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Abstract
For the boundary value problem (BVP) of a second-order partial differential equation
on a plane triangle area, we propose a new algorithm based on the Adomian
decomposition method (ADM) combined with a segmented technique. In addition,
we present a new theorem that ensures the convergence of the algorithm. By this
algorithm, the model for the effect of regional recharge on the plane triangle
groundwater flow region is solved, from which we obtain the segmented exact
solution of the problem, which satisfies the governing equation and all of the
specified boundary conditions. Then, by the algorithm combined with Taylor’s
formula, the heterogeneous aquifer model on the plane triangle groundwater flow
region is considered, from which we obtain the segmented high-precision
approximate solution of the problem.

Keywords: Adomian decomposition method; Dirichlet boundary value problems;
Groundwater flow equation

1 Introduction
So far, many researchers have proposed and developed various techniques for solving par-
tial differential equations such as Lie symmetry [1, 2], homotopy perturbation method [3,
4], homotopy analysis method [5, 6], the Adomian decomposition method (ADM) [7, 8],
auxiliary equation methods [9, 10], variational iteration method [11–13], and so on.

Among those methods, the Adomian decomposition method is a practical technique
for solving (initial) boundary value problems for differential equations. What is more, the
ADM has been demonstrated to be practical and effective for BVPs of ordinary differential
equations. Several different resolution techniques for solving BVPs based on the ADM
were considered by Adomian [14], Rach, Wazwaz [15, 16], Dehghan [17, 18], Duan [19],
and so on.

On the other hand, for the (initial) boundary value problem of partial differential equa-
tions, the solution can be obtained by the ADM that satisfies all of the boundary conditions
only with modification of the algorithm to accommodate the boundary. For this reason,
Adomian [20] first proposed an algorithm for (initial) boundary value problems of partial
differential equations based on the ADM by taking the average of its two partial solutions.
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Shidfar and Garshasbi [21] proposed a weighted algorithm of the ADM by combining the
two partial solutions with a weight. Yun et al. [22] proposed a segmented and weighted
Adomian decomposition algorithm to decease the boundary error of the Adomian solu-
tion, they also presented a corresponding algorithm.

In [23], although the boundary error of the approximate solution is smaller, there is no
guarantee to make the boundary error smaller than any positive real number. To over-
come this shortcoming, we propose a new algorithm for solution of the BVP of a partial
differential equation on a triangle region based on the ADM combined with a segmented
technique. In addition, a theorem is given to ensure that the boundary error in the algo-
rithm can be controlled to become smaller than any positive real number. By the proposed
algorithm, the effect of regional recharge model and the heterogeneous aquifer model of
the plane triangle groundwater flow are considered in this paper.

2 Segmented Adomian algorithm on the triangle area
We consider a general second-order partial differential equation as follows:

Lxh + Lyh + Rh + g(x, y) = 0, (x, y) ∈ D, (1)

D : a ≤ x ≤ b, c ≤ y ≤ c +
d – c
b – a

(x – a), (2)

with

h(b, y) = f1(y), (3)

h(x, y) = f2(x), on y = c +
d – c
b – a

(x – a), (4)

h(x, c) = f3(x), (5)

where Lx = ∂2/∂x2, Ly = ∂2/∂y2, R is a remainder operator, g(x, y) is a given continuous
function, and fi (i = 1, 2, 3) are given continuous functions of the corresponding bound-
aries.

Corresponding to boundary problem (1)–(5), the concrete steps of the segmented Adomian
algorithm are as follows:

Step 1: Let i = 0, Ai = ∅, Bi = ∅ (empty set), Ci = D, x0 = a, y0 = c, x1 = b, y1 = d.
Step 2: Let x̄ = (x0 +x1)/2, ȳ = (y0 +y1)/2, l1(x) = y0 +(ȳ–y0)/(x̄–x1)(x–x1), l2(x) = y0 +(y1 –

y0)/(x1 – x0)(x – x0), l̃1(y) = x1 + (x̄ – x1)/(ȳ – y0)(y – y0), l̃2(y) = x0 + (x1 – x0)/(y1 – y0)(y – y0).
Step 3: The Adomian decomposition method is applied to solve Eq. (1) with (3)–(4). In

this process, the inverse operator L–1
C is taken as follows:

L–1
C =

∫ x

l̃2(y)

∫ x

l̃2(y)
dx dx –

x – l̃2(y)
x1 – l̃2(y)

∫ x1

l̃2(y)

∫ x

l̃2(y)
dx dx. (6)

For convenience, HCi (x, y) is used to denote the solution on Ci obtained in this step.
Step 4: Except on the boundary line y = y0 on Ci, the boundary conditions are precisely

satisfied by HCi . So, we use the following formula to characterize the boundary error:

B̃E =
∥∥HCi (x, y0) – f3(x)

∥∥2
2 =

∫ x1

x0

(
HCi (x, y0) – f3(x)

)2 dx. (7)
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Figure 1 Regional division

Step 5: If B̃E > δ (δ is a given small number that is preassigned as the boundary error
limit), then the calculation is continued to Step 6. Otherwise, the calculation is stopped,
and one obtains the segmented approximate solution as follows:

H(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

HAj (x, y), (x, y) ∈ Aj, j = 0, 1, 2, . . . , i;

HBj (x, y), (x, y) ∈ Bj, j = 0, 1, 2, . . . , i;

HCi (x, y), (x, y) ∈ Ci.

(8)

Step 6: Setting i = i+1 and HAi (x, y) = HCi–1 (x, y). Then, using the lines y = y0 +(ȳ–y0)/(x̄–
x1)(x – x1) and x = x̄, the area Ci–1 is divided into three parts Ai, Bi, and Ci (see Fig. 1):

Ai : x̄ ≤ x ≤ x1, l1(x) ≤ y ≤ l2(x);

Bi : x̄ ≤ x ≤ x1, y0 ≤ y ≤ l1(x);

Ci : x0 ≤ x ≤ x̄, y0 ≤ y ≤ l2(x).

(9)

Step 7 : Eq. (1) with the boundary conditions h(x, y0) = f3(x), h(x, l1(x)) = HAi (x, l1(x)) is
solved by the Adomian decomposition method. In this process, the inverse operator L–1

B

is taken as follows:

L–1
B =

∫ y

y0

∫ y

y0

dy dy –
y – y0

l1(x) – y0

∫ l1(x)

y0

∫ y

y0

dy dy, (10)

where HBi (x, y) ((x, y) ∈ Bi) denotes the solution obtained in this step.
Step 8: Set x1 = x̄, y1 = ȳ, f1(y) = HBi (x1, y), then proceed to Step 2.

3 The convergence theorem of the algorithm
Definition The norm of a continuous function f (x) on the closed interval [a, b] is defined
as follows:

∥∥f (x)
∥∥

[a,b] = max
x∈[a,b]

∣∣f (x)
∣∣. (11)
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The norm of a continuous function f (x, y) on the plane closed region D is defined as fol-
lows:

∥∥f (x, y)
∥∥

D = max
(x,y)∈D

∣∣f (x, y)
∣∣. (12)

There relations (11) and (12) are considered the L∞-error. Thus, the approximate degree
of congruence of f (x, y) with g(x, y) on D should be characterized by ‖f (x, y) – g(x, y)‖D.

Theorem For an arbitrary small real number δ > 0, there exists a natural number N > 0
such that when i > N (i is the number of iterations of the algorithm, namely the number of
times dividing the area (2)), one has

B̃E =
∥∥HCi (x, y0) – f3(x)

∥∥2
2 < δ, (13)

if there exists a real number ε > 0 such that ‖H(x, y)–h(x, y)‖D < ε, namely the approximate
solution H(x, y) ((x, y) ∈ D) uniformly converges to the exact solution h(x, y) of boundary
problem (1)–(18).

Proof According to the continuity of the functions HCi (x, y0) and f3(x) on [x0, x̄], one has

B̃E =
∫ x̄

x0

(
HCi (x, y0) – f3(x)

)2 dx

≤ ∥∥HCi (x, y0) – f3(x)
∥∥2

[x0,x̄] · (x̄ – x0)

≤ (∥∥HCi (x, y0)
∥∥

[x0,x̄] +
∥∥f3(x)

∥∥
[x0,x̄]

)2 · b – a
2i

≤ (∥∥HCi (x, y)
∥∥

Ci
+

∥∥f3(x)
∥∥

[x0,x̄]

)2 · b – a
2i

≤ (∥∥HCi (x, y) – h(x, y)
∥∥

Ci
+

∥∥h(x, y)
∥∥

Ci
+

∥∥f3(x)
∥∥

[x0,x̄]

)2 · b – a
2i

≤ (∥∥HD(x, y) – h(x, y)
∥∥

D +
∥∥h(x, y)

∥∥
D +

∥∥f3(x)
∥∥

[a,b]

)2 · b – a
2i

≤ M · 2–i,

where M = (ε + ‖h(x, y)‖D + ‖f3(x)‖[a,b])2 · (b – a).
Thus, for an arbitrarily small real number δ > 0, while N = [log2(M/δ)] and i > N , the

result B̃E < δ is established. �

Because we are unable to calculate ‖H(x, y) – h(x, y)‖D, we define the residual error func-
tion to characterize the accuracy of the approximate solutions. Define an error function
as follows:

Error(h) = Lxh + Lyh + �h + g(x, y). (14)

Then ẼE = ‖Error(h(x, y))‖2
2 characterizes the accuracy of the approximate solutions to

Eq. (1), where ‖ · ‖2 denotes the L2-norm. If ẼE and B̃E are equal to zero at the same
time, h(x, y) is the exact solution of boundary problem (1)–(18). Otherwise, h(x, y) is an
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approximate solution, where the values of ẼE, B̃E characterize the equation and boundary
errors.

4 Application of this algorithm
4.1 The model for the effect of regional recharge of the triangle groundwater

flow region
Syafrin and Serrano [24] used the model for the effect of regional recharge to study the
groundwater flow in the Louisville aquifer. Serrano [25] studied a simple approach to
groundwater modeling with decomposition. Dehghan [26] uses the orthogonal decom-
position discrete empirical interpolation method (POD-DEIM) to prevent groundwater
pollution. In this section, we reconsider the model for the effect of regional recharge on
the triangle groundwater flow region. The governing equation of the model is as follows:

∂2h
∂x2 +

∂2h
∂y2 = –

Rg

T
, 0 ≤ x ≤ 600, 0 ≤ y ≤ x, (15)

with the boundary conditions

h(600, y) = –
y2

450,000
+

3y
1000

+ 102, (16)

h(x, y) = –
x2

125,000
+

49x
5000

+ 100, on y = x, (17)

h(x, 0) = –
3x2

500,000
+

13x
1875

+ 100, (18)

where h is the hydraulic head [L]; Rg is mean monthly recharge from rainfall [LT–1]; T
is the mean aquifer transmissivity [L2T–1]; and a and b are the aquifer horizontal di-
mensions in the x and y direction, respectively [L]. A typical recharge rate from rainfall
Rg = 10 mm/month, aquifer transmissivity of T = 100 m2/month. Then Eq. (15) is rewrit-
ten

Lxh(x, y) + Lyh(x, y) = –
Rg

T
. (19)

The specific process of the algorithm for the model is as follows:
Step 1: Set i = 0, x0 = 0, y0 = 0, x1 = 600, y1 = 600, l1(x) = –x + 600, l2(x) = x, and C0 =

{(x, y)|0 ≤ x ≤ 600, 0 ≤ y ≤ x}.
Step 2: Problem (15) with boundary conditions (16) and (17) is considered. Applying the

inverse operator L–1
C on the both sides of Eq. (15), we obtain

∞∑
n=0

hn = f2(y) +
x – y

600 – y
(
f1(y) – f2(y)

)
– L–1

C
Rg

T
– L–1

C Ly

∞∑
n=0

hn, (20)

where

L–1
C =

∫ x

y

∫ x

y
dx dx –

x – y
600 – y

∫ 600

y

∫ x

y
dx dx.
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Figure 2 Regional division

The following recursion formulae are constructed from the above equation:

h0 = f2(y) +
x – y

600 – y
(
f1(y) – f2(y)

)
– L–1

C
Rg

T
,

hn = –L–1
C Ly hn–1, n = 1, 2, . . . .

(21)

From the recursion formulae (21), we obtain h0, h1, then hn = 0 (n ≥ 2), i.e., the solution
HC0 of (15) with conditions (16) and (17) is obtained as follows:

HC0 (x, y) = –
43x2

900,000
+

21xy
500,000

+
4x

125
–

y2

450,000
–

111y
5000

+ 100, (x, y) ∈ C0. (22)

Step 3: Because B̃E = 4524, we set HA1 (x, y) = HC0 (x, y) and continue to the next step.
Step 4: Applying the lines x = 300 and y = 600 – x, the domain C0 : 0 ≤ x ≤ 600, 0 ≤ y ≤ x

is divided into three parts (see Fig. 2):

A1 : 300 ≤ x ≤ 600, 600 – x ≤ y ≤ x;

B1 : 300 ≤ x ≤ 600, 0 ≤ y ≤ 600 – x;

C1 : 0 ≤ x ≤ 300, 0 ≤ y ≤ x.

(23)

Step 5: Solving the problem in the domain B1 with the boundary conditions h(x, 0) =
f3(x), h(x, 600 – x) = HA1 (x, 600 – x). After applying L–1

B on the both sides of Eq. (15), the
following recursion formulae are constructed:

h0 = f3(x) +
y

600 – x
(
HA1 (x, 600 – x) – f3(x)

)
– L–1

B
Rg

T
,

hn = –L–1
B Lx hn–1, n = 1, 2, . . . ,

(24)

where

L–1
B =

∫ y

0

∫ y

0
dy dy –

y
600 – x

∫ 600–x

0

∫ y

0
dy dy.

From the recurrence formulae, we obtain hn = 0 (n ≥ 2), i.e., the solution is as follows:

HB1 (x, y) = –
3x2

500,000
+

21xy
500,000

+
13x

1875
–

11y2

250,000
+

43y
15,000

+ 100, (x, y) ∈ B1.
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Step 6: Solving the problem on C1 with the boundary conditions h(y, y) = f2(y), h(300, y) =
HB1 (300, y). After applying L–1

C on both sides of Eq. (15), the following recursion formulae
are constructed:

h0 = f2(y) +
x – y

–y + 300
(
HB1 (300, y) – f2(y)

)
– L–1

C
Rg

T
,

hn = –L–1
C Lx hn–1, n = 1, 2, . . . ,

(25)

where

L–1
A =

∫ y

x

∫ y

x
dx dx –

x – y
–y + 300

∫ 300

y

∫ y

x
dx dx.

Thus, the solution is obtained as follows:

HC1 = –
3x2

500,000
+

21xy
500,000

+
13x

1875
–

11y2

250,000
+

43y
15,000

+ 100, (x, y) ∈ C1.

At this moment, the boundary error B̃E = 0, so the calculation is stopped. The segment
solution is obtained as follows:

H(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

HA1 (x, y), 300 ≤ x ≤ 600, –x + 600 ≤ y ≤ x;

HB1 (x, y), 300 ≤ x ≤ 600, 0 ≤ y ≤ –x + 600;

HC1 (x, y), 0 ≤ x ≤ 300, 0 ≤ y ≤ x.

(26)

For the solution H(x, y), ẼE = 0 and B̃E = 0. Thus the solution H(x, y) is indeed the exact
solution of the problem.

4.2 A heterogeneous aquifer model of the triangular groundwater flow region
The governing differential equation of the model is as follows:

∂

∂x

[
T(x, y)

∂h(x, y)
∂x

]
+

∂

∂y

[
T(x, y)

∂h(x, y)
∂y

]
= –Rg , 0 ≤ x ≤ 600, 0 ≤ y ≤ x, (27)

where h(x, y) is the head function [L]; Rg = 10–2 represents monthly average rainfall
recharge [LT–1]; T(x, y) = 500 – 0.2x – 0.1y represents aquifer permeability [L2T–1].
Boundary conditions (16)–(18) are also considered in this model.

Thus Eq. (28) is rewritten as follows:

Lxh(x, y) + Lyh(x, y) = –
Rg

T(x, y)
–

1
T(x, y)

∂T
∂x

∂h
∂x

–
1

T(x, y)
∂T
∂y

∂h
∂y

, (28)

where Lx = ∂2/∂x2, Ly = ∂2/∂y2.
The function 1/T(x, y) is expanded at the origin according to Taylor’s formula as follows:

1
T(x, y)

= t1 +
∞∑

k=2

tk , (29)
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where

t1 =
1

T(0, 0)
+

(
x

∂

∂x′ + y
∂

∂y′

)
1

T(x′, y′)

∣∣∣∣
x′=0,y′=0

, (30)

tk =
1
k!

(
x

∂

∂x′ + y
∂

∂y′

)k 1
T(x′, y′)

∣∣∣∣
x′=0,y′=0

, k ≥ 2. (31)

The concrete process of the calculation for the model by the algorithm is as follows:
Step 1: Setting i = 0, x0 = 0, y0 = 0, x1 = 600, y1 = 600 and Ai = ∅, Bi = ∅, Ci = {(x, y)|0 ≤

x ≤ 600, 0 ≤ y ≤ x}.
Step 2: Setting x̄ = x1/2, l1(x) = x1 – x, l2(x) = x, l̃1(y) = x1 – y, l̃2(y) = y.
Step 3: Problem (28) with the boundary conditions h(x1, y) = f1(y) and h(y, y) = f2(y) is

considered by the ADM. Applying L–1
C on the both sides of Eq. (28), we obtain

∞∑
n=0

hn = f2(y) +
x – y

600 – y
(
f1(y) – f2(y)

)
– L–1

C Ly

∞∑
n=0

hn

– L–1
C

(
Rg

T(x, y)
+

1
T(x, y)

∂T
∂x

∂h
∂x

+
1

T(x, y)
∂T
∂y

∂h
∂y

)
, (32)

where

1
T(x, y)

∂h
∂x

=
∞∑
i=1

i–1∑
j=0

ti–j
∂hj

∂x
, (33)

1
T(x, y)

∂h
∂y

=
∞∑
i=1

i–1∑
j=0

ti–j
∂hj

∂y
. (34)

From the aforementioned equation, the following recursion formulae are obtained:

h0 = f2(y) +
x – y
x1 – y

(
f1(y) – f2(y)

)
– L–1

C Rgt1,

hn = –L–1
C Ly hn–1 – L–1

C Rgtn+1 – L–1
C

(
∂T
∂x

n–1∑
j=0

tn–j
∂hj

∂x
+

∂T
∂y

n–1∑
j=0

tn–j
∂hj

∂y

)
,

n = 1, 2, . . . ,

where

L–1
C =

∫ x

y

∫ x

y
dx dx –

x – y
x1 – y

∫ x1

y

∫ x

y
dx dx.

Thus, the n-term approximate Adomian solution of the problem on Ci is obtained as fol-
lows:

HCi (x, y) =
n∑

i=0

hi. (35)

For the 3-term approximate solution HC0 , ẼE = 2.60546 × 10–7 and the graph of the
equation error function is as in Fig. 3.
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Figure 3 Error analysis function on A1

Step 4: If B̃E > δ (for example, δ = 0.001), set i = i + 1, HAi (x, y) = HCi–1(x, y) and continue
to the next step. Otherwise, the calculation is stopped, as one obtains the segmented ap-
proximate solution (8).

For the 3-term approximate solution HC0 , B̃E = 8.11375 < 0.01, so set i = i + 1, HA1 (x, y) =
HC0 (x, y) and continue to the next step.

Step 5: Using the lines x = x̄ and y = x1 – x, the domain Ci–1 is divided into three parts
(see Fig. 2):

Ai : x̄ ≤ x ≤ x1, l1(x) ≤ y ≤ l2(x);

Bi : x̄ ≤ x ≤ x1, y0 ≤ y ≤ l1(x);

Ci : x0 ≤ x ≤ x̄, y0 ≤ y ≤ l2(x).

(36)

Step 6: Solving the problem in Bi with the boundary conditions h(x, 0) = f3(x), h(x, x1 –
x) = HAi (x, x1 – x). After applying L–1

B on both sides of Eq. (28), the following recursion
formulae are constructed:

h0 = f3(x) +
y

x1 – x
(
h(x, x1 – x) – f3(x)

)
– L–1

B Rgt1,

hn = –L–1
B Lx hn–1 – L–1

B Rgtn+1 – L–1
B

(
∂T
∂x

n–1∑
j=0

tn–j
∂hj

∂x
+

∂T
∂y

n–1∑
j=0

tn–j
∂hj

∂y

)
,

n = 1, 2, . . . ,

where

L–1
B =

∫ y

0

∫ y

0
dy dy –

y
x1 – x

∫ x1–x

0

∫ y

0
dy dy.

From the above recurrence formulae, the n-term approximate Adomian solution of the
problem on Bi is obtained as follows:

HBi (x, y) =
n∑

i=0

hi. (37)

For the 3-term approximate solution HB1 (x, y), ẼE = 2.23031 × 10–7, and the graph of
the equation error function is as in Fig. 4.
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Figure 4 Error analysis chart on B1

Figure 5 The segmented solution H(x, y), where (x, y) ∈ D

Step 7 : Set x1 = x̄, y1 = y1/2, f1(y) = HBi (x1, y), then go to Step 2.
In the same way, the calculation is repeated. Since i = 2, B̃E = 0.007, the calculation is

stopped, we obtain the segmented approximate solution (as shown in Fig. 5) as follows:

H(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

HA1 (x, y), (x, y) ∈ A1;

HB1 (x, y), (x, y) ∈ B1;

HA2 (x, y), (x, y) ∈ A2;

HB2 (x, y), (x, y) ∈ B2;

HC2 (x, y), (x, y) ∈ C2.

(38)

5 Discussion and conclusions
Through the proposed algorithm, we can make the boundary error of the BVP smaller than
any positive number. As for the model for the effect of regional recharge on the plane trian-
gle groundwater flow region, we have obtained the segmented exact solution of the prob-
lem by our new algorithm, which satisfies the governing equation and all of the boundary
conditions of the boundary value problem.

Though the proposed algorithm combined with Taylor’s formula, the heterogeneous
aquifer model on the plane triangle groundwater flow region is considered, we have ob-
tained the segmented high-precision approximate solution of this problem. In the solving
process, while i = 0, B̃E = 8.11375; while i = 1, B̃E = 0.34675; when i = 2, B̃E = 0.007. Those
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results are compared with the results in [23], the boundary has been controlled to smaller
than any real number, but not in [23]. From those processes, we can validate the effective-
ness of the algorithm.

If the remainder operator R in Eq. (1) were to include a nonlinear operator, then our
proposed algorithm would become an algorithm for solving of a second-order nonlinear
partial differential equation on a triangle domain. Thus the proposed method can be used
to solve either a general second-order nonlinear or a linear partial differential equation on
a plane triangle domain.

We will consider modifying the ADM with supplemental algorithms depending on
whether it is an IVP, or various types of BVPs, e.g., whether it is a Dirichlet BVP, Neu-
mann BVP, Robin BVP, or possible combinations of mixed boundary conditions. Further-
more, we will always need to consider modifying the ADM with supplemental algorithms
depending on the shape of the boundary contours, i.e., rectangular boundary contours
are usually simpler; for highly irregular boundary contours, we can do so because of the
versatility of the ADM.

In addition, based on the idea of the algorithm, other methods (such as homotopy per-
turbation method, the variational iteration method, the homotopy analysis method [6,
11–13, 27, 28], and the segmented technique are used to solve the boundary value prob-
lem of a second-order partial differential equation on a plane triangle area. Now, we take
the homotopy perturbation method as an example to consider the model for the effect of
regional recharge of the triangle groundwater flow region. Specific steps are as follows.

Step 1: Problem (15) with boundary conditions (16) and (17) is considered. First, the
homotopy equations of Eq. (15) are constructed as follows:

Lxh(x, y) + pLyh(x, y) = –
Rg

T
. (39)

Then, substituting h(x, y) =
∑∞

i=0 piui(x, y) into (39), then letting the coefficients of vari-
ous powers of p be zero, we obtain a series of systems for ui as follows:

Lxu0(x, y) +
1

10,000
= 0, (40)

Lyui–1(x, y) + Lxui(x, y) = 0, i = 1, 2, . . . . (41)

Solving this system, we obtained hn = 0 (n ≥ 2), and the solution HA1 (x, y) of (15) with
conditions (16) and (17) is obtained again as follows:

HA1 (x, y) = –
43x2

900,000
+

21xy
500,000

+
4x

125
–

y2

450,000
–

111y
5000

+ 100, (x, y) ∈ C0. (42)

Step 2: Solving the problem in the domain B1 in Fig. 2 with the boundary conditions
h(x, 0) = f3(x), h(x, 600 – x) = HA1 (x, 600 – x). There the homotopy equations of Eq. (15) are
constructed as follows:

pLxh(x, y) + Lyh(x, y) = –
Rg

T
. (43)

Then, substituting h(x, y) =
∑∞

i=0 piui(x, y) into (43), then letting the coefficients of various
powers of p be zero, we obtain a series of systems for ui. Solving this system, we obtained
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hn = 0 (n ≥ 2), and the solution HB1 (x, y) of (15) with conditions (16) and (17) is obtained
again.

Step 3: Solving the problem on C1 in Fig. 2 with the boundary conditions h(y, y) = f2(y),
h(300, y) = HB1 (300, y).There the homotopy equations of Eq. (15) are constructed as fol-
lows:

Lxh(x, y) + pLyh(x, y) = –
Rg

T
. (44)

Then, substituting h(x, y) =
∑∞

i=0 piui(x, y) into (44), then letting the coefficients of various
powers of p be zero, we obtain a series of systems for ui. Solving this system, we obtained
hn = 0 (n ≥ 2), and the solution HC1 (x, y) of (15) with conditions (16) and (17) is obtained
again. Thus, the segment solution (26) is obtained again. The result shows the effectiveness
of the idea of the algorithm.
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