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Abstract
Diffusion-driven instability is a basic nonlinear mechanism for pattern formation.
Therefore, the way of population diffusion may play a determinative role in the
spatiotemporal dynamics of biological systems. In this research, we launch an
investigation on the pattern formation of a discrete predator–prey system where the
population diffusion is based on the Moore neighborhood structure instead of the
von Neumann neighborhood structure widely applied previously. Under pattern
formation conditions which are determined by Turing instability analysis, numerical
simulations are performed to reveal the spatiotemporal complexity of the system.
A pure Turing instability can induce the self-organization of many basic types of
patterns as described in the literature, as well as new spiral-spot and labyrinth
patterns which show the temporally oscillating and chaotic property.
Neimark–Sacker–Turing and flip–Turing instability can lead to the formation of circle,
spiral and much more complex patterns, which are self-organized via spatial
symmetry breaking on the states that are homogeneous in space and non-periodic in
time. Especially, the emergence of spiral pattern suggests that spatial order can
generate from temporal disorder, implying that even when the predator–prey
dynamics in one site is chaotic, the spatially global dynamics may still be predictable.
The results obtained in this research suggest that when the way of population
diffusion changes, the pattern formation in the predator–prey systems demonstrates
great differences. This may provide realistic significance to explain more general
predator–prey coexistence.
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1 Introduction
Pattern refers to a heterogeneous macrostructure with certain regularity in space or time,
which widely exists in nature, for example, the fish-scale clouds in the sky, the waves on
the surface of water, the stripes and spots on the animal’s skin, and the regular distribution
of populations. The research on nonlinear mechanisms of pattern formation is of great
significance for revealing the fundamental laws of natural phenomena. Recently, many re-
searchers have made a great deal of efforts in understanding the pattern self-organization
in predator–prey systems [1–7]. Since the predator–prey systems exist in multi-level and
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multi-scale in ecosystems, the predator–prey pattern formation reflects the spatiotempo-
ral complexity of ecosystems [8–10] and deserves investigation.

The pattern formation always takes place when a dynamical system is far from a ther-
modynamic equilibrium state at which the intensive properties of the system are inde-
pendent of time and no current of matter or energy exists in the interior of the system or
at the boundaries with the surroundings [11]. In such a case, the system dynamics often
becomes very complex and tends to be heterogeneous. In 1952, Turing [12] established
a reaction–diffusion model to explain the patterns on the surface skin of animals and re-
vealed the regularity of spatial pattern formation from mathematics, i.e. the instability of
spatial homogeneous stationary state brings spatial symmetry breaking, which results to
the self-organization of patterns. The Turing instability theory has been applied in vari-
ous fields to explain the pattern self-organization phenomena and verified by experiments.
In 1991, Ouyang found two-dimensional Turing patterns in experiments [13, 14], which
provided evidence for theoretical research results of pattern formation analysis.

In studying the pattern formation of the predator–prey systems, the reaction–diffusion
model and Turing instability theory have been widely employed and lots of interesting re-
sults have been obtained. For example, Xu et al. investigated the spatiotemporal dynamics
of a reaction–diffusion predator–prey system with time delay, determining the effects of
spatiotemporal delay and predator rate on the spatiotemporal distributions of the species
[2]. Brigatti et al. explored the classical Lotka–Volterra model, which can control the spa-
tial scale of predator–prey interaction range and found the pattern formation of ecosys-
tems via determining the instability which is driven by the range of interaction [3]. Wang
et al. studied the spatiotemporal dynamics of a homogeneous diffusive predator–prey sys-
tem, and proved the existence of non-constant positive steady state solutions [15]. Li found
sufficient conditions for the existence of non-constant positive solutions by studying local
and global stability of an invasion–diffusion predator–prey system, illustrating the exis-
tence possibility of the spatiotemporal pattern [4]. These research works prove the effi-
ciency and effectiveness of the reaction–diffusion model and Turing instability theory.

Until now, the vast majority of research works on predator–prey systems employs
continuous predator–prey models. However, over the past decades, more and more re-
searchers realize the discrete properties of the predator–prey systems, such as fragmented
habitat, alternation of generations, and so on, and their influence on the system dynam-
ics [5–7, 16]. Based on the discrete properties, various discrete models have been devel-
oped. Generally, the discrete models show power in capturing dynamical characteristics
as well as spatiotemporal complexity of the predator–prey systems [5, 17, 18]. In literature,
one of the most successful discrete models often applied for studying the spatiotemporal
predator–prey dynamics is the coupled map lattice (CML) [5, 17, 19–22].

The CML describes “a dynamical system with discrete time (‘map’), discrete space (‘lat-
tice’), and a continuous state” [23]. As described by Kaneko [23], “it usually consists of dy-
namical elements on a lattice interacting (‘coupled’) among suitably chosen sets of other
elements”. This type of model, based on its advantages, is often applied to investigate the
pattern formation and spatiotemporal chaos of the predator–prey systems. Via discretiz-
ing the reaction–diffusion model, the CML can be developed [16, 17, 22]. And the re-
searchers found that such CMLs are practical in describing nonlinear characteristics and
spatiotemporal complexity of predator–prey systems [16, 17]. Moreover, many new attrac-
tive results can be produced with the application of CMLs. Rodrigues et al. [21] revealed
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a rich variety of pattern formation scenarios in a space- and time-discrete predator–prey
system with a strong Allee effect and found spatiotemporal multistability under the ef-
fects of different initial conditions. Huang et al. researched the discrete predator–prey
systems based on CML and revealed complex dynamic transition from non-chaotic state
to chaotic state [22]. Also, they studied the spatiotemporal pattern formation of differ-
ent discrete predator–prey systems, and found the CML can demonstrate new dynamical
complexity, including spatiotemporal chaos [16, 17].

With its particular nonlinear mechanisms, the CML can further demonstrate and pro-
foundly reveal the spatiotemporal complexity of predator–prey systems. However, the cur-
rent research works with the application of CML as well as reaction–diffusion model give
little attention to the pattern formation under the effects of different ways of population
diffusion. In the reaction–diffusion model, the Laplacian operator is mostly often used
to represent the population diffusion. Correspondingly in the CML, the discrete form of
Laplacian operator is applied, i.e.,

∇2
dφ(x,y,t) = φ(x+1,y,t) + φ(x–1,y,t) + φ(x,y+1,t) + φ(x,y–1,t) – 4φ(x,y,t), (1)

in which φ represents the state variable which is dependent on the space and time variables
x, y, t. As recorded in the literature, the neighborhood structure used in the discrete Lapla-
cian operator is the so-called von Neumann neighborhood structure. In this research, we
turn to study the pattern formation under another type of neighborhood structure, the
Moore neighborhood, which is scarcely investigated in the spatiotemporal predator–prey
models, including both continuous reaction–diffusion models and CML models. The dis-
crete Laplacian operator based on Moore neighborhood structure can be expressed as

∇2
dφ(x,y,t) = φ(x+1,y,t) + φ(x–1,y,t) + φ(x,y+1,t) + φ(x,y–1,t) + φ(x+1,y–1,t) + φ(x+1,y+1,t)

+ φ(x–1,y–1,t) + φ(x–1,y+1,t) – 8φ(x,y,t). (2)

The feasibility of applying Moore neighborhood structure for population diffusion can
be described in the following aspects. First, the original continuous Laplacian operator,
if considered separately in two-dimensional space, describes the diffusion around located
site in the form of waving circles. Intuitively, such encircling type of diffusion is better
exhibited by the Moore neighborhood than the von Neumann neighborhood, which is
a numerical approximation of the continuous Laplacian operator. Second, the popula-
tion diffusion with Moore neighborhood structure shows higher spatial extension than
that described by von Neumann neighborhood structure. Since the Moore neighborhood
structure allows the predator and prey spreading to any site around, the population dif-
fusion is isotropic, i.e., the spatial dispersal of the predator and the prey populations can
extend to all sites around by arbitrary ways. Therefore, the Laplacian operator with Moore
neighborhood structure actually describes a case of population diffusion which is not re-
strained by external factors, such as topography, landscape, and so on. Third, dependent
on the distribution and connection of discrete habitat patches in natural space, different
neighborhood structures for population diffusion should be applied. The Moore neighbor-
hood structure suggests that the discrete habitat patches compose of a complex network,
where each patch is connected to eight adjacent patches. Based on the complex network,
the predator–prey system exhibits population diffusion among these “adjacent” patches.
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Consequently, the Moore neighborhood structure holds significance from the perspec-
tives of ecology and complex network.

In this research, we concern the pattern formation of a modified Leslie–Gower pred-
ator–prey system under the influence of population diffusion in expressing as (2). The
Leslie–Gower predator–prey system is one of the important systems in population dy-
namics. The Leslie–Gower functional response was initially built and studied by Leslie and
Gower, who assumed that interacting species grow according to the logistic law and that
the environmental carrying capacity for the predator is not a constant but proportional to
the population size of the prey [24]. However, due to the rarity of the prey, the predator
can switch over to other food, but its growth is still limited by the fact that its favorite
prey is not available in abundance [24–26]. Based on such case, a modified Leslie–Gower
functional response was further developed and extensively studied by many researchers
[27–30]. With the CML and Moore neighborhood structure considered in this research,
new spatiotemporal complexity will be revealed for such a predator–prey system.

The organization of this research work is arranged as follows. Section 2 will establish a
discrete predator–prey model which is given by a CML where Moore neighborhood struc-
ture is applied for population diffusion. Section 3 will perform Turing instability analysis,
and determine the pattern formation conditions of the predator–prey system. In Sect. 4,
spatial patterns induced by Turing instability will be numerically simulated and displayed
to show the spatiotemporal complexity of the modified Leslie–Gower predator–prey sys-
tem. And finally, Sect. 5 will provide the discussion and conclusions.

2 Model development
The CML can be developed from the discretization of the continuous dynamical model.
Therefore, the model development in this research starts from a continuous spatiotem-
poral predator–prey model which is governed by partial differential equations. Here, we
consider a modified Leslie–Gower predator–prey system with Holling-type II functional
response [31]. The corresponding equations for the predator–prey model are described
as [31]

dU
dT

=
(

a1 – b1U –
c1V

U + k1

)
U + D1

(
∂2U
∂X2 +

∂2U
∂Y 2

)
, (3a)

dV
dT

=
(

a2 –
c2V

U + k2

)
V + D2

(
∂2V
∂X2 +

∂2V
∂Y 2

)
, (3b)

where U and V are the densities of prey and predator, respectively; T stands for time and
(X, Y ) represents the spatial position of the species when they move in a two-dimensional
space; a1 and a2 describe the growth rate of the prey and the predator; b1 measures the
strength of competition among individuals of the prey; c1 is the maximum value of the
per capita reduction of the prey due to the predator; k1 measures the extent to which
environment provides protection to the prey; c2 and k2 have similar meaning to c1 and k1

relatively to the predator; D1 and D2 are the diffusion coefficients of prey and predator,
respectively.

The spatiotemporal predator–prey model with modified Leslie–Gower and Holling-
type II functional responses is well recognized in the literature and has been studied [24–
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26, 32]. With the following scaling transformations:

t = a1T , u =
b1

a1
H , v =

c2b1

a1a2
P, x =

√
a1

D1
X, y =

√
a1

D1
Y ,

a =
a2c1

a1c2
, b =

a2

a1
, e1 =

b1k1

a1
, e2 =

b1k2

r1
, δ =

D2

D1
,

(4)

Eqs. (3a)–(3b) can be changed into the following simplified form:

du
dt

= u(1 – u) –
auv

u + e1
+ ∇2u, (5a)

dv
dt

= bv
(

1 –
v

u + e2

)
+ δ∇2u. (5b)

Via discretizing Eqs. (5a)–(5b), the new CML model is developed. First we consider a
two-dimensional rectangular domain including n × n grid cells, with time interval and
space interval given as τ and h. Each grid cell represents a spatial site where the predator
and prey dwell. For simplification, we still use x, y, t to represent the discrete space and
time variables. Then we define two state varaibles, u(x,y,t) and v(x,y,t) (x, y ∈ {1, 2, 3, . . . , n} and
t ∈ Z+), representing the prey density and the predator density in the (x, y) site at the time t.
According to the previous literature [16, 17, 22], in developing the CML, the ecological
processes of the predator–prey system are often segregated into two distinctly different
stages at each discrete step from t to t + 1, namely dispersal stage and reaction stage.
The dispersal stage includes the spatial diffusion of the prey and the predator in space,
whereas the reaction stage includes the growth and death of the prey and the predator,
and the predation between the two populations. Through discretizing the spatial terms of
Eqs. (5a)–(5b), the dispersal stage can be expressed as follows:

u′
(x,y,t) = u(x,y,t) +

τ

h2 ∇2
du(x,y,t), (6a)

v′
(x,y,t) = v(x,y,t) +

τ

h2 δ∇2
dv(x,y,t), (6b)

where ∇2
d denotes the discrete Laplacian operator. Here, we utilize the Moore neighbor-

hood structure. Correspondingly, the expressions of ∇2
du(x,y,t) and ∇2

dv(x,y,t) are given by
Eq. (2).

Through discretizing the non-spatial terms of Eqs. (5a)–(5b), the reaction stage of the
CML can be obtained:

u(x,y,t+τ ) = f1
(
u′

(x,y,t), v′
(x,y,t)

)
, (7a)

v(x,y,t+τ ) = g1
(
u′

(x,y,t), v′
(x,y,t)

)
, (7b)

where f1 and g1 are functions determined by the local interaction of the predator–prey
system. The two functions are expressed by [31, 33, 34]

f1(u, v) = u + τ

(
u(1 – u) –

avu
u + e1

)
, (8a)

g1(u, v) = v + τbv
(

1 –
v

u + e2

)
. (8b)
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Generally in the literature, the dispersal stage is considered to occur before the reac-
tion stage in each iteration. Combining the above equations, the expression of the CML is
obtained:

u(x,y,t+τ ) = f1

(
u(x,y,t) +

τ

h2 ∇2
du(x,y,t), v(x,y,t) +

τ

h2 δ∇2
dv(x,y,t)

)
, (9a)

v(x,y,t+τ ) = g1

(
u(x,y,t) +

τ

h2 ∇2
du(x,y,t), v(x,y,t) +

τ

h2 δ∇2
dv(x,y,t)

)
, (9b)

which describes a spatiotemporally discrete predator–prey system. The initial condition
and boundary condition for the CML are given as follows:

u(x,y,0) = u0
(
1 + 0.1(ς – 0.5)

)
, v(x,y,0) = v0

(
1 + 0.1(ς – 0.5)

)
, (10a)

u(0,y,t) = u(n,y,t), u(1,y,t) = u(n+1,y,t),

u(x,0,t) = u(x,n,t), u(x,1,t) = u(x,n+1,t),
(10b)

v(0,y,t) = v(n,y,t), v(1,y,t) = v(n+1,y,t),

v(x,0,t) = v(x,n,t), v(x,1,t) = v(x,n+1,t),
(10c)

where u0 and v0 are fixed values determined by the stable fixed point and ς follows stan-
dard uniform distribution. From the ecological point of view, all the parameters involved
in the CML model are positive and the values of the state variables are nonnegative.

3 Stability analysis
3.1 Local stability analysis
First the spatially homogeneous stationary states of the discrete predator–prey system
need to be obtained. According to the spatial homogeneity of the discrete system, we have

∇2
du(x,y,t) = 0, ∇2

dv(x,y,t) = 0. (11)

Substituting Eq. (11) into the expression of the CML, the dynamics of the system turns to
be

u(x,y,t+τ ) = u(x,y,t) + τu(x,y,t)

(
1 – u(x,y,t) –

av(x,y,t)

u(x,y,t) + e1

)
, (12a)

v(x,y,t+τ ) = v(x,y,t) + bτv(x,y,t)

(
1 –

v(x,y,t)

u(x,y,t) + e2

)
. (12b)

Let u(x,y,t+τ ) = u(x,y,t), and v(x,y,t+τ ) = v(x,y,t) (notice that these two equations establish for
any x and y), and solving Eqs. (12a)–(12b), then the fixed points of the system can be
obtained [22]:

(u1, v1) : (0, 0), (u2, v2) : (1, e2), (u3, v3) : (1, 0), (u4, v4) :
(
u∗, v∗), (13)

where

u∗ =
1
2
(
1 – a – e1 +

√
(a + e1 – 1)2 – 4(ae2 – e1)

)
, (14a)

v∗ = u∗ + e2. (14b)
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The sufficient and necessary conditions for that (u∗, v∗) is positive are

(a + e1 – 1)2 – 4(ae2 – e1) > 0, (15a)

e1 > max(1 – a, ae2) or e1 < 1 – a. (15b)

The local stability of the fixed point is determined with application of the method of
Jacobian matrix. Since the pattern formation needs the nontrivial homogeneous stationary
state, which is corresponding to the fixed point (u∗, v∗), we just concern the stability of
(u∗, v∗). The Jacobian matrix associated to Eqs. (12a)–(12b) at any point is described as

J(u, v) =

⎛
⎝1 + τ (1 – 2u – ave1

(u+e1)2 ) – τau
u+e1

τbv2

(u+e2)2 1 + τ (b – 2bv
u+e2

)

⎞
⎠ . (16)

Substituting the value of (u∗, v∗) into (16), we get

A = J
(
u∗, v∗) =

(
a11 a12

a21 a22

)
, (17)

where

a11 = 1 + τ

(
1 – 2u∗ –

a(u∗ + e2)e1

(u∗ + e1)2

)
, a12 = –

τau∗

u∗ + e1
,

a21 = τb, a22 = 1 – τb.
(18)

The two eigenvalues of matrix (17) are

λ1,2 =
1
2
(
–p ± √

p2 – 4q
)
, (19)

where

p = a11 + a22, q = a11a22 – a12a21. (20)

According to the criterion of stability of the fixed point, if |λ1| < 1 and |λ2| < 1, the corre-
sponding fixed point is considered to be stable. As shown in previous research [16], this
criterion of stability is equivalent to q < 1, –(1 + q) < p < 1 + q. Through calculations, the
conditions for (u∗, v∗) to be stable are determined as

(1 – τb)B + (τa – 1)bA2 – τabe1A < 0, (21a)

B – aA2 + ae1A < 0, (21b)

τ (τb – 2)B –
(
τ 2ab + 2τb + 4

)
A2 + τ 2abe1A < 0, (21c)

where A = 1
2 (1 – a + e1 +

√
(a + e1 – 1)2 – 4(ae2 – e1)) and B = ae1(e1 – e2) – ae1A + (1 +

2e1)A2 – 2A3.
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3.2 Turing instability analysis
Turing instability, also known as diffusion-driven instability, occurs when a spatially ho-
mogeneous stationary state that would be stable in the absence of diffusion is destabilized
by diffusion [35, 36]. The Turing instability always takes place along with the spatial sym-
metry breaking which shows the spatiotemporal dynamical system turning from a state
with spatial invariance to another state that is spatially variant under the broken symme-
try, suggesting the change from spatially homogeneous states to Turing patterns. Gener-
ally, the occurrence of a Turing instability needs the satisfaction of two conditions. First,
the system has a nontrivial stable spatially homogeneous stationary state. Second, this
state is unstable to spatially heterogeneous perturbations. Under the influence of Turing
instability, local spatially heterogeneous perturbations on the stable homogeneous state
can gradually expand to the global spatial domain.

On the basis of the stable fixed point (u∗, v∗), the Turing instability is then analyzed.
Considering a small spatially heterogeneous perturbation ε(x,y,t) and σ(x,y,t) on (u∗, v∗), we
have

u(x,y,t) = u∗ + ε(x,y,t), v(x,y,t) = v∗ + σ(x,y,t). (22)

Substituting (22) into Eqs. (9a)–(9a) and keeping the linear-order terms yield difference
equations for ε(x,y,t) and σ(x,y,t),

ε(x,y,t+τ ) = a11

(
ε(x,y,t) +

τ

h2 ∇2
dε(x,y,t)

)
+ a12

(
σ(x,y,t) +

τ

h2 δ∇2
dσ(x,y,t)

)
, (23a)

σ(x,y,t+τ ) = a21

(
ε(x,y,t) +

τ

h2 ∇2
dε(x,y,t)

)
+ a22

(
σ(x,y,t) +

τ

h2 δ∇2
dσ(x,y,t)

)
. (23b)

The Fourier-type generic solution of the system of difference equations (23a)–(23b) can
be given as

(
ε(x,y,t)

σ(x,y,t)

)
=

(
ε̄t

σ̄t

)
cos(q1x) cos(q2y), (24)

where ε̄t and σ̄t are new variables independent of space, q1 and q2 are wavenumbers and
unknown. Substituting the Fourier-type generic solution (24) into Eqs. (23a)–(23b) leads
to the following results:

ε̄t+τ = a11

(
ε̄t +

2τ

h2 (cos q1 + cos q2 + 2 cos q1 cos q2 – 4)ε̄t

)

+ a12

(
σ̄t +

2τ

h2 δ(cos q1 + cos q2 + 2 cos q1 cos q2 – 4)σ̄t

)
, (25a)

σ̄t+τ = a21

(
ε̄t +

2τ

h2 (cos q1 + cos q2 + 2 cos q1 cos q2 – 4)ε̄t

)

+ a22

(
σ̄t +

2τ

h2 δ(cos q1 + cos q2 + 2 cos q1 cos q2 – 4)σ̄t

)
. (25b)
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Let

k1 = 1 +
2τ

h2 (cos q1 + cos q2 + 2 cos q1 cos q2 – 4), (26a)

k2 = 1 +
2τ

h2 δ(cos q1 + cos q2 + 2 cos q1 cos q2 – 4). (26b)

It should be noticed that k1 and k2 are particularly corresponding to the Moore neigh-
borhood structure. For other neighborhood structures, these expressions are different
since each grid cell included in the neighborhood has special characteristics under the
Fourier expansion. For the von Neumann neighborhood structure, k1 and k2 change to be
k1 = 1 + 2τ

h2 (cos q1 + cos q2 – 2), k2 = 1 + 2τ

h2 δ(cos q1 + cos q2 – 2).
The Jacobian matrix of difference equations (25a)–(25b) can be written as

J∗ =

(
a11k1 a12k2

a21k1 a22k2

)
. (27)

According to the Turing instability conditions as recorded in the literature, when the solu-
tions of the difference equations (25a)–(25b) diverge, Turing instability takes place in the
discrete predator–prey system. It means the occurrence of a Turing instability needs that
the modulus of one of the eigenvalues of matrix (27) is larger than one. The two eigenval-
ues of (27) are calculated as

λ̄± =
1
2
(
k1a11 + k2a22 ±

√
(k1a11 + k2a22)2 – k1k2 det A

)
. (28)

That |λ̄+| or |λ̄–| is larger than 1 leads to a necessary condition for Turing instability, which
can be given as

|k1a11 + k2a22| > 1 + k1k2 det A. (29)

Under this Turing instability condition (29), the stable state (u∗, v∗) is destabilized and
the predator–prey system converges to a new state which maintains heterogeneous in
space. This means the Turing instability induces pattern formation. From the above
calculations, two cases of Turing instability conditions can be obtained. If we have
max(λ̄+, λ̄–) > 1, it suggests the occurrence of diffusion-driven plus-one bifurcation; if we
have min(λ̄+, λ̄–) < –1, it implies the emergence of diffusion-driven minus-one bifurcation.
The conditions for these cases of Turing instability are described as follows:

(1) A diffusion-driven plus-one bifurcation occurs when

|Tr A| < 1 + det A, (30a)

det A < 1, (30b)

1 – (k1a11 + k2a22) + k1k2 det A < 0; (30c)

(2) a diffusion-driven minus-one bifurcation occurs when inequalities (30a) and (30b)
hold, but (30c) turns into

1 + (k1a11 + k2a22) + k1k2 det A < 0. (31)
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4 Pattern formation
The Turing instability analysis gives the conditions for pattern formation of the discrete
predator–prey system. Based on the pattern formation conditions, numerical simulations
are performed to demonstrate the predator–prey patterns. For the simulations, the pa-
rameter values are given based on former research work [30]. In this research, we provide
a group of feasible parameter ranges as: a = 0.89 ∼ 1.35, b = 0.1781 ∼ 1.21, e1 = 0.3 ∼ 0.31,
e2 = 0.2 ∼ 0.21, δ = 1 ∼ 30, h = 6 ∼ 15, τ = 0.2 ∼ 3.64. Within these parameter ranges, the
parameter values should satisfy two aspects of conditions. First, to ensure non-negativity
of u and v in the numerical simulations, the value of δτ /h2 must be less than 0.5 [16, 37].
Second, the values of parameters a, b, e1, e2, δ, h and τ should satisfy conditions (30a)–
(30c) and (31), implying Turing instability. Additionally, the value of parameter n which
reflects the domain size of the space would be better ranging in 50 ∼ 400 [5–7, 16, 17,
21, 22, 31, 36]. A too small value of n would lead to simulation results of no significance,
whereas a too large value of n brings about an excessively long simulation running time.
Notice that the Moore neighborhood of the grid cell at the boundary is adjusted according
to periodic boundary condition. In this research, the value of n is given as 50, 100 and 200.
The change of n value does not influence the pattern types in simulations and is merely to
demonstrate the patterns in the best window.

The initial condition for pattern simulation is given by applying small random pertur-
bations on the stable homogeneous stationary state as described in Eq. (10a). By changing
different parameter values, we get a series of spatial patterns that reflect different dynamic
behaviors of the predator and the prey. Since the spatial patterns of predator and prey al-
ways display similar or complementary configurations, we can choose one of them (in this
research the prey pattern is chosen) to make exhibition, description and analysis. Notice
that the red color represents a high prey density, whereas the blue color shows a low prey
density.

Figure 1 displays the classical patterns at various values of parameter a under the pure
Turing instability mechanism, with the other parameters fixed as e1 = 0.3, e2 = 0.2, b =
0.1781, δ = 30, h = 6, τ = 0.2. It can be found that the change of the maximum consumption
rate of the prey consumed by the predator can induce the transition of patterns in the
discrete system. With the increase of the a value from 0.89 to 1.35, the spatial pattern
gradually transforms to a cold spot shape from spatially homogeneous state (Fig. 1a and
1b), then the cold spot-stripe pattern, stripe pattern and hot spot-stripe pattern appear
one after another (Fig. 1c, 1d and 1e), and finally the system stays at the hot spot pattern
(Fig. 1f ). Such pattern transition process may result from that the consumption ability of
predator to prey enlarges the predator population and consequently the range of activities
of the prey individuals is reduced. The continuous shrinking of the range of prey activities
leads to the change of pattern shapes.

More complex pattern transition can be induced by the variation of two or more param-
eters. As shown in Fig. 2, a distribution of spatial patterns in the a–b parameter space is
demonstrated. It is found that each type of spatial patterns, denoted by different marks,
occupies a specific area in the region diagram of parameters a and b. Figure 2 also reveals
that with the change of parameter a, the discrete predator–prey system always exhibits a
pattern transition process as displayed in Fig. 1. The change of parameter b mainly influ-
ences the borders for each pattern areas, and therefore may generate the pattern transition
between the adjacent areas, such as the transitions between cold spot and cold spot-stripe
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Figure 1 Various self-organized patterns induced by Turing instability under different a values,
(a) approximately homogeneous pattern, (b) cold spot pattern, (c) cold spot-stripe pattern, (d) stripe pattern,
(e) hot spot-stripe pattern, (f) hot spot pattern. The other parameter values are given as e1 = 0.3, e2 = 0.2,
b = 0.1781, δ = 30, h = 6, τ = 0.2, n = 100, t = 10,000

Figure 2 Distribution of different types of patterns
in a region diagram of parameters a and b. The
meaning of marks are described as follows:
eight-pointed stars for homogeneous stationary
state, five-pointed stars for approximately
homogeneous patterns, inverted triangles for cold
spot patterns, triangles for cold spot-stripe patterns,
diamonds for stripe patterns, dots for hot spot-stripe
patterns, and squares for hot spot patterns. e1 = 0.3,
e2 = 0.2, δ = 30, h = 6, τ = 0.2, n = 200, t = 10,000

patterns, and between hot spot-stripe and hot spot patterns. Via comparison, we find that
the change of parameter a which measures the consumption ability of predator to prey
is more sensible than the change of parameter b which measures the growth rate of the
predator population to produce the variation of patterns, i.e., to shift the way for coexis-
tence of the predator and the prey.

The pattern types as displayed in Fig. 1 are common in predator–prey systems. How-
ever, when the population diffusion is based on the Moore neighborhood structure, new
different patterns can be exhibited, as shown in the following figures. Figure 3 displays the
evolving process of a spiral-spot pattern. We start from randomly perturbing the homoge-
neous stationary state (u∗, v∗). As the time grows, the predator–prey system experiences
disordered transient states (Fig. 3a–b), and then spiral patches emerge in the pattern, al-
ternating with vacant areas of no prey individuals (Fig. 3c–d). Moreover, the prey pattern
shows a “second-order” structure: if we consider the spiral patches and vacant areas as
background, hot spots of prey patches distribute all around in the pattern. It is also found
that the prey pattern in Fig. 3 cannot reach static state but is always fluctuating among
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Figure 3 Self-organziation and nonlinear properties of a spiral-spot pattern. (a)–(d) Evolution of the prey
pattern at transient times t = 10, t = 100, t = 1000, and t = 10,000, respectively; (e)–(g) wave diagrams and
phase portrait of the prey and the predator in a random site of the predator and prey patterns; (h) maximum
Lyapunov exponent diagram corresponding to the prey pattern. The parameter values are given as a = 1.1,
e1 = 0.3, e2 = 0.2, b = 0.3739, τ = 2.828, δ = 3.2, h = 8, n = 100

Figure 4 Self-organziation and nonlinear properties of a labyrinth pattern when the parameter values are
given as a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.3739, τ = 2.36, δ = 4, h = 8, n = 50. (a)–(d) Evolution of the prey
pattern at transient times t = 10, t = 100, t = 500, and t = 1000, respectively; (e)–(g) wave diagrams, phase
portrait and maximum Lyapunov exponent diagram which present same nonlinear properties like in Fig. 3

similar configurations. The fluctuation of prey pattern can be verified by Fig. 3e–g, which
demonstrates the oscillation of the predator and prey densities along the time. Figure 3h
shows a positive maximum Lyapunov exponent, suggesting the self-organized pattern is
spatiotemporally chaotic in the oscillation.

Figures 4 and 5 demonstrate the self-organization and the nonlinear properties of two
labyrinth patterns. Labyrinth patterns are common in the predator–prey systems and were
frequently found in the numerical simulations for predator–prey patterns. However, when
compared with former numerical research, the labyrinth patterns here exhibit new con-
figurations, which reflect particular structures for the spatial distribution of prey popu-
lation under the diffusion based on the Moore neighborhood structure. These patterns
may explain the complicated labyrinths for the animals burrowing into the ground after
a long evolution under the predator–prey relationships. As suggested by the wave dia-
grams, phase portraits and positive Lyapunov exponents in Figs. 4 and 5, we find the two
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Figure 5 Self-organziation and nonlinear properties of a labyrinth pattern when the parameter values are
given as a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.38, τ = 2.5, δ = 10, h = 15, n = 50. (a)–(d) Evolution of the prey pattern
at transient times t = 10, t = 30, t = 100, and t = 1000, respectively; (e)–(g) wave diagrams, phase portrait and
maximum Lyapunov exponent diagram which present same nonlinear properties like in Fig. 3

Figure 6 A transition from stripe pattern to labyrinth pattern with the increase of parameter τ . The other
parameter values are given as a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.38, δ = 10, h = 15, n = 50

labyrinth patterns show the properties of temporal oscillation and spatiotemporal chaos.
In comparison with the stationary labyrinth patterns produced by the diffusion under von
Neumann neighborhood structure, the dynamic properties of oscillating labyrinth pat-
terns imply the predator and prey are quite active in space and time driven by a higher
efficiency of diffusion.

Figure 6 shows a transition process of the prey pattern with the change of parameter τ .
This transition process suggests the origination of labyrinth pattern from stripe pattern.
As demonstrated in Fig. 6, the consequence for the increase of τ value is the continual frag-
mentation of the stripes in the pattern. Therefore, as the long stripes are broken into many
small short stripes with different directions, a transition from stripe pattern to labyrinth
pattern can be observed.

The patterns demonstrated in the above figures are self-organized under the mecha-
nism of pure Turing instability. Furthermore, the predator–prey system may also generate
Neimark–Sacker instability, which is induced by Neimark–Sacker bifurcation, leading to
the destabilization of the stable state (u∗, v∗) and the occurrence of a new state that is ho-
mogeneous in space but quasiperiodically oscillating in time. When the discrete predator–
prey system undergoes Neimark–Sacker instability and Turing instability simultaneously,
spiral or circle patterns may be present, as shown in Figs. 7–8. In order to better display the
self-organization of a circle pattern, Fig. 7 is plotted in a three-dimensional image. With
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Figure 7 Self-organziation and nonlinear properties of a circle pattern. (a)–(d) Evolution of the prey pattern at
transient times t = 100, t = 1000, t = 3000, and t = 5000, respectively; (e)–(h) phase portraits and maximum
Lyapunov exponent diagrams in the cases of uncoupling and coupling the population diffusion. The
parameter values are given as a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.2, τ = 1.89, δ = 2, h = 10, n = 100

Figure 8 Self-organziation and nonlinear properties of a spiral pattern. (a)–(d) Evolution of the prey pattern
at transient times t = 10, t = 100, t = 200, and t = 500, respectively; (e)–(h) phase portraits and maximum
Lyapunov exponent diagrams in the cases of uncoupling and coupling the population diffusion. The
parameter values are given as a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.3739, τ = 3.59, δ = 1, h = 8, n = 100

the gradual increase of time, a part of the spot and stripe patches in the pattern will dis-
appear but some of them will combine together to form a circle (Fig. 7d). Comparing with
the phase portraits and maximum Lyapunov exponent diagrams without and with consid-
eration of the spatial diffusion (Fig. 7e–h), we find that the circle pattern is self-organized
through the spatial symmetry breaking on a closed invariant curve. The pattern forma-
tion results to a transition from quasiperiodic behavior to chaotic behavior in the discrete
predator–prey system. The self-organization of spiral pattern demonstrated in Fig. 8 is
also induced by the Neimark–Sacker–Turing instability. Different from Fig. 7, this pattern
emerges through spatial symmetry breaking on a state which is homogeneous in space and
chaotic in time. As described in Fig. 8e–8h, the complexification of phase portrait and in-
crease of maximum Lyapunov exponent imply that the pattern formation strengthens the
chaotic state along the temporal scale. However, the distribution of the prey population
still presents high degree of order in space. Such a result suggests that spatial order can
generate from temporal disorder via the mechanism of Turing pattern formation.



Huang et al. Advances in Difference Equations        (2019) 2019:399 Page 15 of 20

Figure 9 Self-organziation and nonlinear properties of a complex pattern induced by flip–Turing instability.
(a)–(d) Evolution of the prey pattern at transient times t = 10, t = 100, t = 1000, and t = 10,000, respectively;
(e)–(h) phase portraits and maximum Lyapunov exponent diagrams in the cases of uncoupling and coupling
the population diffusion. The parameter values are given as a = 1.11, e1 = 0.31, e2 = 0.21, b = 1.21, τ = 3.15,
δ = 2, h = 15, n = 100

When the discrete predator–prey system experiences flip bifurcation and Turing in-
stability, the pattern formation can present a very complex situation different from above
cases. As widely known, the flip bifurcation in discrete-time system often triggers a period-
doubling cascade and a route to chaos. Figure 9 exhibits a complex pattern which is self-
organized by spatial symmetry breaking on the chaos induced by flip bifurcation. This
pattern shows complicated configuration with almost no identified ordered structure in
space and is always changing with time. As suggested by the comparison between Fig. 9e–f
and Fig. 9g–h, the discrete predator–prey system exhibits stronger chaos with the coupling
of population diffusion.

It can be observed from the configuration in the above figures that a few patterns ex-
hibit strong spatial autocorrelation, for example, in spot patterns, the cold or hot spots can
occur repeatedly in space. Therefore, it deserves an investigation of the pattern character-
istics from the aspect of spatial autocorrelation. In this research, the univariate Moran
index is applied to quantify the spatial autocorrelation of the spatial patterns and the re-
sults are shown in Table 1. It is found that the patterns self-organized under the flip–Turing
and the Neimark–Sacker–Turing instability demonstrate the highest spatial autocorrela-
tion: larger than 0.9. This suggests that although the spatial distribution of prey patches in
these pattern is irregular, the prey density in different patches may have small difference.
Unsurprisingly, the regularity of structure in the patterns of Fig. 1 leads to relatively higher
spatial autocorrelation, which is larger than 0.8. The spiral-spot and labyrinth patterns in
Figs. 3 and 4 hold weak spatial autocorrelation, which verifies the spatiotemporal chaos
and suggests large spatial variation in these patterns.

It is important to study the influence of neighborhood structure on the predator–prey
dynamics and a comparison of pattern formation between the Moore and the von Neu-
mann neighborhood structures needs to be made. The change of the neighborhood struc-
ture can influence the basic characteristics or even the type of self-organized patterns. Via
comparison using the parametric conditions in Figs. 1, 7 and 8, we find the pattern types
do not change with the neighborhood structures, but the patterns self-organized under
Moore neighborhood structure seems like a zoom-in on that under the von Neumann
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Table 1 Univariate and bivariate Moran index for the simulated patterns

Patterns Univariate Moran index Bivariate Moran index

Fig. 1(a) 0.8195 2.6051× 10–4

Fig. 1(b) 0.8037 0.0029
Fig. 1(c) 0.8056 0.0016
Fig. 1(d) 0.8071 0.0022
Fig. 1(e) 0.8078 0.0045
Fig. 1(f ) 0.8424 0.0060
Fig. 3 –0.0397 0.0249
Fig. 4 –0.0588 9.3187× 10–4

Fig. 5 –0.2301 5.2240× 10–4

Fig. 6(a) –0.3217 8.3236× 10–4

Fig. 6(b) –0.2891 3.1231× 10–4

Fig. 6(c) –0.2301 5.2240× 10–4

Fig. 7 0.9907 0.0733
Fig. 8 0.9248 0.0277
Fig. 9 0.9174 0.0136

Figure 10 Subtraction between the two patterns which are simulated with the application of Moore and von
Neumann neighborhood structures. Same initial conditions and parameter conditions are applied. The four
cases are corresponding to (a) Fig. 1b, (b) Fig. 1f, (c) Fig. 8 and (d) Fig. 9, respectively

neighborhood structure, i.e., the spots, stripes and spirals enlarge about at four times.
A comparison with the parametric conditions in Figs. 3–6 demonstrates that the Moore
neighborhood leads to the formation of varying complex patterns, contrary to the very
simple two-phase mosaic pattern and homogeneous state under von Neumann neighbor-
hood.

Moreover, Fig. 10 is plotted with an exhibition of the subtraction between the pat-
terns which are simulated with the application of Moore and von Neumann neighbor-
hood structures. The results in Fig. 10 suggest that when the way of population disper-
sal changes, the pattern formation results in the predator–prey system may demonstrate
great differences. Furthermore, we calculate the spatial correlation between the patterns
self-organized under the two neighborhood structures via the method of bivariate Moran
index [38–40], in order to quantitatively determine their differences. As shown in Table 1,
all values of spatial correlation demonstrated by the bivariate Moran index are smaller than
0.1 and most of the values fluctuate around 0.001. These low values of the bivariate Moran
index suggest the two neighborhood structures indeed lead to very large differences in the
self-organized patterns.

With the pattern formation simulations, we find that limitations still exist in this re-
search work. If the value of parameter τ is given making δτ /h2 > 0.5 or the initial con-
ditions with large perturbations (for example, u(x,y,0) = u0(1 + 2(ς – 0.5))) are provided,
convergent results of patterns may not be obtained. Since the pattern formation can ex-
hibit multistability under the flip–Turing and the Neimark–Sacker–Turing instability, the
extrinsic stochastic spatiotemporal perturbations may geatly influence the pattern forma-
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tion results [40, 41]. Also, the intrinsic stochasticity in pattern formation process is not
considered.

5 Discussion and conclusions
The self-organization of patterns in predator–prey systems is a common phenomenon and
has been widely investigated by researchers. Under the mechanism of spatial symmetry
breaking driven by population diffusion, the predator–prey system may exhibit rich pat-
terns for the coexistence between the predator and the prey. In previous research work,
most of the spatiotemporal predator–prey models, regardless of continuous and discrete,
are established and studied with the population diffusion based on the von Neumann
neighborhood structure. However, the spatial population diffusion in real cases may be
diverse and very complex. In this research, we explored the pattern formation of a dis-
crete predator–prey system with the application of a CML model where the population
diffusion is considered based on the Moore neighborhood structure. The results of pattern
formation in this case as obtained in the present research can provide realistic significance
in explaining a more general predator–prey coexistence.

With the application of stability analysis and Turing instability analysis, the pattern for-
mation conditions for the discrete predator–prey system in this research are determined.
Then, based on these conditions, numerical simulations reveal that the discrete predator–
prey system can exhibit rich and complex patterns. We mainly focus on the pattern forma-
tion under three nonlinear mechanisms, the pure Turing instability, the Neimark–Sacker–
Turing instability and the flip–Turing instability. The pure Turing instability can repro-
duce basic types of patterns as described in previous research, such as regular spot, stripe,
labyrinth patterns and their intermediate patterns. This suggests the new model estab-
lished in this research contains basic spatiotemporal dynamics of previous pattern forma-
tion models. The Neimark–Sacker–Turing and the flip–Turing instability can lead to the
formation of circle, spiral and even more complex patterns, which are self-organized via
spatial symmetry breaking on the states that are homogeneous in space and non-periodic
in time. These patterns have the property of spatiotemporal chaos.

Little previous research work has investigated the pattern formation of spatiotemporally
discrete predator–prey systems with the application of CML based on the von Neumann
neighborhood structure, for example the investigations made by Petrovskii, Rodrigues and
Mistro [5, 6, 21]. In comparison with their work, the study in this research presents a few
differences or improvements. First, since the Moore neighborhood structure enhances
the capability of population diffusion in the space, the predator–prey more easily reaches
homogeneity than the case with the utilization of the von Neumann neighborhood struc-
ture and therefore the parameter domain for the Turing pattern formation shrinks. Sec-
ond, under the pure Turing instability mechanism, we find the self-organization of two
new spiral-spot and labyrinth patterns, which show the temporally oscillating and chaotic
property. Comparing with the stationary patterns produced under von Neumann neigh-
borhood structure, the dynamic properties of these oscillating patterns imply the predator
and prey are quite active in space–time. Third, under the Neimark–Sacker–Turing insta-
bility, we find the formation of spiral patterns which occurs by spatial symmetry breaking
on a state that is homogeneous in space and chaotic in time. The emergence of such spiral
pattern suggests that spatial order can emerge from temporal disorder. It can be inferred
that when the predator–prey dynamics on one site is chaotic, the spatially global dynamics
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may still be predictable. Fourth, the flip–Turing instability and the corresponding pattern
formation are further studied. The simulated patterns shows complicated configuration
with almost no identified ordered structure in space, suggesting stronger chaos possibly
due to the coupling of population diffusion under the Moore neighborhood structure.

The investigation in the present research, from the viewpoint of mathematical mod-
eling and simulation, reveals the importance of the way of population dispersal in the
spatiotemporal dynamics of predator–prey systems. Compared with the von Neumann
neighborhood structure under the same parametric conditions, the usage of the Moore
neighborhood can change the pattern formation mainly in two aspects: first, changing the
pattern types and increasing the complexity of patterns; second, enlarging the prey patches
such as cold or hot spots, stripes and spirals. Moreover, as quantitatively determined by
the bivariate Moran index, the patterns self-organized under the two neighborhood struc-
tures show weak spatial correlation, suggesting great differences.

In recent research work, the usage of von Neumann neighborhood structure for pattern
simulation is common. This may result from the von Neumann neighborhood showing a
direct difference form of the classical continuous Laplacian operator. From the ecological
aspect, the application of the Moore neighborhood structure suggests a case of popu-
lation diffusion which extends to all sites around by arbitrary ways and therefore is less
restrained in space. In the research of cellular automata, the Moore neighborhood is once
used to simulate the dynamics in game of life [42, 43]. Moreover, if we consider the pop-
ulation diffusion among different habitat patches as complex network, the von Neumann
and Moore neighborhoods describe two different network structures. This suggests both
neighborhood structures can be important for the study of the pattern formation.

Since the change of neighborhood structure may lead to a totally different pattern forma-
tion, in the establishment of spatiotemporal models for predator–prey systems, how the
populations diffuse in the space should be identified with care. Also, the research work
on the predator–prey systems where the population diffusion occurs based on different
neighborhood structures deserves further investigation in the future.
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