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Abstract
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1 Introduction
Our aim in this article is to study the problem of existence of continuous solutions of the
following singular Hadamard fractional differential equation:

HDγ v(t) + f
(
t, v(t), HDδv(t), v′(t)

)
= 0, a.e. t ∈ (1, e), (1)

together with either the functional integral boundary condition given by

v(1) = 0, v(e) = v0 + λ

∫ e

1
v
(
φ(ξ )

)φ′(ξ )
φ(ξ )

dξ , (2)

or the infinite-point boundary conditions given by

v(1) = 0, v(e) = v0 + λ

∞∑

j=1

ajv
(
φ(ηj)

)
, (3)

where f : [1, e] × R+ × R2 is an Lp-Carathéodory positive function, p > 1
γ –1 , HDδ is the

Hadamard fractional derivative of order δ, and 1 < γ < 2, 0 < δ < 1, 1 ≤ γ – δ < 2. The
constants aj, λ, and v0 are nonnegative, the function φ : [1, e] → [1, e], φ(t) ≤ t is continu-
ous and the singularity occurring in our problems is associated with v′ ∈ C(1, e] at the left
endpoint t = 1.
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Due to the fact that fractional-order models are more accurate than integer-order mod-
els (that is, there are more degrees of freedom in fractional-order models), the subject of
fractional differential equations has recently evolved into an interesting subject for many
researchers due to its multiple applications in economics, engineering, physics, chemistry,
mechanics. However, most of the results for fractional differential equations are concerned
with the Riemann–Liouville fractional derivative or the Caputo fractional derivative (see
for example Agarwal et al. [1], Akcan and Çetin [4], Bai and Qiu [5], Bai and Sun [6], Calle-
gari and Nachman [9], Chalishajar and Kumar [10], El-Saka et al. [11], El-Sayed et al. [12],
Kosmatov [19], Li and Zhang [21], Liu et al. [22], Qiao and Zhou [26], Qiu and Bai [27],
Rida et al. [28], Song et al. [30], Staněk [31], Tian and Chen [33].

In 1892, Hadamard introduced another kind of fractional derivatives, i.e., Hadamard-
type fractional differential equations, which differs from the preceding ones in the sense
that the kernel of the integral and derivative contain logarithmic function of arbitrary ex-
ponent, which is presented as a quite different kind of weakly singular kernel. Details and
properties of Hadamard fractional derivatives and integrals can be found in Kilbas et al.
[18], Butzer et al. [8], Gambo et al. [13]. Recently, there were some results on Hadamard-
type fractional differential equations; see Ahmad et al. [3], Ahmad and Ntouyas [2], Ben-
chohra et al. [7], Lyons and Neugebauer [24], Matar [25], Shammakh [29], Thiramanus et
al. [32], Yang [35], Zhang et al. [37], and the references cited therein.

The study of boundary value problems (BVPs) involving infinite-point BCs has become
attractive recently, many significant and interesting cases of BVPs of fractional order were
considered with infinite-point BCs by (for example) Gao and Han [14], Ge et al. [15], Guo
et al. [16], Hu and Zhang [17], Li et al. [20], Liu et al. [23], Zhang and Zhong [38] and
Zhang [39] (see also to the references cited therein). In the year 2016, Xu and Yang [34]
proposed a generalization of the PID controller and studied two kinds of fractional-order
differential equations arising in control theory together with the infinite-point boundary
conditions. Their results can describe the corresponding control system accurately and
also provide a platform for the understanding of our environment. However, investigations
on the infinite-point problems for differential equations of fractional or integer order have
gradually aroused people’s attentions and interests, but such investigations are still few.

Motivated by the above-mentioned developments and results, we consider the BVP
given by (1) and (3) or by (1) and (2). In each case, we determine sufficient conditions
on f guaranteeing that these problems has a continuous positive solution. We first find
the existence of positive solutions of the problem (1) subject to the multi-point boundary
conditions

v(1) = 0, v(e) = v0 + λ

m∑

j=1

ajv
(
φ(ηj)

)
. (4)

The main new features presented in this paper are as follows. First, the boundary value
problem has a more general form, in which f is not continuous, but only Carathéodory and
allowed to be singular at t = 1. Second, the nonlocal boundary conditions of the unknown
function are more general cases, which include two-point, three-point, multi-point, infi-
nite point and integral boundary conditions, and some nonlocal problems as special cases.
Third, positive continuous solutions of problems (1), (3) or (1), (2) or (1), (4) are obtained.
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2 Preliminaries
Throughout the paper ‖x‖p = (

∫ e
1 |x(t)|p dt)

1
p is the norm in Lp[1, e], ‖u‖0 = max{|u(t)| : t ∈

[1, e]} be the norm in the space C[1, e] and AC[1, e] denote the space of absolute continuous
functions on [1, e]. We denoted by Lp

loc(1, e] the space of functions on [1, e] defined by

Lp
loc(1, e] =

{
v | v|[c,d] ∈ Lp[c, d] for every compact interval [c, d] ⊂ (1, e]

}
.

We make the following assumptions:
(H1) ηj ∈ (1, e), j = 1, 2, . . . , m, 1 < η1 < η2 < · · · < ηm < e, aj, λ, and v0 are nonnegative,

1 < γ < 2, 0 < δ < 1 and 1 ≤ γ – δ < 2.
(H2) The function φ : [1, e] → [1, e], φ(t) ≤ t is continuous.
(H3) f is Lp-Carathéodory function on [1, e] × R+ × R2 i.e., for each (v1, v2, v3) ∈ R+ × R2,

the function f (·, v1, v2, v3) : [1, e] → R is Lebesgue measurable and for each t ∈ [1, e],
the function f (t, ·, ·, ·) : R+ × R2 → R is continuous.

(H4) There exist p(t), q(t), s(t) ∈ Lp[1, e] and r(t) ∈ Lp
loc(1, e] with (log t)γ –2r(t) ∈ Lp[1, e],

with p > 1
γ –1 such that

∣∣f (t, v1, v2, v3)
∣∣ ≤ p(t)|v1| + q(t)|v2| + r(t)|v3| + s(t),

a.e. t ∈ [1, e], and all (v1, v2, v3) ∈ R+ × R2. (5)

Definition 1 ([18]) The Hadamard fractional integral of order γ for a function v ∈ Lp[1, e],
1 ≤ p < ∞, is defined as

HJγ v(t) =
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 v(θ )
θ

dθ , γ > 0, (6)

provided the integral exists, where log(·) = loge(·).

Definition 2 ([18]) The Hadamard derivative of fractional order γ for a function v :
[1,∞) →R is defined as

HDγ v(t) =
1

Γ (n – γ )

(
t

d
dt

)n ∫ t

1

(
log

t
θ

)n–γ –1 v(θ )
θ

dθ , n – 1 < γ < n. (7)

The relationship between fractional integration (6) and derivatives (7) is stated in the
next theorem [18].

Theorem 1 Let γ > 0, n – 1 < γ < n, then:
(d1) The Hadamard fractional differential equation HDγ v(t) = 0 is valid if and only if

v(t) =
n∑

i=1

ci(log t)γ –i,

where ci ∈ R (i = 1, . . . , n) are arbitrary constants.
In particular, when 1 < γ < 2, the relation HDγ v(t) = 0 holds, if and only if

v(t) = c1(log t)γ –1 + c2(log t)γ –2 for any c1, c2 ∈ R.
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(d2) The quality HDγ
HJγ v(t) = v(t) holds for every v ∈ Lp[1, e].

(d3) Let v ∈ C[1,∞) ∩ Lp[1,∞). The following formula holds:

HJγ
HDγ v(t) = v(t) –

n∑

i=1

ci(log t)γ –i.

(d4) HJγ
HJβv(t) = HJγ +βv(t), β > 0.

(d5) HJ1–δ(log t)γ –1 = Γ (γ )
Γ (γ –δ+1) (log t)γ –δ , δ ∈ (0, 1).

Our results in this article are based upon the Leray–Schauder continuation principle.

Theorem 2 (Leray–Schauder continuation principle; see e.g. [36]) Let X be a Banach
space and T : X → X be a compact map. Assume that there exists an D > 0 so that if v = λTv
for λ ∈ [0, 1] then ‖v‖X ≤ D. Then v = Tv is solvable.

Lemma 1 Suppose that ρ ∈ Lp[1, e], p > 1
γ –1 , 1 ≤ t1 < t2 ≤ e and 1

p + 1
q = 1, then we have

∣∣
∣∣

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ

∣∣
∣∣ ≤

(
(log t)b

b

) 1
q
‖ρ‖p, (8)

∣∣
∣∣

∫ t2

1

(
log

t2

θ

)γ –2
ρ(θ )
θ

dθ –
∫ t1

1

(
log

t1

θ

)γ –2
ρ(θ )
θ

dθ

∣∣
∣∣

≤
(

1
b

) 1
q
(

(log t1)b – (log t2)b +
(

log
t2

t1

)b) 1
q
‖ρ‖p +

(
1
b

) 1
q
(

log
t2

t1

) b
q
‖ρ‖p, (9)

where b = (γ – 2)q + 1.

Proof Using the Hölder inequality with 1
p + 1

q = 1, we get

∣
∣∣
∣

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ

∣
∣∣
∣ ≤

(∫ t

1

(
log

t
θ

)(γ –2)q dθ

θq

) 1
q
(∫ t

1

∣∣ρ(θ )
∣∣p dθ

) 1
p

≤
(∫ t

1

(
log

t
θ

)(γ –2)q dθ

θ

) 1
q
‖ρ‖p

≤
(

(log t)b

b

) 1
q
‖ρ‖p.

Using again the Hölder inequality and the inequality (1 – y)q ≤ 1 – yq, |y| < 1, we get

∣∣
∣∣

∫ t2

1

(
log

t2

θ

)γ –2
ρ(θ )
θ

dθ –
∫ t1

1

(
log

t1

θ

)γ –2
ρ(θ )
θ

dθ

∣∣
∣∣

≤
∫ t1

1

((
log

t1

θ

)γ –2

–
(

log
t2

θ

)γ –2) |ρ(θ )|
θ

dθ +
∫ t2

t1

(
log

t2

θ

)γ –2 |ρ(θ )|
θ

dθ

≤
(∫ t1

1

((
log

t1

θ

)γ –2

–
(

log
t2

θ

)γ –2)q dθ

θq

) 1
q
(∫ t1

1

∣
∣ρ(θ )

∣
∣p dθ

) 1
p

+
(∫ t2

t1

(
log

t2

θ

)(γ –2)q dθ

θq

) 1
q
(∫ t2

t1

∣∣ρ(θ )
∣∣p dθ

) 1
p
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≤
(∫ t1

1

(
log

t1

θ

)(γ –2)q(
1 –

(
log t2

θ

log t1
θ

)γ –2)q dθ

θ

) 1
q
‖ρ‖p

+
(

1
(γ – 2)q + 1

) 1
q
(

log
t2

t1

) (γ –2)q+1
q

‖ρ‖p

≤
(∫ t1

1

((
log

t1

θ

)(γ –2)q

–
(

log
t2

θ

)(γ –2)q)dθ

θ

) 1
q
‖ρ‖p

+
(

1
b

) 1
q
(

log
t2

t1

) b
q
‖ρ‖p

=
(

1
b

) 1
q
(

(log t1)b – (log t2)b +
(

log
t2

t1

)b) 1
q
‖ρ‖p +

(
1
b

) 1
q
(

log
t2

t1

) b
q
‖ρ‖p.

Hence the inequality (9) holds for all 1 ≤ t1 < t2 ≤ e. �

Lemma 2 Suppose that ρ ∈ Lp[1, e], p > 1
γ –1 , then we see that

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ is continuous on [1, e].

Proof The result follows from the inequality (9), since 0 < b = (γ – 2)q + 1 < 1, then as
t1 → t2 in (9), the left-hand side tends to 0. �

Lemma 3 Suppose that ρ ∈ Lp[1, e], then we have:
(i) For t ∈ [1, e],

d
dt

∫ t

1

(
log

t
θ

)γ –1
ρ(θ )
θ

dθ =
(γ – 1)

t

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ . (10)

(ii) Let {ρk} ⊂ Lp[1, e] be Lp-convergent sequence and let limk→∞ ρk = ρ . Then

lim
k→∞

∫ t

1

(
log

t
θ

)γ –2
ρk(θ )

θ
dθ =

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ .

Proof (i) We have by interchanging the order of integration

∫ t

1

(∫ s

1

(
log

s
θ

)γ –2
ρ(θ )
θ

dθ

)
ds
s

=
1

γ – 1

∫ t

1

(
log

t
θ

)γ –1
ρ(θ )
θ

dθ .

For t ∈ [1, e], since
∫ s

1 (log s
θ

)γ –2 ρ(θ )
θ

dθ is a continuous function by Lemma 2, by differenti-
ating both sides, the equality (10) follows.

(ii) Using the Hölder inequality, we obtain

∣∣
∣∣

∫ t

1

(
log

t
θ

)γ –2
ρk(θ )

θ
dθ –

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ

∣∣
∣∣

≤
∫ t

1

(
log

t
θ

)γ –2 |ρk(θ ) – ρ(θ )|
θ

dθ
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≤
(∫ t

1

(
log

t
θ

)(γ –2)q dθ

θq

) 1
q
(∫ t

1

∣∣ρk(θ ) – ρ(θ )
∣∣p dθ

) 1
p

≤
(

(log t)(γ –2)q+1

(γ – 2)q + 1

) 1
q
‖ρk – ρ‖p ≤

(
1
b

) 1
q
‖ρk – ρ‖p.

Hence for t ∈ [1, e], we have

∥
∥∥
∥

∫ t

1

(
log

t
θ

)γ –2
ρk(θ )

θ
dθ –

∫ t

1

(
log

t
θ

)γ –2
ρ(θ )
θ

dθ

∥
∥∥
∥

0
≤

(
1
b

) 1
q
‖ρk – ρ‖p,

and the result follows. �

3 Existence of positive solutions of problem (1), (4)
For authors convenience, denote fv by

fv(t) = f
(
t, v(t), HDδv(t), v′(t)

)
.

Lemma 4 Suppose that the condition (H1) holds, then for fv(t) ∈ Lp[1, e] the boundary
value problem

HDγ v(t) + fv(t) = 0, a.e. t ∈ (1, e), (11)

subject to the multi-point boundary conditions

v(1) = 0, v(e) = v0 + λ

m∑

j=1

ajv
(
φ(ηj)

)
, (12)

has a unique solution v ∈ AC[1, e] if and only if v is a solution of the integral equation

v(t) =
(log t)γ –1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ

=
∫ e

1
G(t, θ )

fv(θ )
θ

dθ +
m∑

j=1

λaj(log t)γ –1

(1 – σ )

∫ e

1
G

(
φ(ηj), θ

) fv(θ )
θ

dθ

+
v0(log t)γ –1

1 – σ
, (13)

where

G(t, θ ) =
1

Γ (γ )

⎧
⎨

⎩
(log t)γ –1(log e

θ
)γ –1 – (log t

θ
)γ –1, 1 ≤ θ ≤ t ≤ e,

(log t)γ –1(log e
θ

)γ –1, 1 ≤ t ≤ θ ≤ e,
(14)

and

σ = λ

m∑

j=1

aj
(
logφ(ηj)

)γ –1 
= 1.
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Proof As discussed in [18], the solution of the Hadamard-type fractional differential equa-
tion (11) can be written as

v(t) = –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ + c1(log t)γ –1 + c2(log t)γ –2.

By using the BCs (12), we have c2 = 0, then

v(t) = –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ + c1(log t)γ –1. (15)

In view of condition v(e) = v0 + λ
∑m

j=1 ajv(φ(ηj)), we have

–
1

Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ + c1

= v0 + λ

m∑

j=1

aj

[
–

1
Γ (γ )

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ + c1
(
logφ(ηj)

)γ –1
]

,

and we get

c1 =
1

1 – σ

[
v0 +

1
Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
λ

∑m
j=1 aj

Γ (γ )

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

]
.

Substituting in Eq. (15), we have the formula

v(t) =
(log t)γ –1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ
.

Conversely, let v(t) be a solution of (13), we want to obtain (11) and (12). Now to obtain
Eq. (11), operating on both sides of (13) by HJ2–γ (using (d4) and (d5)), we get

HJ2–γ v(t) =
log t

(1 – σ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
∫ t

1

(
log

t
θ

)
fv(θ )
θ

dθ

–
λ log t
(1 – σ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
v0Γ (γ ) log t

1 – σ
.

Again operating by (t d
dt )2 on both sides of the last equation, we obtain

(
t

d
dt

)2

HJ2–γ v(t) = –fv(t),

that is,

HDγ v(t) + fv(t) = 0.



El-Sayed and Gaafar Advances in Difference Equations        (2019) 2019:382 Page 8 of 26

Now to check the conditions in (12) are satisfied, we can easy from (13) show that v(1) = 0.
Also to verify v(e) = v0 + λ

∑m
j=1 ajv(φ(ηj)), and we have by a simple calculation using

Eq. (13)

v(e) – v0 =
σ

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
λ

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
σv0

1 – σ

and

λ

m∑

j=1

ajv
(
φ(ηj)

)
=

σ

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
λ

Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

–
λσ

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
σv0

1 – σ
,

and then we get v(e) = v0 + λ
∑m

j=1 ajv(φ(ηj)).
This complete the proof of the equivalent between the problem (11)–(12) and the inte-

gral equation (13).
Now to construct the function G(t, θ ), from the relation 1

1–σ
= 1 + σ

1–σ
, we have

v(t) =
[

(log t)γ –1

Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

+
λ(log t)γ –1 ∑m

j=1 aj(logφ(ηj))γ –1)
(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

]

–
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ

=
1

Γ (γ )

∫ t

1

[
(log t)γ –1

(
log

e
θ

)γ –1

–
(

log
t
θ

)γ –1] fv(θ )
θ

dθ

+
1

Γ (γ )

∫ e

t
(log t)γ –1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ

+
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

[(
logφ(ηj)

)γ –1
(

log
e
θ

)γ –1

–
(

log
φ(ηj)

θ

)γ –1]

× fv(θ )
θ

dθ +
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ e

φ(ηj)

(
logφ(ηj)

)γ –1
(

log
e
θ

)γ –1 fv(θ )
θ

dθ

=
∫ e

1
G(t, θ )

fv(θ )
θ

dθ +
m∑

j=1

λaj(log t)γ –1

(1 – σ )

∫ e

1
G

(
φ(ηj), θ

) fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ
.

Note that Lemma 3(i) guarantees that
∫ t

1 (log t
θ

)γ –1 fv(θ )
θ

dθ ∈ C1[1, e].
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Therefore v′ exists for a.e. t ∈ [1, e] and, on differentiating (13), we obtain

v′(t) =
(log t)γ –2

t(1 – σ )Γ (γ – 1)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

tΓ (γ – 1)

∫ t

1

(
log

t
θ

)γ –2 fv(θ )
θ

dθ +
v0(γ – 1)(log t)γ –2

t(1 – σ )

–
λ(log t)γ –2

t(1 – σ )Γ (γ – 1)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ , (16)

and we have v′ ∈ C(1, e] (cf. Lemma 2). Finally, we prove that v ∈ AC[1, e].
For fv(t) ∈ Lp[1, e], we have

∫ e

1

∣
∣v′(t)

∣
∣dt

≤
∫ e

1

(log t)γ –2

(1 – σ )Γ (γ – 1)
dt
t

(∫ e

1

(
log

e
θ

)γ –1 |fv(θ )|
θ

dθ

)

+
1

Γ (γ – 1)

∫ e

1

(∫ t

1

(
log

t
θ

)γ –2 |fv(θ )|
θ

dθ

)
dt
t

+
∫ e

1

v0(γ – 1)(log t)γ –2

(1 – σ )
dt
t

+
∫ e

1

λ(log t)γ –2

(1 – σ )Γ (γ – 1)
dt
t

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 |fv(θ )|
θ

dθ

=
1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 |fv(θ )|
θ

dθ

+
1

Γ (γ – 1)

∫ e

1

(∫ e

θ

(
log

t
θ

)γ –2 dt
t

) |fv(θ )|
θ

dθ +
v0

1 – σ

+
λ

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 |fv(θ )|
θ

dθ

≤ 1
(1 – σ )Γ (γ )

(∫ e

1

(
log

e
θ

)(γ –1)q dθ

θ

) 1
q
‖fv‖p

+
1

Γ (γ )

(∫ e

1

(
log

e
θ

)(γ –1)q dθ

θ

) 1
q
‖fv‖p +

v0

1 – σ

+
λ

(1 – σ )Γ (γ )

m∑

j=1

aj

(∫ φ(ηj)

1

(
log

φ(ηj)
θ

)(γ –1)q dθ

θ

) 1
q
‖fv‖p

≤ 2 – σ + λ
∑m

j=1 aj

(1 – σ )[(γ – 1)q + 1]
1
q Γ (γ )

‖fv‖p +
v0

1 – σ
,

and we have

∥
∥v′∥∥

L1 ≤ 2 – σ + λ
∑m

j=1 aj

(1 – σ )[(γ – 1)q + 1]
1
q Γ (γ )

‖fv‖p +
v0

1 – σ
.

So v is an absolutely continuous function. Thus v′ exists, for a.e. t ∈ [1, e]. �
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Lemma 5 The function G(t, θ ) defined by (14) satisfies the following properties:
(a) G(t, θ ) ≥ 0, G(t, θ ) ∈ C([1, e] × [1, e]) and G(1, θ ) = G(e, θ ) = 0 for θ ∈ [1, e].
(b) max{G(t, θ ) : (t, θ ) ∈ [1, e] × [1, e]} = E, where E = 1

Γ (γ ) ( 1
4 )γ –1.

Proof (a) It is clear that G is continuous on [1, e] × [1, e] and G(1, θ ) = G(e, θ ) = 0 for θ ∈
[1, e].

By definition of the function G, for all (t, θ ) ∈ [1, e] × [1, e], if θ ≤ t, it can be written as

G(t, θ ) =
1

Γ (γ )

[
(log t)γ –1

(
log

e
θ

)γ –1

–
(

log
t
θ

)γ –1]

=
1

Γ (γ )
(log t)γ –1

[
(1 – log θ )γ –1 –

(
1 –

log θ

log t

)γ –1]

≥ 1
Γ (γ )

(log t)γ –1[(1 – log θ )γ –1 – (1 – log θ )γ –1] = 0.

Furthermore, we conclude that

G
(
φ(ηj), θ

)
=

1
Γ (γ )

[
(
logφ(ηj)

)γ –1
(

log
e
θ

)γ –1

–
(

log
φ(ηj)

θ

)γ –1]

≥ 1
Γ (γ )

(
logφ(ηj)

)γ –1[(1 – log θ )γ –1 – (1 – log θ )γ –1] = 0.

If t ≤ θ , it is obvious that G(t, θ ) and G(φ(ηj), θ ) ≥ 0. Therefore, we can deduce that

G(t, θ ) ≥ 0 for all (t, θ ) ∈ [1, e] × [1, e].

(b) Let L(t, θ ) := 1
Γ (γ ) (log t)γ –1(log e

θ
)γ –1, 1 ≤ t ≤ θ ≤ e, then L(·, θ ) is non-decreasing

function on [1, e].
Let K(t, θ ) := 1

Γ (γ ) [(log t)γ –1(log e
θ

)γ –1 – (log t
θ

)γ –1], 1 ≤ θ ≤ t ≤ e. Then

∂K(t, θ )
∂t

=
1

tΓ (γ – 1)

[
(log t)γ –2

(
log

e
θ

)γ –1

–
(

log
t
θ

)γ –2]

=
1

tΓ (γ – 1)
(log t)γ –2

[(
log

e
θ

)γ –1

–
(

1 –
log θ

log t

)γ –2]

≤ 1
tΓ (γ – 1)

(log t)γ –2[(1 – log θ )γ –1 – (1 – log θ )γ –2] ≤ 0,

which implies that K(·, θ ) is non-increasing, for all θ ∈ [1, e], hence, we obtain

K(t, θ ) ≤ K(θ , θ ) for all 1 ≤ θ ≤ t ≤ e,

and we have

max
{

G(t, θ ) : (t, θ ) ∈ [1, e] × [1, e]
}

=
1

Γ (γ )
max

{
(log θ )γ –1

(
log

e
θ

)γ –1

: θ ∈ [1, e]
}

=
1

Γ (γ )

(
1
4

)γ –1

= E. �
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Lemma 6 Suppose that (H1), (H3) hold, then we have

HDδv(t) =
(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

Γ (γ – δ)

∫ t

1

(
log

t
θ

)γ –δ–1 fv(θ )
θ

dθ +
v0Γ (γ )(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

–
λ(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ ∈ C[1, e]. (17)

Proof By applying Definition 2, Eq. (13), and Theorem 1(d4), (d5), we obtain

HDδv(t) =
(

t
d
dt

)

HJ1–δv(t),

=
(

t
d
dt

)

HJ1–δ

(
(log t)γ –1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

)

=
(

t
d
dt

)(
(log t)γ –δ

(1 – σ )Γ (γ – δ + 1)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

Γ (γ – δ + 1)

∫ t

1

(
log

t
θ

)γ –δ fv(θ )
θ

dθ +
v0Γ (γ )(log t)γ –δ

(1 – σ )Γ (γ – δ + 1)

–
λ(log t)γ –δ

(1 – σ )Γ (γ – δ + 1)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

)

=
(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

Γ (γ – δ)

∫ t

1

(
log

t
θ

)γ –δ–1 fv(θ )
θ

dθ +
v0Γ (γ )(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

–
λ(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ .

Hence HDδv(t) ∈ C[1, e] (notice that
∫ t

1 (log t
θ

)γ –δ–1 fv(θ )
θ

dθ ∈ C[1, e]). �

Consider the Banach space

V =
{

v ∈ C[1, e] ∩ C1(1, e] : v(t) ≥ 0, HDδv(t) ∈ C[1, e] and

lim
t→1+

(log t)2–γ v′(t) exists
}

,

with the weighted norm ‖v‖ = ‖v‖0 + ‖HDδv‖0 + ‖v′‖1, where ‖v′‖1 = supt∈[1,e] |(log t)2–γ ×
v′(t)|.
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For v ∈ V , we define a nonlinear operator N by

(Nv)(t) = f
(
t, v(t), HDδv(t), v′(t)

)
, t ∈ [1, e].

From (H4), we conclude that N : V → Lp is well defined. In fact

‖Nv‖p =
∥∥f

(
t, v(t), HDδv(t), v′(t)

)∥∥
p

≤ ‖pv‖p +
∥
∥qHDδv

∥
∥

p +
∥
∥rv′∥∥

p + ‖s‖p

≤ ‖p‖p‖v‖0 + ‖q‖p
∥∥HDδv

∥∥
0 +

∥∥(log t)γ –2r
∥∥

p

∥∥v′∥∥
1 + ‖s‖p

< ∞. (18)

Let fv ∈ Lp[1, e], p > 1
γ –1 for a.e. t ∈ [1, e], then we have the following lemma.

Lemma 7 Suppose that the assumption (H1)–(H3) hold. Then the functions (13), (16) and
(17) satisfy

‖v‖0 ≤A‖fv‖p +
v0

1 – σ
,

∥
∥v′∥∥

1 ≤ B‖fv‖p +
v0

1 – σ
, (19)

and

∥∥HDδv
∥∥

0 ≤ C‖fv‖p +
v0Γ (γ )

(1 – σ )Γ (γ – δ)
, (20)

where

A =
2 + λ

∑m
j=1 aj

Γ (γ )(1 – σ )[q(γ – 1) + 1]
1
q

, (21)

B =
1

Γ (γ – 1)

[ 1 + λ
∑m

j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

]
, (22)

and

C =
1

Γ (γ – δ)

[ 1 + λ
∑m

j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – δ – 1) + 1]
1
q

]
. (23)

Proof Again by Hölder’s inequality and under the assumption (H1), for all t ∈ [1, e], we
have

∣
∣v(t)

∣
∣ ≤ 1

Γ (γ )

[
1

(1 – σ )

(∫ e

1

(
log

e
θ

)q(γ –1) dθ

θ

) 1
q

+
(∫ t

1

(
log

t
θ

)q(γ –1) dθ

θ

) 1
q

+
λ

(1 – σ )

m∑

j=1

aj

(∫ φ(ηj)

1

(
log

φ(ηj)
θ

)q(γ –1) dθ

θ

) 1
q
]

‖fv‖p +
v0

1 – σ

=
1

Γ (γ )

[
1

(1 – σ )[q(γ – 1) + 1]
1
q

+
(log t)

q(γ –1)+1
q

[q(γ – 1) + 1]
1
q
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+
λ

∑m
j=1 aj(log(φ(ηj)))

q(γ –1)+1
q

(1 – σ )[q(γ – 1) + 1]
1
q

]
‖fv‖p +

v0

1 – σ

≤ 2 – σ + λ
∑m

j=1 aj(logηj)
q(γ –1)+1

q

Γ (γ )(1 – σ )[q(γ – 1) + 1]
1
q

‖fv‖p +
v0

1 – σ

≤ 2 + λ
∑m

j=1 aj

Γ (γ )(1 – σ )[q(γ – 1) + 1]
1
q
‖fv‖p +

v0

1 – σ
.

Hence

‖v‖0 ≤ 2 + λ
∑m

j=1 aj

Γ (γ )(1 – σ )[q(γ – 1) + 1]
1
q
‖fv‖p +

v0

1 – σ
= A‖fv‖p +

v0

1 – σ
.

Similarly (cf. (16)), we have as before

∣∣(log t)2–γ v′(t)
∣∣ ≤ 1

(1 – σ )Γ (γ – 1)

(∫ e

1

(
log

e
θ

)q(γ –1) 1
θ

dθ

) 1
q
‖fv‖p

+
1

Γ (γ – 1)

(∫ t

1

(
log

t
θ

)q(γ –2) 1
θ

dθ

) 1
q
‖fv‖p +

v0(γ – 1)
(1 – σ )

+
λ

(1 – σ )Γ (γ – 1)

m∑

j=1

aj

(∫ φ(ηj)

1

(
log

φ(ηj)
θ

)q(γ –1) 1
θ

dθ

) 1
q
‖fv‖p

≤ 1
Γ (γ – 1)

[
1

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

+
λ

∑m
j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

]
‖fv‖p +

v0

1 – σ

≤ 1
Γ (γ – 1)

[ 1 + λ
∑m

j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

]
‖fv‖p +

v0

1 – σ
.

Thus, we have

∥∥v′∥∥
1 ≤ 1

Γ (γ – 1)

[ 1 + λ
∑m

j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

]
‖fv‖p +

v0

1 – σ

= B‖fv‖p +
v0

1 – σ
.

Similarly, for t ∈ [1, e], we obtain

∣
∣HDδv(t)

∣
∣ ≤ 1

(1 – σ )Γ (γ – δ)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

+
1

Γ (γ – δ)

∫ t

1

(
log

t
θ

)γ –δ–1 fv(θ )
θ

dθ +
v0Γ (γ )

(1 – σ )Γ (γ – δ)

+
λ

(1 – σ )Γ (γ – δ)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ
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≤ 1
Γ (γ – δ)

[ 1 + λ
∑m

j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – δ – 1) + 1]
1
q

]
‖fv‖p

+
v0Γ (γ )

(1 – σ )Γ (γ – δ)
.

Hence

∥∥HDδv
∥∥

0 ≤ 1
Γ (γ – δ)

[ 1 + λ
∑m

j=1 aj

(1 – σ )[q(γ – 1) + 1]
1
q

+
1

[q(γ – δ – 1) + 1]
1
q

]
‖fv‖p

+
v0Γ (γ )

(1 – σ )Γ (γ – δ)
= C‖fv‖p +

v0Γ (γ )
(1 – σ )Γ (γ – δ)

. �

Now, in order to prove problem (1), (4) has a positive solution, we define an integral
operator T on V by the formula

(Tv)(t) =
∫ e

1
G(t, θ )

fv(θ )
θ

dθ +
m∑

j=1

λaj(log t)γ –1

(1 – σ )

∫ e

1
G

(
φ(ηj), θ

) fv(θ )
θ

dθ

+
v0(log t)γ –1

1 – σ

=
(log t)γ –1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

+
v0(log t)γ –1

1 – σ
. (24)

We have

(Tv)′(t) =
(log t)γ –2

t(1 – σ )Γ (γ – 1)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

tΓ (γ – 1)

∫ t

1

(
log

t
θ

)γ –2 fv(θ )
θ

dθ +
v0(γ – 1)(log t)γ –2

t(1 – σ )

–
λ(log t)γ –2

t(1 – σ )Γ (γ – 1)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ (25)

and

(
HDδTv

)
(t) =

(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

Γ (γ – δ)

∫ t

1

(
log

t
θ

)γ –δ–1 fv(θ )
θ

dθ +
v0Γ (γ )(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

–
λ(log t)γ –δ–1

(1 – σ )Γ (γ – δ)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ . (26)

The properties of the operator T are given in the next lemma.



El-Sayed and Gaafar Advances in Difference Equations        (2019) 2019:382 Page 15 of 26

Lemma 8 Let (H1)–(H3) hold. Then T : V → V and T is a completely continuous operator.

Proof Let v ∈ V and let fv(t) = f (t, v(t), HDδv(t), v′(t)) for a.e. t ∈ [1, e]. Then fv ∈ Lp[1, e]
because f satisfies (H3) and fv is positive. Since

∫ t
1 (log t

θ
)γ –1 fv(θ )

θ
dθ ∈ C[1, e] and from G ≥ 0

by Lemma 5, it follows from the equality (24) that Tv ∈ C[1, e] and Tv ≥ 0 for t ∈ [1, e]. Next
using the equalities (25) and (26), we have HDδTv ∈ C[1, e] and limt→1+ (log t)2–γ (Tv)′(t)
exists and is continuous.

Consequently, T : V → V .
As in the proof of Lemma 7, for all v ∈ V and a.e. t ∈ [1, e], we get

‖Tv‖0 ≤A‖fv‖p +
v0

1 – σ
,

∥∥(Tv)′
∥∥

1 ≤ B‖fv‖p +
v0

1 – σ
,

and

∥∥HDδTv
∥∥

0 ≤ C‖fv‖p +
v0Γ (γ )

(1 – σ )Γ (γ – δ)
.

Thus, we see that the set {Tv} is uniformly bounded in C[1, e] ∩ C1(1, e].
In order to prove that T is a continuous operator, let {vn} ⊂ V be a convergent sequence

and let limn→∞ ‖vn – v‖ = 0. Then v ∈ V and ‖vn‖0 ≤ S for n ∈ N , where S is a positive
constant.

Since f is an Lp-Carathéodory function we have

lim
n→∞ f

(
t, vn(t), HDδvn(t), v′

n(t)
)

= f
(
t, v(t), HDδv(t), v′(t)

)
for a.e. t ∈ [1, e].

By (5) and the dominated convergent theorem in Lp-space,

lim
n→∞

∥∥f
(
t, vn, HDδvn, v′

n
)

– f
(
t, v, HDδv, v′)∥∥

p = 0.

Put

fv,n(t) = f
(
t, vn(t), HDδvn(t), v′

n(t)
)
,

then we have

lim
n→∞ fv,n(t) = fv(t) and lim

n→∞‖fv,n – fv‖p = 0 for a.e. t ∈ [1, e].

Now we deduce from (24) that

∣
∣(Tvn)(t) – (Tv)(t)

∣
∣ ≤ 2 – σ + λ

∑m
j=1 aj

(1 – σ )Γ (γ )

∫ e

1

∣
∣fv,n(θ ) – fv(θ )

∣
∣dθ

≤ 2 + λ
∑m

j=1 aj

(1 – σ )Γ (γ )

∫ e

1

∣∣fv,n(θ ) – fv(θ )
∣∣dθ ,

and from (25), we have

Γ (γ – 1)
∣∣(log t)2–γ (Tvn)′(t) – (log t)2–γ (Tv)′(t)

∣∣

≤ 1
(1 – σ )

∫ e

1

∣
∣fv,n(θ ) – fv(θ )

∣
∣dθ +

∫ t

1

(
log

t
θ

)γ –2∣
∣fv,n(θ ) – fv(θ )

∣
∣dθ
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+
λ

1 – σ

m∑

j=1

aj

∫ e

1

∣∣fv,n(θ ) – fv(θ )
∣∣dθ

≤ 1 + λ
∑m

j=1 aj

(1 – σ )

∫ e

1

∣∣fv,n(θ ) – fv(θ )
∣∣dθ +

1

[q(γ – 2) + 1]
1
q
‖fv,n – fv‖Lp .

Similarly, from (26) we have

∣
∣(HDδTvn

)
(t) –

(
HDδTv

)
(t)

∣
∣ ≤ 2 + λ

∑m
j=1 aj

(1 – σ )Γ (γ – δ)

∫ e

1

∣
∣fv,n(θ ) – fv(θ )

∣
∣dθ .

Thus limn→∞ ‖Tvn – Tv‖ = 0, which proves that T is a continuous operator.
Now, we need to prove that {Tv} be equicontinuous. For 1 ≤ t1 < t2 ≤ e, we have the

relation (cf. (24)) in a similar way to Lemma 1

∣∣(Tv)(t2) – (Tv)(t1)
∣∣

≤ [(log t2)γ –1 – (log t1)γ –1]
(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 |fv(θ )|
θ

dθ

+
1

Γ (γ )

∫ t1

1

[(
log

t2

θ

)γ –1

–
(

log
t1

θ

)γ –1] |fv(θ )|
θ

dθ

+
1

Γ (γ )

∫ t2

t1

(
log

t2

θ

)γ –1 |fv(θ )|
θ

dθ +
v0[(log t2)γ –1 – (log t1)γ –1]

1 – σ

+
λ[(log t2)γ –1 – (log t1)γ –1]

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 |fv(θ )|
θ

dθ

≤ [(log t2)γ –1 – (log t1)γ –1]

d
1
q (1 – σ )Γ (γ )

‖fv‖p

+
1

d
1
q Γ (γ )

(
(log t2)d – (log t1)d –

(
log

t2

t1

)d) 1
q
‖fv‖p

+
1

d
1
q Γ (γ )

(
log

t2

t1

) d
q
‖fv‖p +

v0[(log t2)γ –1 – (log t1)γ –1]
1 – σ

+
λ[(log t2)γ –1 – (log t1)γ –1]

∑m
j=1 aj

d
1
q (1 – σ )Γ (γ )

‖fv‖p,

where d = (γ – 1)q + 1. Similarly, it follows from (25) that

∣
∣(log t2)2–γ (Tv)′(t2) – (log t1)2–γ (Tv)′(t1)

∣
∣

≤ 1

d
1
q (1 – σ )Γ (γ – 1)

[
1
t2

–
1
t1

]
‖fv‖p

+
∣∣
∣∣–

(log t2)2–γ

t2Γ (γ – 1)

∫ t1

1

(
log

t2

θ

)γ –2 fv

θ
dθ +

(log t2)2–γ

t2Γ (γ – 1)

∫ t1

1

(
log

t1

θ

)γ –2 fv

θ
dθ

∣∣
∣∣

+
∣∣
∣∣–

(log t2)2–γ

t2Γ (γ – 1)

∫ t1

1

(
log

t1

θ

)γ –2 fv

θ
dθ +

(log t1)2–γ

t1Γ (γ – 1)

∫ t1

1

(
log

t1

θ

)γ –2 fv

θ
dθ

∣∣
∣∣
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+
(log t2)2–γ

t2Γ (γ – 1)

∫ t2

t1

(
log

t2

θ

)γ –2 |fv|
θ

dθ +
v0(γ – 1)
(1 – σ )

[
1
t2

–
1
t1

]

+
λ

∑m
j=1 aj

d
1
q (1 – σ )Γ (γ – 1)

[
1
t2

–
1
t1

]
‖fv‖p

≤ 1

d
1
q (1 – σ )Γ (γ – 1)

[
1
t2

–
1
t1

]
‖fv‖p

+
(log t2)2–γ

b
1
q t2Γ (γ – 1)

(
(log t1)b – (log t2)b +

(
log

t2

t1

)b) 1
q
‖fv‖p

+
[

(log t2)2–γ

b
1
q t2Γ (γ – 1)

–
(log t1)2–γ

b
1
q t1Γ (γ – 1)

]
‖fv‖p +

(log t2)2–γ

b
1
q t2Γ (γ – 1)

(
log

t2

t1

) b
q
‖fv‖p

+
v0(γ – 1)
(1 – σ )

[
1
t2

–
1
t1

]
+

λ
∑m

j=1 aj

d
1
q (1 – σ )Γ (γ – 1)

[
1
t2

–
1
t1

]
‖fv‖p.

Also (cf. (26)), by putting h = (γ – δ – 1)q + 1, we get

∣∣(HDδTv
)
(t2) –

(
HDδTv

)
(t1)

∣∣

≤ [(log t2)γ –δ–1 – (log t1)γ –δ–1]
(1 – σ )Γ (γ – δ)

∫ e

1

(
log

e
θ

)γ –1 |fv(θ )|
θ

dθ

+
1

Γ (γ – δ)

∫ t1

1

[(
log

t2

θ

)γ –δ–1

–
(

log
t1

θ

)γ –δ–1] |fv(θ )|
θ

dθ

+
1

Γ (γ – δ)

∫ t2

t1

(
log

t2

θ

)γ –δ–1 |fv(θ )|
θ

dθ

+
v0Γ (γ )[(log t2)γ –δ–1 – (log t1)γ –δ–1]

(1 – σ )Γ (γ – δ)

+
λ[(log t2)γ –δ–1 – (log t1)γ –δ–1]

(1 – σ )Γ (γ – δ)

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 |fv(θ )|
θ

dθ

≤ [(log t2)γ –δ–1 – (log t1)γ –δ–1]

d
1
q (1 – σ )Γ (γ – δ)

‖fv‖p

+
1

h
1
q Γ (γ – δ)

(
(log t2)h – (log t1)h –

(
log

t2

t1

)h) 1
q
‖fv‖p

+
1

h
1
q Γ (γ – δ)

(
log

t2

t1

) h
q
‖fv‖p +

v0Γ (γ )[(log t2)γ –δ–1 – (log t1)γ –δ–1]
(1 – σ )Γ (γ – δ)

+
λ[(log t2)γ –δ–1 – (log t1)γ –δ–1]

∑m
j=1 aj

d
1
q (1 – σ )Γ (γ – δ)

‖fv‖p, if γ > δ + 1,

and

∣∣(HDδTv
)
(t2) –

(
HDδTv

)
(t1)

∣∣ ≤
∫ t2

t1

∣∣fv(θ )
∣∣dθ , if γ = δ + 1.
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As t2 → t1, the right-hand side of the above four inequalities tends to zero. Therefore {Tv}
is equicontinuous.

Since the set of functions {Tv}, {t2–γ (Tv)′} and {HDδTv} are bounded in C[1, e] and
equicontinuous on [1, e], T is relatively compact in V by the Arzelà–Ascoli theorem. Com-
bining this fact with the continuity of T we see that T is a completely continuous opera-
tor. �

Our main result of this section is as follows.

Theorem 3 Assume that (H1)–(H4) hold and let σ < 1. Suppose that the functions p, q and
r satisfy

A‖p‖p + B‖q‖p + C
∥∥(log t)γ –2r

∥∥
p < 1, (27)

where the constants A, B and C are given by (21)–(23), respectively.
Then the multi-point boundary value problem (1), (4) has at least one positive solution.

Proof From Lemma 4, we know that v ∈ V is a solution of (1), (4) if and only if

Tv = v. (28)

By Lemma 8, we can apply the Leray–Schauder continuation theorem to obtain the exis-
tence of a solution for (28) in V .

To do this it is suffices to verify that the set of all possible solutions of the family of
problems

HDγ v(t) + λf
(
t, v(t), HDδv(t), v′(t)

)
= 0, a.e. t ∈ (1, e),

v(1) = 0, v(e) = v0 + λ

m∑

j=1

ajv
(
φ(ηj)

)
,

is, a priori, bounded in V by a constant independent of λ ∈ [0, 1]. Then for t ∈ [1, e] we
have from Lemma 4

∣∣v(t)
∣∣

=

∣∣
∣∣
∣

(log t)γ –1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1
λ(Nv)(θ )

θ
dθ –

1
Γ (γ )

∫ t

1

(
log

t
θ

)γ –1
λ(Nv)(θ )

θ
dθ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1
λ(Nv)(θ )

θ
dθ +

v0(log t)γ –1

1 – σ

∣
∣∣
∣∣

=

∣
∣∣
∣∣

(log t)γ –1

(1 – σ )Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 (–HDγ v(θ ))
θ

dθ

–
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 (–HDγ v(θ ))
θ

dθ

–
λ(log t)γ –1

(1 – σ )Γ (γ )

m∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 (–HDγ v(θ ))
θ

dθ +
v0(log t)γ –1

1 – σ

∣∣
∣∣
∣
,
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which implies that, in similar way to Lemma 7,

‖v‖0 ≤A
∥
∥HDγ v

∥
∥

p +
v0

1 – σ
,

∥
∥v′∥∥

1 ≤ B
∥
∥HDγ v

∥
∥

p +
v0

1 – σ
, (29)

and

∥
∥HDδv

∥
∥

0 ≤ C
∥
∥HDγ v

∥
∥

p +
v0Γ (γ )

(1 – σ )Γ (γ – δ)
. (30)

Using (H4), and Eqs. (18), (29) and (30), it follows that

∥
∥HDγ v

∥
∥

p = λ
∥
∥f

(
t, v, HDδv, v′)∥∥

p

≤ ‖p‖p‖v‖0 + ‖q‖p
∥∥HDδv

∥∥
0 +

∥∥(log t)γ –2r
∥∥

p

∥∥v′∥∥
1 + ‖s‖p

≤ A‖p‖p
∥∥HDγ v

∥∥
p + B‖q‖p

∥∥HDγ v
∥∥

p + C
∥∥(log t)γ –2r

∥∥
p

∥∥HDγ v
∥∥

p

+ ‖s‖p +
v0(‖p‖p + ‖q‖p)

(1 – σ )
+

v0‖(log t)γ –2r‖pΓ (γ )
(1 – σ )Γ (γ – δ)

,

for t ∈ [1, e]. Thus

∥∥HDγ v
∥∥

p ≤ [
A‖p‖p + B‖q‖p + C

∥∥(log t)γ –2r
∥∥

p

]∥∥HDγ v
∥∥

p + ‖s‖p

+
v0(‖p‖p + ‖q‖p)

(1 – σ )
+

v0‖(log t)γ –2r‖pΓ (γ )
(1 – σ )Γ (γ – δ)

.

It follows from the assumption (27) that there is a constant D, independent of λ ∈ [0, 1],
such that

∥
∥HDγ v

∥
∥

p ≤D. (31)

This together with (29) and (30) implies that

‖v‖0 ≤AD +
v0

1 – σ
and

∥
∥v′∥∥

1 ≤ BD +
v0

1 – σ
,

∥
∥HDδv

∥
∥

0 ≤ CD +
v0Γ (γ )

(1 – σ )Γ (γ – δ)
.

Therefore,

‖v‖ ≤ [A + B + C]D +
v0[2Γ (γ – δ) + Γ (γ )]

(1 – σ )Γ (γ – δ)
.

This completes the proof of the theorem. �

4 Positive solutions for boundary value problem (1), (2)
Let v ∈ AC[1, e] be the solution of the multi-point problem given by (1) and (4). Then we
have the following theorem.

Theorem 4 Suppose that the assumptions (H3) and (H4) are satisfied. If

A1‖p‖p + B1‖q‖p + C1
∥∥(log t)γ –2r

∥∥
p < 1,
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and φ(t) : [1, e] → [1, e] is a deviated and continuous differentiable function in [1, e] with
φ′(t) > 0 or φ(t) is a deviated and monotonically increasing function.

Then there exists a positive solution v ∈ AC[1, e] of the problem (1) with integral boundary
condition (2) represented by

v(t) =
(log t)γ –1

(1 – σ1)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ1)Γ (γ )

∫ e

1

φ′(ξ )
φ(ξ )

∫ φ(ξ )

1

(
log

φ(ξ )
θ

)γ –1 fv(θ )
θ

dθ dξ

+
v0(log t)γ –1

1 – σ1
, (32)

where

A1 =
2 + λ[log(φ(e)) – log(φ(1))]

Γ (γ )(1 – σ1)[q(γ – 1) + 1]
1
q

,

B1 =
1

Γ (γ – 1)

[
1 + λ[log(φ(e)) – log(φ(1))]

(1 – σ1)[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

]
,

C1 =
1

Γ (γ – δ)

[
1 + λ[log(φ(e)) – log(φ(1))]

(1 – σ1)[q(γ – 1) + 1]
1
q

+
1

[q(γ – δ – 1) + 1]
1
q

]
,

and

σ1 =
λ[[log(φ(e))]γ – [log(φ(1))]γ ]

γ
< 1.

Proof Let v ∈ AC[1, e] be a solution of the multi-point boundary value problem (1) and (4)
given by (13).

Let aj = (tj–tj–1)φ′(ηj)
φ(ηj)

, ηj ∈ (tj–1, tj) ⊂ (1, e) and 1 = t0 < t1 < t2 < · · · < tm = e. Then the multi-
point boundary conditions in (4) will be

v(1) = 0, v(e) = v0 + λ

m∑

j=1

(tj – tj–1)φ′(ηj)
φ(ηj)

v
(
φ(ηj)

)
.

From the continuity of the solution v of (1), (4), we can obtain

v(1) = 0, v(e) = v0 + λ lim
m→∞

m∑

j=1

(tj – tj–1)φ′(ηj)
φ(ηj)

v
(
φ(ηj)

)
,

that is, the nonlocal condition (4) is transformed to the integral condition

v(1) = 0, v(e) = v0 + λ

∫ e

1
v
(
φ(ξ )

)φ′(ξ )
φ(ξ )

dξ .
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The constant σ will be as m → ∞

lim
m→∞σ = σ1 = λ lim

m→∞

m∑

j=1

aj
(
logφ(ηj)

)γ –1

= λ lim
m→∞

m∑

j=1

(tj – tj–1)φ′(ηj)
φ(ηj)

(
logφ(ηj)

)γ –1

= λ

∫ e

1

(
logφ(ξ )

)γ –1 φ′(ξ )
φ(ξ )

dξ =
λ[[log(φ(e))]γ – [log(φ(1))]γ ]

γ
.

Also, the constants A, B, C will be

lim
m→∞A = A1 =

2 + λ
∑∞

j=1
(tj–tj–1)φ′(ηj)

φ(ηj)

Γ (γ )(1 – σ1)[q(γ – 1) + 1]
1
q

=
2 + λ

∫ e
1

φ′(ξ )
φ(ξ ) dξ

Γ (γ )(1 – σ1)[q(γ – 1) + 1]
1
q

=
2 + λ[log(φ(e)) – log(φ(1))]

Γ (γ )(1 – σ1)[q(γ – 1) + 1]
1
q

.

Similarly

B1 =
1

Γ (γ – 1)

[
1 + λ[log(φ(e)) – log(φ(1))]

(1 – σ1)[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

]

and

C1 =
1

Γ (γ – δ)

[
1 + λ[log(φ(e)) – log(φ(1))]

(1 – σ1)[q(γ – 1) + 1]
1
q

+
1

[q(γ – δ – 1) + 1]
1
q

]
.

Now from the continuity of the solution v (cf. (13)), we have

v(t) =
(log t)γ –1

(1 – σ1)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ1)Γ (γ )

∞∑

j=1

(tj – tj–1)φ′(ηj)
φ(ηj)

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

+
v0(log t)γ –1

1 – σ1

=
(log t)γ –1

(1 – σ1)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ1)Γ (γ )

∫ e

1

φ′(ξ )
φ(ξ )

∫ φ(ξ )

1

(
log

φ(ξ )
θ

)γ –1 fv(θ )
θ

dθ dξ +
v0(log t)γ –1

1 – σ1
.

Hence, the continuous positive solution of integral boundary problem (1), (2) is given by
(32). �

5 Positive solutions for infinite-point boundary problem (1), (3)
Our second main result of this paper is presented as an existence result for problem (1),
(3).
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We have the following theorem.

Theorem 5 Let the assumptions (H2)–(H4) and the following conditions hold:
(H5) 1 < η1 < η2 < · · · < ηj < · · · < e, j = 1, 2, . . . and σ2 = λ

∑∞
j=1 aj(logφ(ηj))γ –1 < 1.

(H6) A2‖p‖p + B2‖q‖p + C2‖(log t)γ –2r‖p < 1.
(H7) The series

∑∞
j=1 aj < ∞ is convergent.

Then there exists a positive solution v ∈ AC[0, 1] of the infinite-point boundary problem (1)
with infinite-point boundary condition (3) given by the following integral equation:

v(t) =
(log t)γ –1

(1 – σ2)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ2)Γ (γ )

∞∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ +
v0(log t)γ –1

1 – σ2
, (33)

where

A2 =
2 + λ

∑∞
j=1 aj

Γ (γ )(1 – σ2)[q(γ – 1) + 1]
1
q

,

B2 =
1

Γ (γ – 1)

[ 1 + λ
∑∞

j=1 aj

(1 – σ2)[q(γ – 1) + 1]
1
q

+
1

[q(γ – 2) + 1]
1
q

]
,

and

C2 =
1

Γ (γ – δ)

[ 1 + λ
∑∞

j=1 aj

(1 – σ2)[q(γ – 1) + 1]
1
q

+
1

[q(γ – δ – 1) + 1]
1
q

]
.

Proof Let v ∈ AC[1, e] be a solution of the multi-point boundary value problem (1) and (4)
given by (13). We have

∣
∣ajv

(
φ(ηj)

)∣∣ ≤ aj‖v‖0,
∣
∣aj

(
logφ(ηj)

)γ –1∣∣ ≤ aj, φ(ηj) ≤ ηj < e,

and

∣
∣∣
∣aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

∣
∣∣
∣ ≤ aj

d
1
q
‖fv‖p.

By the comparison test, we see that the three series in (3), λ
∑∞

j=1 aj(logφ(ηj))γ –1 and
∑∞

j=1 aj
∫ φ(ηj)

1 (log
φ(ηj)

θ
)γ –1 fv(θ )

θ
dθ are convergent. Thus, by taking the limit as m → ∞ in

(13) and by applying the properties of the Riemann sum for continuous functions, we ob-
tain

v(t) =
(log t)γ –1

(1 – σ2)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ –
1

Γ (γ )

∫ t

1

(
log

t
θ

)γ –1 fv(θ )
θ

dθ

–
λ(log t)γ –1

(1 – σ2)Γ (γ )

∞∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ
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+
v0(log t)γ –1

1 – σ2
, (34)

which, satisfies the differential equation (1). Furthermore, from (33) and the relation 1
σ2

=
1 + σ2

1–σ2
, we have v(1) = 0 and

v0 + λ

∞∑

j=1

ajv
(
φ(ηj)

)

= v0 + λ

∞∑

j=1

aj

[
(logφ(ηj))γ –1

(1 – σ2)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ

–
1

Γ (γ )

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

–
λ(logφ(ηj))γ –1

(1 – σ2)Γ (γ )

∞∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

+
v0(logφ(ηj))γ –1

1 – σ2

]

=
σ2

(1 – σ2)Γ (γ )

∫ e

1

(
log

e
θ

)γ –1 fv(θ )
θ

dθ +
v0

1 – σ2

–
λ

(1 – σ2)Γ (γ )

∞∑

j=1

aj

∫ φ(ηj)

1

(
log

φ(ηj)
θ

)γ –1 fv(θ )
θ

dθ

= v(e).

This proves that the integral equation (33) satisfies the problem given by (1) under infinite-
point BCs (3). �

6 Application
Example 1 Let us consider the singular Hadamard-type fractional differential problem:

HD3/2v(t) +
1

5(t – 1)2/7
v2

(1 + |v|) + HD1/4v(t)
10(t – 1)1/4 +

(log t)1/2

60
v′(t) +

1
(t – 1)1/7 = 0, (35)

v(1) = 0, v(e) = v0 +
1

100

∫ e

1
v(ξ )

dξ

ξ
. (36)

Here, γ = 3/2, δ = 1/4, p = 3, q = 3/2, φ(ξ ) = ξ , λ = 1
100 and

f (t, v1, v2, v3) =
1

5(t – 1)2/7
v2

1
1 + |v1| +

1
10(t – 1)1/4 v2 +

(log t)1/2

60
v3 +

1
(t – 1)1/7 .

Clearly

∣
∣f (t, v1, v2, v3)

∣
∣ ≤ p(t)|v1| + q(t)|v2| + r(t)|v3| + s(t),

where p(t) = 1
5(t–1)2/7 , q(t) = 1

10(t–1)1/4 , r(t) = (log t)1/2

60 , s(t) = 1
(t–1)1/7 .
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Indeed we have ‖p‖3 ≈ 0.39268, ‖q‖3 ≈ 0.16606, ‖(log t)–1/2r‖3 ≈ 0.019962, σ1 ≈
0.00667 < 1, A1 ≈ 1.57228, B1 ≈ 1.816696, C1 ≈ 1.6647;

A1‖p‖3 + B1‖q‖3 + C1
∥∥(log t)γ –2r

∥∥
3 ≈ 0.95231 < 1.

All the assumptions of Theorem 4 hold, therefore the singular Hadamard-type fractional
differential problem (35), (36) has a continuous positive solution.

Example 2 Let γ , δ, p, q, λ and f (t, v1, v2, v3), be as in the previous example and consider
the deviated function φ(ηj) = ηj = e

1
j ∈ [1, e], and let aj = 1

j5/2 .
Then the infinite-point boundary condition 3 becomes

v(1) = 0, v(e) = v0 +
1

100

∞∑

j=1

1
j5/2 v

(
e

1
j
)
. (37)

It follows that
∑∞

j=1 aj ≈ 1.35556,
∑∞

j=1 aj(logφ(ηj))γ –1 =
∑∞

j=1
1
j3 ≈ 1.20205, σ2 =

0.012021 < 1, A2 ≈ 1.58359, B2 ≈ 1.426999, C2 ≈ 1.671622. Then

A2‖p‖3 + B2‖q‖3 + C2
∥∥(log t)γ –2r

∥∥
3 ≈ 0.89218 < 1.

Therefore, all the assumptions of Theorem 5 hold and the singular Hadamard-type frac-
tional differential problem (35), (37) has a continuous positive solution.
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