5602] [0.6100, 0.6417] [0.1677, 0.5446] [0.6334, 0.6482]
1.0 [0.1759, 0.5513] [0.6279, 0.6445] [0.1823, 0.5533] [0.6252, 0.6462] [0.1418, 0.5378] [0.6517, 0.6525]

the numerical solutions obtained by utilizing the well-known methods, namely FFRK, GL
[15], and ABM [38]. These solutions are computed, by considering σ = 0.95, α = 0.6, q1 =
0.02, q2 = 0.001, E = 7, r̃1 = (0.001, 0.002, 0.003), r̃2 = (0.009, 0.01, 0.02), b̃11 = (0.2, 0.4, 0.6),
b̃12 = (0.4, 0.42, 0.44), b̃21 = (0.4, 0.42, 0.44), b̃22 = (0.09, 0.1, 0.3), k̃1 = (53, 65, 69), and k̃2 =
(74, 80, 85) with the same initial conditions as defined above. Evidently, the solutions of
systems from GL and ABM substantiate the results achieved from the FFRK method up
to two to three decimal places.

In addition, all the graphical solutions of systems (12)–(15) are acquired by using
the FFRK method of Mathematica 11, taking r̃1 = (2.5, 2.6, 2.7), r̃2 = (3, 3.3, 3.5), b̃11 =
(0.2, 0.3, 0.6), b̃12 = (0.3, 0.6, 0.7), b̃21 = (0.1, 0.3, 0.5), b̃22 = (0.6, 0.8, 0.9), k̃1 = (50, 55, 60),
k̃2 = (30, 35, 40). As the parameters are considered to be triangular fuzzy numbers, we
also depict all the possible values of these parameters graphically in Figs. 1(a)–(d), which
can be assumed in the governing case. Figs 2–5 illustrate the effect of harvesting thresh-
old E on the population growth of x̃(t) and ỹ(t) for some cases of catchability parame-
ters of prey and predator, i.e., q1 and q2 at α = 0.98, σ = 0.998, and t ∈ [0, 40]. It is ob-
served from Figs. 2(a)–(b), plotted for system (12), when q1 = q2, the population of the
predator yl(t;α) undergoes some oscillations when E = 2, 3 and gradually becomes zero
after some time. However, the population of prey xl(t;α) produces a minor curvature,
and after some time it tends to zero when E ≥ 4, which validates the stability condition
E > max( r1l

q1
, r1u

q1
, r2l

q2
, r2u

q2
). In case of q1 > q2 and q1 < q2, as shown in Figs. 2(c)–(d) and 2(e)–
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(a) Estimated values for r̃1 and r̃2 with membership degrees α

(b) Estimated values for k̃1 and k̃2 with membership degrees α

(c) Estimated values for b̃11 and b̃22 with membership degrees α

Figure 1 Triangular fuzzy structures of biological parameters for systems (12)–(15)
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(d) Estimated values for b̃21 and b̃12 with membership degrees α

Figure 1 Continued

(f ), respectively, the trivial stability is found only when E = 5 and oscillatory dynamics
are generated elsewhere. Figs. 3(a)–(d) describe the axial equilibrium points of system
(13), i.e., existence of predator ỹ(t) and extinction of prey x̃(t) when q1 = q2 and q1 > q2.
However, when catchability of prey becomes less than that of predators as presented in
Figs. 3(e)–(f ), oscillations of prey are observed when E ≥ 4. System (14) shows trivial
stability for all the cases of catchability only when E = 5, as portrayed in Figs. 4(a)–(f ),
while unstable for other values of E. Relatedly, Figs. 5(a)–(f ), plotted for system (15), are
also unstable, except for E = 5. From this analysis of harvesting parameters in conjunc-
tion with the catchability of the species, it can be interestingly remarked that the popula-
tion of both the species, x̃(t) and ỹ(t), goes to extinction if the harvesting rate E is greater
than the ratio of logistic growth and catchability coefficients. The population of both the
species, x̃(t) and ỹ(t), becomes stable if the harvesting rate E of both the species is less
than the ratio of imprecise biological parameters r̃1, r̃2, b̃11, b̃12, b̃21, b̃22, k̃1, and k̃2, as α

increases.
In addition to that, we also carried out the existence analysis of the limit cycles of systems

(12)–(15) through the phase planes, pictured in Figs. 6(a)–(d) and 7(a)–(d) for α = 1, q1 =
0.2, q2 = 0.7, E = 8, and at different values of σ . From each curve the existence of the limit
cycles for prey and predator can be clearly interpreted to be in the intervals 3 ≤ x̃∗(t) ≤ 30
and 0.5 ≤ ỹ∗(t) ≤ 10, accordingly, in the time interval t ∈ [0, 10]. Besides, we also induce
the limit cycles of systems (12)–(15) in Figs. 8(a)–(d) for α = 1, q1 = 0.2, q2 = 0.7, and E = 8
for t ∈ [0, 20]. These plots are the novel source of dynamical study of ecological theory, as
they illustratively define the historical behavior of the population growth in an imprecise
environment.

Each system delivers distinctive dynamics of x̃(t) and ỹ(t) with different conditions
of the harvesting parameter. Including a brief comparison between the cases of fgH-
differentiability, it is found that systems (12), (14), and (15) interpret the stability of the
trivial equilibrium point; however, system (13) deduces the stability of axial equilibrium
point.
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(a) xl(t;α), yl(t;α) for q1 = q2 = 1

(b) xu(t;α), yu(t;α) for q1 = q2 = 1

(c) xl(t;α), yl(t;α) for q1 = 1, q2 = 0.5

Figure 2 Solutions of system (12), straight lines for x̃(t) and dotted lines for ỹ(t), for the cases q1 = q2, q1 > q2
and q1 < q2 at α = 0.98, σ = 0.998 and for different values of E
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(d) xu(t;α), yu(t;α) for q1 = 1, q2 = 0.5

(e) xl(t;α), yl(t;α) for q1 = 0.5, q2 = 1

(f ) xu(t;α), yu(t;α) for q1 = 0.5, q2 = 1

Figure 2 Continued
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(a) xl(t;α), yl(t;α) for q1 = q2 = 1

(b) xu(t;α), yu(t;α) for q1 = q2 = 1

(c) xl(t;α), yl(t;α) for q1 = 1, q2 = 0.5

Figure 3 Solutions of system (13), straight lines for x̃(t) and dotted lines for ỹ(t), for the cases q1 = q2, q1 > q2
and q1 < q2 at α = 0.98, σ = 0.998 and for different values of E
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(d) xu(t;α), yu(t;α) for q1 = 1, q2 = 0.5

(e) xl(t;α), yl(t;α) for q1 = 0.5, q2 = 1

(f ) xu(t;α), yu(t;α) for q1 = 0.5, q2 = 1

Figure 3 Continued



Khan et al. Advances in Difference Equations        (2019) 2019:405 Page 24 of 34

(a) xl(t;α), yl(t;α) for q1 = q2 = 1

(b) xu(t;α), yu(t;α) for q1 = q2 = 1.

(c) xl(t;α), yl(t;α) for q1 = 1, q2 = 0.5

Figure 4 Solutions of system (14), straight lines for x̃(t) and dotted lines for ỹ(t), for the cases q1 = q2, q1 > q2
and q1 < q2 at α = 0.98, σ = 0.998 and for different values of E
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(d) xu(t;α), yu(t;α) for q1 = 1, q2 = 0.5

(e) xl(t;α), yl(t;α) for q1 = 0.5, q2 = 1

(f ) xu(t;α), yu(t;α) for q1 = 0.5, q2 = 1.

Figure 4 Continued
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(a) xl(t;α), yl(t;α) for q1 = q2 = 1

(b) xu(t;α), yu(t;α) for q1 = q2 = 1

(c) xl(t;α), yl(t;α) for q1 = 1, q2 = 0.5

Figure 5 Solutions of system (15), straight lines for x̃(t) and dotted lines for ỹ(t), for the cases q1 = q2, q1 > q2
and q1 < q2 at α = 0.98, σ = 0.998 and for different values of E
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(d) xu(t;α), yu(t;α) for q1 = 1, q2 = 0.5

(e) xl(t;α), yl(t;α) for q1 = 0.5, q2 = 1

(f ) xu(t;α), yu(t;α) for q1 = 0.5, q2 = 1

Figure 5 Continued
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(a) Planes of x̃(t) for system (12) (b) Planes of x̃(t) for system (13)

Figure 6 Phase planes for α = 1, q1 = 0.2, q2 = 0.7, t ∈ [0, 10] and E = 8

6 Conclusions
In this paper, an ecological model was discussed in fuzzy environment with fractional
order derivative by using fuzzy fractional Hukuhara differentiability approach. We de-
scribed the two interacting species model with the stability of its equilibrium points by
using the variational matrix Routh–Hurwitz condition. Fuzzy solutions of different fgH-
differentiability cases of fuzzy functions were discussed. Moreover, some theorems were
presented that provide different conditions for harvesting of the species, which would
lead to the stability of the population of prey and predator. To support the demonstra-
tions, graphical and numerical dynamics of prey and predator were represented for the
corresponding systems with the help of fuzzy fractional Laplace transform expansion and
FFRK, GL, and ABM. Consequently, we came up with the following outcomes:

• The imprecision of the environment may cause complexities while studying the
interaction of species.

• Fractional order derivative intriguingly made it easy to locate the historical position
and patterns of each limit cycle of the governing systems.
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(c) Planes of x̃(t) for system (14) (d) Planes of x̃(t) for system (15)

Figure 6 Continued

• The population of both the species, x̃(t) and ỹ(t), goes to extinction if the harvesting
rate E is greater than the ratio of logistic growth and catchability coefficients.

• If the harvesting rate E of both the species is less than the ratio of imprecise biological
parameters, r̃1, r̃2, b̃11, b̃12, b̃21, b̃22, k̃1, and k̃2 increase, as α increases, the population
of both the species, x̃(t) and ỹ(t), becomes stable.

• The phase plane trajectories show a gradual increase in the coexistence intervals of
prey and predator, as the fractional variation in time moves toward the integer order.

Hence, it is concluded that the interaction of the species depends on the imprecise na-
ture of the ecological parameters, mainly the harvesting threshold, when both species un-
dergo economical hunting. Accordingly, the approach is very helpful for the researchers
who are involved in mathematical modeling with imprecision in various fields of science
and engineering. It reveals very realistic results in both mathematical and ecological point
of view. There is still a room for further research in this field, thus, many breakthrough
studies can be explored with fuzzy parameters and fractional order derivative.
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(a) Planes of ỹ(t) for system (12) (b) Planes of ỹ(t) for system (13)

Figure 7 Phase planes for α = 1, q1 = 0.2, q2 = 0.7, t ∈ [0, 10] and E = 8
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(c) Planes of ỹ(t) for system (14) (d) Planes of ỹ(t) for system (15)

Figure 7 Continued
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(a) Trajectories of system (12) for different values of σ

(b) Trajectories of system (13) for different values of σ

(c) Trajectories of system (14) for different values of σ

(d) Trajectories of system (15) for different values of σ

Figure 8 Limit cycles of the prey–predator model for α = 1, q1 = 0.2, q2 = 0.7, t ∈ [0, 20] and E = 8
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