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Abstract
In this article, we discuss a new system of fractional differential equations

Dlu(® +ftu® vit) =z (1), 0<t<1,

DZvD) +gtu® v() =201, 0<t<T,

uO)=u)=u©O=uM=0,  DHuO)=0,  Djlu(l)=bDfulm),
VO =v(1)=v(0)=v()=0,  DPv0)=0,  DF2v(1)=b,052v(my),

wheres;=a; + B, ;€ (1,2], B € (3,41, z:: [0, 1] — [0, +00) is continuous, Dgﬂ and Dgi
are the standard Riemann-Liouville derivatives, n; € (0, 1), b; € (0,1,'%),i=1,2, and
f,g € C([0,1] x R?,R). We establish the existence and uniqueness of solutions for the
problem by a recent fixed point theorem of increasing ¥-(h, e)-concave operators
defined on ordered sets. Furthermore, the results obtained are well proven by means
of a specific example.
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1 Introduction
In this article, we investigate the following system of fractional differential equations:

Dau(t) +f (&, u(®),v(t)) =z1(¢), 0<t<l,

Dgv(t) + g(t, u(®), v(t)) =z(t), O0<t<l,

w0)=u()=u'(0)=/(1)=0,  D'u(0)=0,  DIu(l)=bD5u(n),
W0)=v(1)=v(0)=v(1)=0,  D2w0)=0,  DEu(1) = byD2v(n),

(1.1)

where s; = a; + B, o; € (1,2], B; € (3,4], z; : [0, 1] — [0, +00) is continuous, Dy and Dgi are
the standard Riemann—Liouville derivatives, ; € (0,1), b; € (0,,1™%), i = 1,2, and f,g €
C([0,1] x R%,R). A pair of functions (x,v) € C([0,1]) x C([0,1]) is called a solution of
system (1.1) if it satisfies (1.1). We seek a new method which is a recent fixed point theorem
for ¥ -(h, e)-concave operators to discuss system (1.1).

In the last few decades, fractional problems have attracted wide attention by scholars
because of their wide applications and important positions in biology, physics, chemistry,
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and engineering, see [1-28] and the references therein. In [16], Xu and Dong considered
the following fractional equation:

D (9D () = f(E,u(®)), 0<it<1, 12)

u©0)=u()=u'(0)=u/(1)=0,  Dhu(0)=0,  Dfu(l)=bDhun), '
where « € (1,2], B € (3,4], Dj. and D§+ are the Riemann-Liouville derivatives, b €
(O,nll’%?),f € C([0,1] x [0,+00), [0, +00)). By using Schauder’s fixed point theorem and
the upper and lower solutions method, the existence and uniqueness of solutions were
established. On the other hand, fractional system have been investigated extensively, see
[29-38]. In [33], the authors considered the existence of positive solutions for the follow-
ing fractional system with parameters:

~DijH (@, (DR u(e))) = Af (£, (), (8),  0<t<1,

D2 (¢, (D V(1)) = gt u(®), (D), 0<t<1,

u(0) = u(1) = u'(0) = /(1) = 0, Dl u(0) =0, D u(1) = biDfu(n),
v0) =v(1)=v(0)=v(1)=0,  DPv(0)=0,  Dv(1) = boD}> (1),

(1.3)

where o; € (1,2], B; € (3,4], Dj): and Dgi are the Riemann-Liouville derivatives, n; € (0,1),
b; € (0, nill’i__f{), i=1,2. f,g € C([0,1] x R%,R). The authors applied Guo—Krasnosel’skii’s
fixed point theorem to get various existence results for positive solutions in terms of dif-
ferent values of A and .

In the existing literature, most of the scholars have studied the existence of solutions,
but there is little discussion about the uniqueness. Moreover, the usual methods used are
Guo—Krasnosel’skii’s fixed point theorem, the upper and lower solutions method, mono-
tone iterative method, and fixed index theory. In 2017, the authors [29] used a new method
to study the existence and uniqueness of solutions for the following fractional system:

D*u(t) +f(t,v(t)) =a, O<t<l,
DPv(t) + g(t,u(t)) =b, 0<t<l,
w0)=0,  u(l) = [y pu®)dt,
w0)=0,  v(1)= [y vEvd)dt,

(1.4)

where 1 <o, 8 <2, f,g € C([0,1] x (=00, +00), (=00, +00)), ¢, ¥ € L'[0,1], a, b are con-
stants and D denotes the usual Riemann-Liouville derivatives. The authors gave the exis-
tence and uniqueness of solutions for the coupled system dependent on constants a and
b by using a fixed point theorem of increasing ¥ - (%, e)-concave operators. We found that
the method can resolve some new differential systems and can obtain some good unique
results.

Inspired by the aforementioned works, in this article, based upon a fixed point theorem
of increasing ¥ - (1, e)-concave operators, we aim to establish the existence and uniqueness
of solutions for system (1.1). Our results show that the unique solution exists in a product
set and can be approximated by making an iterative sequence for any initial point in the
product set.
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The paper is organized as follows. In Sect. 2, we propose not only some definitions
and lemmas to be used to prove our main results, but also some useful properties of
Green functions. In Sect. 3, we discuss the existence and uniqueness of solutions to sys-
tem (1.1). Finally, in Sect. 4, a concrete example is given as the application of our main

results.

2 Preliminaries and lemmas
We present here some definitions and related properties of Riemann—Liouville fractional
derivatives and integrals. Some auxiliary results which will be used to prove our main

results are also given.

Definition 2.1 ([39, 40]) The Riemann-Liouville fractional integral of order & > 0 of a

continuous function f : (0, +00) — (—00, +00) is given by

1 t
550 = s [ ¢-9 0 ds,
o () Jo /
provided the right-hand side is pointwise defined on (0, +00).

Definition 2.2 ([39, 40]) The Riemann-Liouville fractional derivative of order & >0 of a

continuous function f : (0, +00) — (—00, +00) is given by

oo L (AN [ e
DEf(0) = F(n_a)( dt) /O (- 51" f(s)ds

where n = [«] + 1, [] denotes the integer part of the number «, provided that the right-

hand side is pointwise defined on (0, +00).
From Lemmas 2.3, 2.5 in [33], we can easily get the following conclusions.

Lemma 2.1 Let s; = ay + B1, o1 € (1,2], B1 € (3,4], m € (0,1), by € (0,m ™). If y, €
C[0, 1], then the following fractional boundary value problem

Dgou(t) +y1(6) =0, 0<t<1,
u(0) =u(1)=4/(0)=u/(1) = 0, (2.1)

DP'u(0)=0,  Dflu(1) = byDf}uln),

has a unique solution

1 1
u(t) = / Gilt,9) / Hy (s, 7Yy (1) d ds,
0 0
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where
P21 - )P 2 [(s— 1) + (B - 2)(1 - t)s],
1 0<t=<s=<1,
Gl(trs) =
FB) 21 -)2[(s - 1) + (B - D(L = 1)s] + (£ =),
0<s<t<l,
(2.2)
bltal—l
Hy(t,8) = hi(t,8) + ————— 1 (n1,9),
1 - ]917]1
_ a1—-1
hi(ts) = 1 [£(1 =s)]r 0<t<s<l,

Flan) |1 -s)]a = (t—s)@71, 0<s<t<l.

Lemma 2.2 Let 55 = ay + By, a3 € (1,2], Bo € (3,4], 12 € (0,1), by € (0,717%2). If y5 €
C[0, 1], then the following fractional boundary value problem

Dgv(t) +y2(0) =0, 0<t<1,
v(0)=v(1) =v(0) =v(1) =0, (2.3)
DE2v0)=0,  DPv(1) = b,Dv(ny),

has a unique solution

1 1
V(t):/0 Gz(t,s)/o Hj(s,t)y2(t)dt ds,
where

12721 = )P 2[(s — 1) + (B> — 2)(1 - 1)s],
1 0<t=<s<],
F(B2) | 221 =922 ((s = ) + (B2 = D(1 = D)s] + (£ = 5)2 7,

0<s<t<l,

Gz(t, S) =

bztotz—l
70[2_1]’12(772:5),

H2(t¢ S) = hZ(t7 S) +
1 - ]927]2

1 [t(1 - s)]27, 0<t<s<l,

To(t,s) =
69) Flog) g1 -s)|2 = (t-s)2), 0<s<t<l.

From Lemmas 2.4, 2.6 in [33], we can easily get the following lemma.

Lemma 2.3 The functions G;(t,s), i = 1,2, defined by (2.2) and (2.4) have the following
properties:
(i) Gi(t,s) is continuous on [0,1] x [0,1] and G;(t,s) > 0 for all (¢,s) € (0,1) x (0,1);
(ii) (Bi = 2)ki()ri(s) < I'(B))Gi(t,s) < Miri(s), (¢,5) € [0,1] x [0,1];
(i) (B: = Dki()ri(s) < T (B)Gilt,s) < Miki(s), (¢,s) € [0,1] x [0, 1];
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where

ki(t) = tP72(1 - 1)%, ri(s) = s2(1 —5)Pi72,

M; =max{B; - L,(B; - 2)°}.

Let (X, || - ||) be a real Banach space with a partial order induced by a cone P C X. For any
%,y € X, the notation x ~ y denotes that there are A > 0 and p > 0 such that Ax <y < ux.
Given & > 0 (i.e, h > 0 and h # 6), we consider a set P, = {x € X|x ~ h}. It is clear that
P, CP.LetecPwith <e<h,wedefine Py, ={xe X |x+eec Py}

Now, we present the definition of ¥ -(/, e)-concave operator and a fixed point theorem

which can be easily used to study some systems of differential equations.

Definition 2.3 ([4]) Suppose that T': P, — X is a given operator which satisfies: for any
x € Py, and & € (0, 1), there exists ¥ (&) > & such that

T(Ex+ (5 -1)e) =W (E)Tx+ (¥(§) - 1)e.
Then T is called a ¥ -(}, e)-concave operator.

Lemma 2.4 ([4]) Assume that T is an increasing ¥-(h,e)-concave operator satisfying
Th € Py and P is normal. Then T has a unique fixed point x* in Py,. For any wy € Py,
constructing the sequence w, = Tw,_1, n=1,2,..., then ||w, —x*|| - 0 as n — oo.

For hy,hy € P with hy,hy # 0. Suppose h = (hy, hy), then h € P:=P x P. Take 6 < e; < h,
0 < e, < hy, and write 0 = (0,0), e = (e1,e;). Then 6 = (0,0) < (e1,e;) < (h1,h3) = h. That
is,0 <e<Hh. If P is normal, then P= (P, P) is normal.

Lemma 2.5 ([31]) P, = Py, x Py,.
Lemma 2.6 ([31]) Py, = Py X Phye,-

3 Main results

In this section, let X = {u | u € C[0, 1]}, a Banach space with the norm ||u|| = sup{|u(t)|: ¢t €
[0,1]}. We will consider (1.1) in X x X. For (i, v) € X x X, let ||(», v)|| = max{||«], ||v|/}. Then
(X x X, ||(u,v)|)) is a Banach space. Let P = {(u,v) € X x X | u(t) > 0,v(¢) > 0,t € [0,1]},
P={uecX|u(t)>0,te0,1]}, then the cone P C X x X and P = P x P is normal, and the
space X x X has a partial order: (u1,v1) < (uz, vo) if and only if uy (£) < uy(2), vi(t) < va(8),
te0,1].

Lemma 3.1 Suppose that f(t,u,v), g(t,u,v) are continuous. By Lemmas 2.1, 2.2 and the
result of [33], we can claim that (u,v) € X x X is a solution of problem (1.1) if and only if
(u,v) € X x X is a solution of the following equations:

u(t) = fol Gi(t,s) folHl(S,T)f(‘[,u(l’),v(‘[))dl’ ds—fol Gi(t,s) fol Hi(s,7)z1(z) dv ds,
We) = [y Ga(t,s) fiy Hals, T)g(t, u(x), v(v)) dr ds — [} Ga(t,s) [, Hals, T)za(7) d ds.
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For (u,v) € X x X, we consider three operators A},As : X X X > Xand T : X x X - X x X
by

1 1
A= [ Gu(es) [ His 0 (ro(e) (o) deds
0 0
1 1
—/ Gl(t,s)f Hi(s,7)z1(t) dz ds,
0 0
1 1
Ar(a (@) = / Galts) / Hils, 0)g (. u(x), v(x)) dr ds
0 0
1 1
—/ Gz(t,s)f Hy(s,T)zo(1) d7 ds,
0 0

T, v)(t) = (A1 (4, V)(D), As (1, 9)(0)).

According to the above results, we can easily get that (u,v) € X x X is a solution of system
(1.1) if and only if (u,v) € X x X is a fixed point of operator T. Let

1 1
er(t) - / Gilt,s) / Hi(s, 1)1 (¢) d ds,
0 0

1 1
eg(t)=/ Gz(t,s)f Hy (s, T)zo(1) dt ds,
0 0

() =Nith2(1-1)?, () = Not?2(1-t)%, tel0,1],

where

Ml 1 1
N; > F(ﬁl)fo /0 Hi(s,7)z1(t) dr ds,

1,1
N, > Fj\(/gz)/o /(; Hy(s,t)z2(t) dt ds,

with M;, i = 1,2, given as in Lemma 2.3.

Theorem 3.1 Let o; € (1,2], 8; € (3,4], z; : [0,1] — (0, +00) be continuous and e, e, hy,
hy be given as in (3.1). Assume that f,g € C([0,1] x R4 R) and z1,z, € C([0,1], [0, +o0]).
Moreover,

(H1) f:[0,1] X [—e1*,+00) X [—ex*, +00) — (—00,+00) and g : [0,1] x [—e;*,+00) X
[—ex*, +00) — (—00, +00) are both increasing with respect to the second and third
variables, where e;* = max{e;(¢t) : t € [0,1]} and e;* = max{e,(t) : t € [0,1]};

(Hy) for & €(0,1), there exists (&) > & such that

S Ex + (& = Dy, Exo + (6 — D)ya) = ¥ (E)f (,%1,%2),
gt &xy + (§ = Dy1, Exo + (§ = )yn) = ¥ (§)g(t, x1,%2),

where t € [0, 1], x1, %5 € (—00, +00), y1 € [0,e1*] and y, € [0,e*];
(Hs) f(£,0,0) >0, g(t,0,0) > 0, with f(£,0,0) 0, g(£,0,0) 2 0 for t € [0, 1].
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Then:

(1) system (1.1) has a unique solution (u*,v*) in Pj,,, where
et) = (er(t),e2(9)),  h(e) = (), ha(t)), tel0,1];

(2) for a given point (ug, vo) € Pye, construct the following sequences:

1 1
ta®)= [ Gi(69) [ 16 1 (20,0, v,0) de s
1 1
—/ G1(t,S)/ Hi(s,7)z1(t)dt ds,
0 0
1 1
vt (0) = /0 Galt) [ Hats )g(r, (), v,())de ds

1 1
- / Galt,s) / Hi(s,0)zs(x) d ds,
0 0

n=0,1,2,..., we have u,,1(t) — u*(t), V1 (t) = v*(£) as n — oo.

Proof According to the properties of G;(t, s), since H;(t,s) >0, i = 1,2, we can get

1 1
er(t) - / Gits) [ HisD)m()drds=0, te[01],
0 0

1 1
eg(t):/ Gz(t,s)/o Hy(s,7)z2(t)drds >0, te]l0,1].
0

From Lemma 2.3, one can obtain that, for ¢ € [0, 1],

1 1
el(t)=/ Gl(t,s)/(; Hi(s,7)z1(t)dt ds

0
- Y Miki ()
“Jo I'(BY)

L g2 t)2/ / Hi(s,7)z1(t)dt ds

1
/ Hi(s,1)z1(t)dt ds

F(,Bl)
<Nith"2(1-1) = I (t);

1 1
ez(t):/0 Gg(t,s)/ Hy(s,7)z1(t) dt ds

- L Myko(2)
“Jo I'(Ba)

Zt/;z)tﬁz 21- t)Z/ / Hy(s,t)za(t)dt ds

/ Hy(s,7)zo(t)dt ds

< NtP72(1 = 6)? = Iy (2).

Thatis,0<e; <h;and 0 < e, < h,.

Page 7 of 19
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In the following, we prove that T : P, — X x X is a ¥-(h,e)-concave operator. For

(u,v) € Ppe, £ € (0,1), t € [0,1], one can obtain

T(&(w,v) + (€ - 1e)(®)
=T (&) + (€ - 1)(er,e2)(t)
=T(5u+ (- Densv+ (- e) ()
= (A1(5u+(E - Der, §v+ (5 - es), Az (§u + (€ = Der, £v + (€ = Dea) ) ().

We consider A1 (§u + (§ — 1)e, &v + (§ — 1)ex)(t) and Az (Eu + (£ — D)er, Ev + (€ — 1)ea)(2),
respectively. From (H>),

Ai(Eu+ (& -1e, v+ (€ -1)e)(t)

1 1
- [ 6169 [ Hits. e (e (s € - Der) o) e+ € - Dea)(@) e ds—en()
0 0
1 1
z/ Gl(t;s)/ Hi (s, )Y (&)f (v, u(2), v(r)) dr ds — ey (¢)
0 0
1 1
o) / Gil(t,9) / Hi (s 7)f (1, u(0), W(x) dr ds — ()
0 0

1 1
=w(s>[ /O Gultys) /0 H1<s,r)f(r,u(r),v(r))drds—elm]+(w<s)—1)e1(t>

=Y (E)A1(w,v)(0) + (Y (§) - V)es (8).
Similarly,

Ay(Eu+(E - 1er, Ev+ (5 - 1ex)(t)
1 1
=/0 Gg(t,s)/o Hz(s,t)f(r, (Eu + (& - l)el)(r), (§v+ (& - 1)62)(‘[)) dtds—e(t)

1 1
> / Galts) / Hyls, 0 E)f (1, u(0), W(x) dr ds — ex(t)
0 0
1 1
=1/f(§)/ Gz(t,s)/ Hy (s, T)f (t, u(t), v(1)) dt ds — e5(¢)
0 0

1 1
_ w@)[ fo Galtys) /0 Hi(s, 0)f (¢, (), W(©)) de ds - e2<r>] + (&) - 1)ex)

= Y (§)A2(,v)(0) + (Y (€) — 1)ex(2).
So we have

T(6(w,v) + (5 = De)(®)
(W (©AL @)@ + (¥ (€) = L)er(0), Y (§)Aa(u, v)(0) + (¥(€) - 1)ea(®))
= (W (E)A1 (1w, v)(®), ¥ (§) A2, V(D)) + (W (§) - 1)er(0), (¥ (§) - 1)ex(t))

v
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=Y () (A1 (1, V)(2), Az (s, v)(0)) + (W (§) — 1) (e1(2), e2(2))
=Y (E)T(w,v)(0) + (¥(§) - 1)e(t).

That is,
T(S(u’ V) + (5 - 1)6) Z 1/f(~§)T(M, V) + (l/f(é) - 1)6, (I/l, V) € I_)h,e)s € (0) 1)

Therefore, T is a ¥-(h, e)-concave operator.
Next we show that T': Py, — X x X is increasing. For (1, v) € Py, we have (u,v) + e € Py,

From Lemma 2.5, (# + e1,v + e2) € Py, X Py,. So there are A1, 1 > 0 such that
u(t) + e1(t) = rMhy(2), v(t) + ex(t) = Aahp(t), tel0,1].

Therefore, u(t) > A1hi(t) — e1(t) > —ei(t) = —er™, v(£) > Aaha(2) — ex(t) > —ex(t) > —er™.
This fact and (H;) imply that T': I_’h,e — X x X is increasing.
Now we show Th € Py, which needs to prove Th + e € Py. For t € [0,1],
Th(t) + e(t) = T(hy, ho)(¢) + e(t)
= (A1(hy, ha)(8), Aoy, 1 )(2)) + (ex (2), ex(2))
= (A1(hy, ha)(2) + e1(2), Ay, ) () + ea(2)).

We consider A1 (h1,h3)(t) + e1(¢) and Ay (h, h3)(¢) + ex(2), respectively. By Lemmas 2.2, 2.3
and (H1), (Hs), we can get

Aq(hy, ho)(t) + ei(2)

1 1
- [ 619 [ 65 2 (o) o) de s
0 0

1 — Nk 1
Z/O (1 =2k (s) 123(/;1(;)71(5)/0 Hi(s, ) (t, Nyt 72 (1 - 1)%, Npt P72 (1 - 1)%) dr dis

1 1
> %/0 rl(s)/0 H, (s, 7)f (z,0,0)dt ds

B2 1 1
= le(ﬂﬂhl(t)/o 71(8)/0 Hi(s,7)f(1,0,0)dt ds

and
Aq(hy, ho)() + er(2)

1 1
:f Gl(t,s)/ Hl(s,r)f(r,hl(r),hg(r)) dtds
0 0

- Y Mk (8)
—Jo I'(BY)
M,

1 1
:le(ﬂl)hl(t)/o /0 H,y(s, 7)f (z, N1, Ny) d dis.

1
/ Hi(s, 7)f (t,N1,N») dt ds
0

Page 9 of 19
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According to (Hy), (H3), since r1(s) = s*(1 —s)/1~2 < 1, 5 € [0, 1], then

1 p1 1 1
/ / Hi(s,t)f(t,N1,Ny) dt ds > / rl(s)/ Hi(s,7)f(,0,0)dt ds > 0.
o Jo 0 0
By the definition of M, it is clear that M; > ; — 2, then one can get

A

1
Nlr(ﬂl)/ ) /0 Hi(s,7)f (x,0,0)dx ds

1=

Fl [
<lyi=—-— Hi(s,7)f(t,N1,N,) dt ds.
TNrgn o Jo f v
Thus we obtain that llhl(t) < Al(l’ll,hz)(t) + el(t) <lbh (t) That is, Al(hl,hg) +e € Phl'
Similarly, by using Lemma 2.3 and (H;), (H3), we also can get Ay (41, h2) + e; € Py,. Conse-
quently, according to Lemma 2.5,

Th +e= (Al(l’ll,hz) + el,Az(hl, hz) + 82) € Phl X th = I_)h.

Finally, by using Lemma 2.4, T has a unique fixed point (&*,v*) € Pj,. In addition, for
any given (uo, vo) € Py, the sequence

(um Vn) = (Al(un—l, Vn—l);AZ(un—ly Vn—l)); n= 1’ 2: ceer

converges to (u*, v*) as n — 00. Therefore, system (1.1) has a unique solution (u*, v*) € Pj,;
taking any point (9, vo) € Py, construct the following sequences:

1 1
u,,+1(t)=/0 Gl(t,s)/(; Hy(s, T)f (1, un(2),vu(v)) dT ds
1 1
- / Gi(t,9) / Hi (s, 7)ea(x) dr ds
0 0
1 1
a0 = [ Gt [ ol (e, (01, (0) s

1 1
- [ 6t [ s iz s
0 0
n=0,1,2,..., we have u,,.1(t) — u*(¢), v,.1(t) = v*(¢) as n — oo. O

4 An example
We consider the following fractional system:

3,10 1
D3 u(e) + (1 ;r(29)u+ D’ gy 1+ Bit + Gt +Dt%)]5z%

F (B2 + 1) [ (A + Bot + Cot3 + Dt?)] t%:t, 0<t<l,

(%) r¢y)

;
Déf?v(tmw9r(29>u+1)3[

1
A+ Bits Ct3 +Dt%)]§t%

16+/2-2 ”z’ (4.1)
(A3 3*/—F(29)v+ 1) [1_(3) 105 (Az + Byt + C2t2 +Dt2)] £5 = 3t, O0<t<l,
D) 0
u(0) =u(1)=u/(0)=u/(1) = 0, D0+ u#(0) =0, Do+ u(l) = 2D03+ u(%),
10 10
v(0) = v(1) = v (0) =v/(1) = 0, Dy v(0) =0, Doi v(1) = Dy v(3),
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A_Z(i+ 1 ) reré) 74 rQre
'73\15 10v2-5) r(®) 315 r&)’
__é<i+ 1 )r(gr(g) EERACLC)
'T3\15 T 10v2-5) r(®) 315 (%)
_<i+ 1 )F(%)m;) RERAOINE)
5 10v2-5) (&) 15 (%)’
(4 L1 )F(E)F(%
1=\ —= )
15 10v2-5) TI'(®)
_arGrd
- 15 (41) ’
s _Z(i 12 + 8/3 ) I3 74 TrEr@G
*73\15 " 13sv3oa5) 1(®) 315 r(E)
5 __%(i+ 12 +8V3 )F(%)F(%) EERACLNC)
*73\15 135v3-45) r(®) 315 (%)

’

< 12+ 83 )F(%)F(é) . 4 Ir@Hrg)
"3sv3-45) @) 15 r)

C2:(4 12+8f> Gré)

15 13543-45) I'(D)

1 1

18v/2-9 29 5 1 5

ft,u,v) = <7\/_ F(—)u + 1) [73 o= (A1+ Byt + Clt% +Dt%):| £15
16v2-2 \ 6 re)res)

’

1 1
27 —34/3 29 > 3 5
+ —\/—F — Jv+1 —3 0 (A2+Bgt+C2t%+Dt%) t%,
88 6 (E)F( )

1

1

18v2-9 (29 3[ 1 5 9]34
t,u,v) = — Ju+1 ——— (A1 + B1t + C1£2 + Dt2 t9
glw) (16f 2 ( ) ) F(%)F(%)(1 n )

1

1
27 -3J3 (29 3 3 3
+<7fr(—>v+ 1) [(7(A2+th+C2tg+Dtg)] £9.

rere)

So

1
5
f(t,0,0) = (A1 + Byt + Cith +Dt%)] £15

1
[F(%)F(E—O)
1
3 5 9. |5 4
+ | ——+—(Ay + Bot + Cyt2 + Dt2 :| t1s,
' )

1
3
£(t,0,0) = (Ay + Bt + Cit? +Dt%):| £9

[ 1
rr)

1

3 5 9. 13 4

+ | ————(Ay + Bot + Cot2 + Dt2 t9.
[r(%)r(l—;’)( T )}
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Figure 1 Image of function f(t,0,0) on t € [0, 1]
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Figure 2 Image of function g(t,0,0) on t € [0, 1]
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We can obviously get f(£,0,0) > 0, g(¢£,0,0) > 0 from Figs. 1, 2. And f(£,0,0) #£ 0,

g(t,0,0) # 0. Moreover,

1 |550-93[6-0+
Gi(t,5) = 4 4
169) F) |30 -9)3[s—1) +
1,4
Hilts) = In(t,s) + 2 Shl(l,s),
1-13 \2
1| e -9)]2,
h t, = 1 1
169 rG) |- - (-9,
1 |51 -930s-0)+
Gat,s) = =357 1 4 4
2(6:5) F(%) t3(1-8)3[(s—t) +

13 1
HZ(t,S) = hZ(t»S) + 3 hl (_1S>1
1-12 \3
3
1 |ra-s,
ha(t,s) = 1 1
269 rG) |ea-s1 --s?,

(1-1)s],

4
3
Y1-ps)+(t-9)5,

(1 - t)S],

4
3
%(1 —t)s] + (¢t

oS O

IA
IA

IA
IA

IA
~
IA
[}
IA

IA
= o=

%)
IA

~
IA

(4.3)
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Further,

1 1
el(t)=/ Gl(t,s)/ Hi(s,T)z1(t)dt ds
0 0

1 1 1 1
:/0 Gl(t,s)[/o rhl(s,r)dt+/o 11_%3h1<§,r>dri|ds
1 1 1 s 1
Z%%)/o Gl(t,s)|:/0 t(s(l—r))idr—/o t(s—1)2dt
1 lS% 1 % % lS% 1 %
2 2
+/0 Tl_ﬁ(E(l_T)) dr—/o rl_l§<§—r) dr]ds
2 2
1 1 4 s
)/ [( " 10va- 5> 15 }ds
1 1 r, 4 4
:T%)T%){/o |:t (1-5s) ((s—t)+§(1—t)s)i|
X [(i + ;>s% - is%i|ds
15 104/2-5 15
f(t_s) [(1 TV 5) %_%S%}ds}

1 (7 4 4 1 1y 1
zr(gmg—"){t (g__t)(15 10ﬁ—5)/o s s)hds
7 4 'y 4
1 §—§t>/0 s2(1-5)3ds

7( 4 1 1, 4 74 (1 4
-t (Eﬁ-m)A N (I—S) ds+t E/O S (I—S) ds
tT/ 4 1 \! 4
+/0(t—s) |:(1—5+410\/§_5) _ES ]ds}
_gt)(_ 1 )F(%)F(g)
3 15
(

__1 1 {;;(Z .
raréEpl \s 10v2-5) I'(2)
—t

4
6
éi(iﬂ) re)ra) _té(i L1 )F(%)F(%)
15\3 3 ) %) 10/2-5) I'(®)
LAATRrG)  » (i+ 1 )F(%)F(g—‘))

15 (%) 10/2-5) I'(2)

s 4 T
15 4 }
1 1

") rw)

4 5 9
3 (A1 + Byt + Cit2 + Dt2),

1 1
es(t) - / Golt,s) [ Hos, 1)za(x) de ds
0 0

1 1 1 13 1
= / Gz(t,s)|:/ 3thy(s,t)dt +/ 372 3 h2<—,r> dt] ds
0 0 0 1— %7 3
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1 1 1 % %

+f -3 3(§(l—t)> d'(—/ 3
13 13
0 1_§2 0 1_§2
3 1 4 12 + 84/3 4 5

=— | G@ty|(— 2-——s2|d
NE )/ o S)[<15 1353 - 45) ) ] ’

{/ [t‘s‘(l _5)3 ((s—t) + %(1 )s)]

1 1 1 s
T )/ Gzts)[f r(s(l—t))idr—/o (s—1)2dt

1
S2

3 1
" re)rw)
(- 2
135[ 45S 150 | %
12 + 83 4
/(t_s)§[<15 1353 - 45) _ﬁﬂ}ds}

12 3 !
+8v3 >/ s%(l—s)%ds
0

G20
) * 135+/3 — 45

F( )F(?O 3 3
4 (7 4 1
—t%—<———t)/ s%(l—s)%ds
15\3 3/ J,
12+8 4
§< +8v3 )/ 52(1—5)%d5+t%—/ s2(1—s)3ds
1354/3 - 45 15 J,

4
15

12 + 83 4 s
./0( ~ o) [(15 13573 - 45) 15 ]ds}
12+ 8y/3 )F(%)F(%)

re)

() (L
S reé)ri 3 3 /)\15 135/3-45
a4 (Z_L_Lt> rera _t%<i+ 12 +84/3 )P(%)F(%)
15\3 3°) 15 135v3-45/ I'(%)
%if(%)F(g)_”%(iJr 12+8«/_) HréE)
15 (&) 15 135¢/3-45) I(2)
_tﬁir(g)m%’)}
15 rd)
1 1 4 5
= ?%)Tl—go)tg (A2 + Byt + Cot? + Dt2)
Therefore,
e} = max{e;(¢): t € [0,1]}
_1 [Z<i+ 1 >r(§>F(§)+(i+ 1 )F(%Wl—s")}
“rérs\is 1wvz-5) @ 15 10v2-5/) I'(®)
_1 [E<i+ 1 )F(%)m%)]
“rGr@L3\is 1wv2-5/ )
1 24 1
2 §(§+2ﬁ—1)’
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e = max{ez(t) :te|o, 1]}

_3 1 [7(4 12+8f> 2)r(3)
“ré)r)[3\15  135.3-45 F(%)
(i 12+83 )F(é)F(%)]
15 135¢/3-45) I'(2)
.3 1 [1()( 12+83 )F(%)F(%]
réri)s\is " 1354345 r®)

2 2(4 12+8«/§>'

= =l z+
r)3\3 27/3-9
Take /1 (£) = Ny£3 (1 = £)2, ha(£) = Not3 (1 — £)2, where

]\41 1 1
N > F(ﬂl)/o /0 Hi(s,t)z1(t)dt ds

7 1 1
= 3F—(1())/ / THl(S,T)deS
3/J0 JO

1 4 s
= — 4+ ——— |s2 — —s2ds
3r()ri)Jo (15 10J§—5> 15

_;<2+#>

3r()r\sis  30v2-15)

F]t/;i)/o /o Hy(s,7)zo(t)dt ds
7 1 1

=r(%0)/0 fo 3tH,(s,t)dt ds

7 L/ a 20[ 12 3 4 s
“TOre ), \15 Tt
re)re)Jo \15 " 1354345 15

7 (32 24 + 164/3 )

N, >

=\ —+
ré)r)\315  405/3-135
Then
(t) S £3(Ay + Byt + Cit3 + Dt3)
eil)= 1+D10+ 0102 +
ré)ré)
7 1 4 L'y /4 1 !
<3 t§(1—t)2/ ( ) -
3r(Y) o TO\15 " 10v2-5
7 1 Ao 1 <32 2 )
-z PR e .
3r¥) r¢)\315  30y2-15
<Nit3(1-0)> = (8),
1 4 5 9
es(t) = £3(As + Byt + Cot? + Dt?)

135+/3 — 45

4

15

1 L3 4 20 12
—t%(l_t)Z/ - (_ \/— ) 1_
L 0 3H\15
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B1-07—

7 1 (32 24+16J§)
_F(IO) re)

+ _
315 40543 -135

< Npt3(1— 1) = Inp ().

In addition,

1 1
27 —34/3 29 5 3 5
+< \/—F<—>V+ 1) [73 o= (42 +B2t+C2t% +Dt%):| £15
rers)

u+l )é(el(t))% <27 82\/— <6> +1>%(e2(t))

(a2 (%)
) <16ﬁ:2f<§>”el(t) +el(t))é ' (27 W ( 6 )Vez(t) +e2(t))é
(a2 (%)

(S

4
9

3 1 5 9:|
u+l ————— (A1 + Bit + C1£2 + Dt2 t
) [r@)r(%)( e )

V3 5 ;

27 —34/3 29 3 3

+( 1"( >v+1) [ﬁ(142+32t+cgtg +Dt3)] t%
rers)

(2 (o) e (2 (2

1

<12§ zf(zg)u61(t)+e1(t)>3 + (27 8:\/— ( A )Vez(t) +32(t))3

=

For ‘i: € (0) 1), X1,X € (_OO’ +OO)7 y1 € [0» eT]; Y2 € [O; e;]r

S Ex +(E =Dy, Ex + (= 1)y2)

[18\/— 9
16+/2 -2

[27 3\/—

F( )31(7«‘)[5961 +(& -] +€1(f)]

1

( )82(7-‘) Exy+ (& —1)y] + ez(f)]
B2 (D)atofsr (1- ] o]
16+/2 - 2 MU TE N T
e [27 8:\/— ( 6 )eZ(t)[xz " (1 - é)yz} " éezm]s
[1§§ z ( )el(t)x1+<1 >1§:§ 2 ( )el(t)yw;el(t)]g

+g5 [27 ssf ( 6 )ez(t)xz ' <1_ 5) S 8:fr< 6 )62(% ' ;62(”}5

184/2-9 1 1 :
|:16\/— 21"( )el(t)x1+(1—5)61(t)+§‘31(t)1|

(S

=&

=

>é&
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+ -’;: [27 8:\/_ ( 6 )ez(t)xz + <1 - é)ez(t) + éez(t)]g
[(iz? ZF( )el(t)xl +€1(t)>5

(27 ng ( - )ez(t)xz+e2(t>ﬂ

= géf(t’xl’xZ) > W(éy(t7xl’x2)x
(trgxl + (5 - 1))’1:5952 + (5 - 1)_)’2)

S

=5

[12? z ( )el(t)[$x1 +(E -1y ]+ el(t)] 1
[27 8:\/— ( . )ez(t)[%‘xz +(& - 1)) + eg(t)]_

ol

B (s (-] ]
AZRr el -] o]

18V2-9 (29 18V2-9 /29 1 3
[16f—2r<?)el(t)x”(1“)16I 2F( )el(t)y”sel(t)}

- [27 82[ ( ° )eZ(t)xz ' (1 ) 5) s sgf ( 6 )eZ(f)yz + ;‘32(11‘)]é
> 3 [12? z ( )el(t)xl N (1_ é)el(m éeﬂt)r

3 [27 8:‘/— ( < )ez(t)xz + <1 - é)ez(t) . éez(t)]?l’
[(12? r < )el(t)xl +el(t)>%

(27 ng ( : )ez(r)x2+e2(t>ﬂ

= g%f(t’xl’xZ) = W(s)f(t;xler):

=5

ol

=5

ol

=&

here ¥ (&) = é% > £. By Theorem 3.1, system (4.1) has a unique solution (u*,v*) in P,

where

e(t) = (e1(t), e2(0))

( L £3(Ay + Byt + Cyt3 + Dt3)
=\ =3~ 10\ 1+ b1l +Ct2 + ,
réyré)

1 1

£3(Ay + Byt + Cot3 Dt%)>
73\ 10y 2+t Dol + Lal2 + )
ré)ré)

(o) = (0, ha(©) = (Ni£3 (1 - 2, Not3 (1= 1)), € [0,1].
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Taking any point (i, Vo) € Py, we construct the following sequences:

1 1
e (£) = f Gilt,5) f Hy (5 7Y (1, 160(2), v, (1)) d i
0 0

! £3(Ay + Byt + Cyt3 + Dt3)
T3y~ 10N 1+b10+ 002+ ,
rere)

1 1
Ve (6) = f Galts) f Hiy (s 0)g (0, 6n(2), va(0)) dt ds
0 0

L £3(Ay + Byt + Cyt3 + DE3)
T T3~ 10y 2+ Dol + Lal2 + )
réré)

n=0,1,2,..., then we have u,, () = u*(t), v,.1(t) > v*(¢) as n —> o0.

5 Conclusion

Recently, fractional differential systems have been increasingly used to describe problems
in optical and thermal systems, rheology and materials and mechanics systems, signal
processing and system identification, control, robotics, and other applications. Because
of their deep realistic background and important role, people are paying more and more
attention. For nonlinear fractional differential systems subject to different boundary con-
ditions, there are many articles studying the existence or multiplicity of solutions or pos-
itive solutions. But the unique results are very rare. In this paper, we study a system of
fractional differential Eqgs. (1.1). By constructing two functions e and / and using fixed
point theorem of increasing ¥ -(/, e)-concave operators defined on ordered set P, ., we
establish some new existence and uniqueness criteria for system (1.1). Our result shows
that the unique solution exists in a product set Py, = Py, ¢, X Phye, and can be approxi-
mated by making an iterative sequence for any initial point in Py,.. Finally, an interesting
example is given to illustrate the application of our main results.
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