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Abstract
In this paper, we develop the lower order stabilized finite element methods for the
incompressible flow with the slip boundary conditions of friction type whose weak
solution satisfies a variational inequality. The H1-norm for the velocity and the
L2-norm for the pressure decrease with optimal convergence order. The reliable and
efficient a posteriori error estimates are also derived. Finally, numerical experiments
are presented to validate the theoretical results.
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1 Introduction
Incompressible viscous flow phenomena arise in numerous disciplines in science and en-
gineering. The simplest viscous flow problems involve just one fluid in the laminar regime.
Numerical methods for this model have been intensively studied during the past several
decades [3, 9, 17, 45]. A critical problem in the construction of numerical methods is to
establish the so-called Babus̆ka–Brezzi stability condition. It is known that if the finite el-
ement spaces for the velocity and pressure are of the lowest equal-order or lowest order
pairs, the corresponding finite element schemes do not satisfy the Babus̆ka–Brezzi con-
dition. For lower order schemes, some stabilized finite element methods are studied and
developed in [7, 8, 10, 11, 14, 19, 32, 33, 44]. This numerical instability can be remedied
by adding a so-called pressure projection term; see [7, 8, 11, 32].

In this paper, we are interested in the model of the Stokes problem with the slip bound-
ary conditions of friction type [4, 6, 16, 24, 27, 39–42]. This frictional boundary condi-
tions appear in modeling of blood flow in vein of an arterial sclerosis patient and in that
avalanche of water and rocks. This model has drawn many experts’ attention in the past
several decades. However, even now, there are many difficulties arising from this model
remain unsolved including a priori and posteriori estimates.
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In this paper, we discretize the corresponding variational inequality with the stabilized
finite element methods proposed in [8, 28–33, 36, 38]. Since the discrete bilinear form
is stable, our discrete variational inequality admits a unique finite element solution. An
important contribution of the paper is to analyze the a priori estimates for the finite ele-
ment solutions. The optimal result is first valid for both the unstable linear–constant and
the linear–linear pairs. Another important contribution is the a posteriori estimates. Al-
though a posteriori estimates have been intensively studied for the Stokes problems with
Dirichlet boundary conditions [2, 5, 26, 31, 46–48], the corresponding result for the Stokes
problems with nonlinear slip boundary conditions has not been completely solved. Here,
we obtain the error estimators constitutes of the standard error indicators for the Stokes
problem with Dirichlet boundary condition and error indicators on the slip boundary.
With a rigorous proof, we show that the error estimators are reliable. The efficiency of the
standard error indicators is also discussed. Numerical experiments show that the error
indicators on the slip boundary are also efficient, its complete theoretical proof is still to
be derived.

The paper is organized as follows. In Sect. 2, we introduce a Stokes problem with a
slip boundary and the stabilized finite element methods for this problem. The optimal a
priori error estimate is given in Sect. 3. While in Sect. 4, the a posteriori error estimate is
provided. In the final section, numerical experiments are performed to validate our theory
developed in previous sections.

Throughout this paper, “A � B” means that A can be bounded by B multiplied with
a generic constant depending only on the shape regularity of the underlying grid or the
given domain, “A � B” stands for “A � B” and “B � A”. In addition, the spaces of consisting
of vector-valued and scalar-valued functions will be denoted in bold face and usual face,
respectively.

2 The Stokes problem with slip boundary conditions and its finite element
solution

We consider the following Stokes equations with the slip boundary conditions of friction
type:

–μ�u + ∇p = f , div u = 0, in Ω , (2.1)

u = 0, on ΓD, (2.2)

un = 0, |στ | ≤ g, στ uτ + g|uτ | = 0, on Γ . (2.3)

Here Ω is a bounded convex polygon of R2, its boundary ∂Ω is flat and includes two
connected portions ΓD and Γ . The portions Γ and ΓD are not empty. The functions u(x),
p(x) and f(x) represent the velocity vector, the pressure, and the prescribed body force,
respectively; the coefficient μ > 0 stands for the viscosity and g is a given positive scalar
function. Here and in what follows, the unit outward normal to the boundary is denoted
by n and for a vector v defined on the boundary, we use vn = v ·n and vτ = v –vnn to denote
the normal and tangential component of v, respectively. The function στ = μ∂uτ

∂n denotes
tangential component of stress vector defined on Γ .

In the following, we present the weak formulation of (2.1)–(2.3). Let Hm(Ω) be the
Sobolev space with the norm ‖ · ‖m,Ω . Note that in the case m = 0, we set H0(Ω) = L2(Ω).
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Let H1
0 (Ω) be the subspace of functions in H1(Ω) with zero trace on ∂Ω . We define the

following spaces [1]:

V =
{

v ∈ [
H1(Ω)

]2 : v|ΓD = 0, vn|Γ = 0
}

,

Q = L2
0(Ω) ≡

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0
}

.

We denote the inner product and norm on Ω and its boundary Γ , respectively, by

(u, v)Ω =
∫

Ω

u · v dx, 〈u, v〉Γ =
∫

Γ

u · v ds,

‖u‖0,Ω = (u, u)1/2, ‖u‖0,Γ = 〈u, u〉Γ .

We introduce a norm ‖| · ‖| in the coupled space V × Q by

∥∥∣∣(v, q)
∥∥∣∣ =

(
μ‖∇v‖2

0 + ‖q‖2
0
)1/2, ∀(v, q) ∈ V × Q,

where

‖∇v‖0 = (∇v,∇v)1/2, ∀v ∈ V,

and

‖p‖0 = (p, p)1/2, p ∈ Q.

We define

a(u, v) = 2μ
(
D(u),D(v)

)
= μ(∇u,∇v), ∀u, v ∈ V,

d(v, p) = (div v, p), (v, p) ∈ V × Q,

where

D(v) =
1
2
(∇v + ∇vT)

represents the rate of deformation tensor. Let the bilinear form

B
(
(u, p); (v, q)

)
= a(u, v) – d(v, p) + d(u, q), ∀(u, p), (v, q) ∈ V × Q.

Since the bilinear forms a(·, ·) and d(·, ·) are continuous, the bilinear form B(·, ·) is also
continuous satisfying

B
(
(u, p); (v, q)

)
�

∥∥∣∣(u, p)
∥∥∣∣∥∥∣∣(v, q)

∥∥∣∣, ∀(u, p), (v, q) ∈ V × Q. (2.4)

Moreover, we have the following inf-sup property:

∥∥∣∣(u, p)
∥∥∣∣ � sup

(v,q)∈(V,Q)

|B((u, p); (v, q))|
‖|(v, q)‖| . (2.5)

Here, the hidden constant is independent of (u, p) and (v, q).
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Now we introduce the barrier term against slip on Γ as

j(z) =
∫

Γ

g|z|ds, z ∈ L2(Γ ).

Obviously, j is a continuous functional defined on L2(Γ ).
The weak formulation of the Stokes equations (2.1)–(2.3) reads (cf. [16])
Find (u, p) ∈ V × Q such that

B
(
(u, p); (v – u, q)

)
+ j(vτ ) – j(uτ ) ≥ (f , v – u), ∀(v, q) ∈ V × Q. (2.6)

Also from [16], we know that (2.6) admits a unique solution. Moreover, if ΓD ∈ C2, Γ ∈ C4,
f ∈ [L2(Ω)]2 and g ∈ H1(Γ ), then the solution (u, p) ∈ [H2(Ω)]2 × H1(Ω) (cf. [42]).

We next present the stabilized finite element methods for the present model. The stabi-
lized finite element methods have been introduced in [8, 11, 32] for the Stokes equations
with Dirichlet boundary conditions.

Let Th be a regular, quasi-uniform triangulation of the polygonal domain Ω into a union
of triangles [12, 13]. Associated with Th = {K}, we consider the finite element spaces for
the velocity and pressure: Vh ⊂ V and Qh ⊂ Q with h = max{hK : K ∈ Th}.

We first define

Vh =
{

v ∈ V : v|K ∈ [
P1(K)

]2,∀K ∈ Th
}

,

Qh =

⎧
⎪⎨

⎪⎩

Q0
h ≡ {q ∈ Q : q|K ∈ P0(K),∀K ∈ Th},

Q1
h ≡ {q ∈ Q : q|K ∈ P1(K),∀K ∈ Th},

where P1 and P0 denote the spaces of polynomials of degree 1 or 0 on set K , respectively.
It is well known that, for all (v, q) ∈ [W 2,∞(Ω)]2 × H1(Ω), we have the approximation
properties:

inf
(vh ,qh)∈Vh×Qh

∥∥∣∣(v – vh, q – qh)
∥∥∣∣ � h

(‖v‖2 + ‖q‖1
)
, (2.7)

inf
vh∈Vh

‖v – vh‖0,Γ � h2‖v‖2,∞. (2.8)

Here, we aim to formulate the stabilized mixed finite element methods for the lowest
equal-order pair Vh × Q1

h and for the lowest order pair Vh × Q0
h. These two pairs are un-

stable and do not satisfy the so-called Babus̆ka–Brezzi stability condition. A local pressure
projection method is recalled in [8, 11, 32]. Let Πh be the elementwise L2-projection

Πh =

⎧
⎨

⎩
Π0 : L2(Ω) → Q1

h, for P1 – P0,

Π1 : L2(Ω) → Q0
h, for P1 – P1.

Here, the operators Π0 and Π1 are, respectively, applied to stabilize the lowest equal-order
pair Vh × Q1

h and the lowest order pair Vh × Q0
h. Furthermore, the mapping satisfies the

following properties [8, 32]:

‖Πhp‖0 � ‖p‖0, ∀p ∈ Qh, (2.9)
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‖p – Πhp‖0 � h‖p‖1, ∀p ∈ H1(Ω) ∩ Qh. (2.10)

Now, we are in a position to introduce the stabilized bilinear form (cf. [8, 11, 32])

G(ph, qh) = (ph – Πhph, qh – Πhqh). (2.11)

We define the bilinear form for all (uh, ph), (vh, qh) ∈ Vh × Qh by

Bh
(
(uh, ph); (vh, qh)

)
= B

(
(uh, ph); (vh, qh)

)
+ G(ph, qh).

The finite element approximation to (2.6) is to find (uh, ph) ∈ Vh × Qh such that, for all
(vh, qh) ∈ Vh × Qh,

Bh
(
(uh, ph); (vh – uh, qh)

)
+ j(vhτ ) – j(uhτ ) ≥ (f , vh – uh). (2.12)

By the definition of Bh(·, ·), (2.12) is for all vh ∈ Vh equivalent to

a(uh, vh – uh) – d(vh – uh, ph) + j(vhτ ) – j(uhτ ) ≥ (f , vh – uh), (2.13)

and for all qh ∈ Qh,

d(uh, qh) + G(ph, qh) = 0. (2.14)

3 A priori error estimates
In this section, we estimate the ‖| · ‖| norm of the error between the exact solution (u, p)
of (2.6) and the finite element solution (uh, ph) of (2.12).

To this end, we first study the properties of the bilinear form Bh(·, ·). By a similar ap-
proach in [8, 32], it is easy to verify the following continuity: for all (vh, qh), (wh,λh) ∈
Vh × Qh,

∣∣Bh
(
(vh, qh); (wh,λh)

)∣∣ �
∥∥∣∣(vh, qh)

∥∥∣∣∥∥∣∣(wh,λh)
∥∥∣∣, (3.1)

where the hidden constant is independent of the mesh size h. Moreover, by similar argu-
ments in [20, 25, 33, 39, 40], it is not hard to establish the following inf-sup property: for
all (vh, qh) ∈ Vh × Qh,

∥∥∣∣(vh, qh)
∥∥∣∣ � sup

(wh ,λh)∈Vh×Qh

Bh((vh, qh); (wh,λh))
‖|(wh,λh)‖| . (3.2)

Due to (3.1), (3.2) and the fact that j(·) is a continuous functional defined on the convex
set Vh × Qh, the discrete problem (2.12) has a unique solution [4, 40].

For completeness, we are ready to prove the following theorem for the model approxi-
mated by the lower order finite element pairs.

Theorem 3.1 Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be solutions of (2.6) and (2.12),
respectively. If (u, p) ∈ [H2(Ω)]2 × H1(Ω), then

∥∥∣∣(u – uh, p – ph)
∥∥∣∣ � h

(‖u‖2 + ‖p‖1 + ‖u‖ 1
2
2
)
, (3.3)

where the hidden constant only depends on the data (μ, f , g,Ω).
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Proof First, we estimate ‖∇(u – uh)‖0. By the triangle inequality, for all vh ∈ Vh,

∥∥∇(u – uh)
∥∥

0 ≤ ∥∥∇(u – vh)
∥∥

0 +
∥∥∇(uh – vh)

∥∥
0.

By the definition of the bilinear Bh, for all (vh, qh) ∈ Vh × Qh,

μ
∥∥∇(uh – vh)

∥∥2
0 ≤ Bh

(
(uh – vh, ph – qh), (uh – vh, ph – qh)

)
= I1 – I2, (3.4)

where

I1 = Bh
(
(uh, ph), (uh – vh, ph – qh)

)

and

I2 = Bh(vh, qh), (uh – vh, ph – qh)).

By (2.12), we have

I1 ≤ (f , uh – vh) + j(vhτ ) – j(uhτ ). (3.5)

Taking (v, q) = (uh – vh + u, ph – qh) in (2.6), we have

(f , uh – vh) ≤ B
(
(u, p), (uh – vh, ph – qh)

)
+ j

(
(uh – vh + u)τ

)
– j(uτ )

≤ Bh
(
(u, p), (uh – vh, ph – qh)

)
– G(p, ph – qh)

+ j
(
(uh – vh + u)τ

)
– j(uτ ). (3.6)

Using the Hölder inequality, it is easy to verify that, for all v ∈ V,

j(vhτ ) – j(uτ ) =
∫

Γ

g|vhτ |ds –
∫

Γ

g|uτ |ds

≤
∫

Γ

g|vhτ – uτ |ds

� h1/2
Γ ‖g‖∞,Γ ‖vhτ – uτ‖0,Γ , (3.7)

where the mesh size hΓ is the largest scale of the set K ∩ Γ .
Moreover, using the definition of G(·, ·) and the Hölder inequality, yields

G(p, ph – qh) =
(
p – Πhp, (ph – qh) – Πh(ph – qh)

)

≤ ‖p – Πhp‖0‖ph – qh‖0. (3.8)

Substituting (3.6) and (3.7) into (3.5), we have

I1 ≤ Bh
(
(u, p), (uh – vh, ph – qh)

)
+ 2h1/2

Γ ‖g‖∞,Γ ‖uτ – vhτ‖0,Γ

+ ‖p – Πhp‖0‖ph – qh‖0.
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Therefore,

I1 – I2 ≤ Bh
(
(u – vh, p – qh), (uh – vh, ph – qh)

)

+ ‖p – Πhp‖0‖ph – qh‖0 + 2h1/2
Γ ‖g‖∞,Γ ‖uτ – vhτ‖0,Γ

�
∥∥∣∣(u – vh, p – qh)

∥∥∣∣∥∥∣∣(uh – vh, ph – qh)
∥∥∣∣

+ ‖p – Πhp‖0‖ph – qh‖0 + h1/2
Γ ‖g‖∞,Γ ‖uτ – vhτ‖0,Γ .

Then, by (3.4) and the Young inequality,

∥∥∇(uh – vh)
∥∥2

0 �
∥∥∣∣(u – vh, p – qh)

∥∥∣∣2 + ‖ph – qh‖2
0

+ ‖p – Πhp‖2
0 + h1/2

Γ ‖uτ – vhτ‖0,Γ .

Consequently

∥∥∇(u – uh)
∥∥2

0 �
∥∥∣∣(u – vh, p – qh)

∥∥∣∣2 + ‖ph – qh‖2
0 + h2‖p‖2

1 + h1/2‖uτ – vhτ‖0,Γ , (3.9)

where we have used the fact that ‖p – Πhp‖0 � h‖p‖1. On the other hand, set that

V̄h =
{

v ∈ [
H1

0 (Ω)
]2 : v|K ∈ [

P1(K)
]2} ⊂ Vh.

Let wh ∈ V̄h and taking v = u ± wh separately in (2.6), we obtain

a(u, wh) – d(wh, p) = (f , wh).

Also, taking vh = uh ± wh separately in (2.12), we obtain

a(uh, wh) – d(wh, ph) = (f , wh).

Then, for all (wh,λh) ∈ Vh × Qh, noting that

d(u – uh,λh) + G(p – ph,λh) = 0,

we can derive from the above two equalities that

a(u – uh, wh) – d(wh, p – ph) + d(u – uh,λh) + G(p – ph,λh) = 0. (3.10)

Then, we can derive the following result from the weak coercivity property in [19]:

‖ph – qh‖0

� sup
(wh ,λh)∈(V̄h ,Qh)

Bh((uh – vh, ph – qh); (wh,λh))
‖|(wh,λh)‖|

� sup
(wh ,λh)∈(V̄h ,Qh)

Bh((uh – u, ph – p); (wh,λh)) + Bh((u – vh, p – qh); (wh,λh))
‖|(wh,λh)‖|
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�
(

sup
(wh ,λh)∈(V̄h ,Qh)

G(p,λh)
‖|(wh,λh)‖| + sup

(wh ,λh)∈(V̄h ,Qh)

Bh((u – vh, p – qh); (wh,λh))
‖|(wh,λh)‖|

)

�
(∥∥∣∣(u – vh, p – qh)

∥∥∣∣ + ‖p – Πhp‖0
)
, (3.11)

where the hidden constant only depends on Ω .
Thus, we obtain, for all (vh, qh) ∈ Vh × Qh,

∥∥∣∣(u – uh, p – ph)
∥∥∣∣2 �

∥∥∣∣(u – vh, p – qh)
∥∥∣∣2 + h2‖p‖2

1 + h1/2‖uτ – vhτ‖0,Γ .

Noticing estimates (2.7) and (2.8), the proof of (3.3) is completed. �

4 A posteriori error estimates
In this section, we will derive the a reliable and efficient a posteriori estimates for the error
‖|(u – uh, p – ph)‖|.

Denote by Eh the set of all of the interior element-edges. For K ∈ Th and E ∈ Eh, we define
the element residual and jump residual by

RK = f + μ�uh – ∇ph,

JE =
[

∂uh

∂n
– phn

]

E
= [∇uh – phI]E · n.

Hereafter, [q]E denotes the jump of q across an interior side E ∈ Eh, n denotes a unit nor-
mal of E ∈ Eh, and I denotes the identity matrix. We define the elementwise local error
indicator for all K ∈ Th by

η2
K = h2

K‖RK‖2
0,K + ‖div uh‖2

0,K +
∑

E∈Eh∩∂K

hE‖JE‖2
0,E +

∑

E∈Γ ∩∂K

h2
E‖g‖2

∞,E .

Then, the global error estimator can be written by

η =
( ∑

K∈Th

η2
K

)1/2

.

In the following, we analyze the reliability and efficiency of η. Let ui and pi be the Scott–
Zhang interpolation (cf. [43]) of u and p, respectively. For simplicity, we denote (ei, εi) =
(ui – uh, pi – ph) and (e, ε) = (u – uh, p – ph).

4.1 Reliability
In this subsection, we show that the error ‖|(e, ε)‖| can be bounded by the estimator η.

Theorem 4.1 Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be solutions of (2.6) and (2.12),
respectively. Then

∥∥∣∣(e, ε)
∥∥∣∣ � η, (4.1)

where the hidden constant is independent of h.
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Proof A direct calculation yields

B
(
(e, ε), (ei, εi)

)
= B

(
(u, p), (ei, εi)

)
– Bh

(
(uh, ph), (ei, εi)

)
+ G(ph, εi).

Then

B
(
(e, ε), (ei, εi)

)
= I1 + I2,

where

I1 = (f , ei) – Bh
(
(uh, ph), (ei, εi)

)
– (f , e) + B

(
(u, p), (e, ε)

)
,

and

I2 = –(f , ei – e) + B
(
(u, p), (ei – e, εi – ε)

)
+ G(ph, εi).

Taking (vh, qh) = (ui, pi – ph) in (2.12), we obtain

(f , ei) – Bh
(
(uh, ph), (ei, εi)

) ≤ j(uiτ ) – j(uhτ ).

Similarly, taking (v, q) = (uh, ph – p) in (2.6) gives

–(f , e) + B
(
(u, p), (e, ε)

) ≤ j(uhτ ) – j(uτ ).

Thus

I1 ≤ j(uiτ ) – j(uτ )

=
∫

Γ

g|uiτ – uτ |ds

≤ j(eiτ ) – j(eτ ).

We next calculate I2. By the definition of the bilinear form B(·, ·) and the Green’s formula,

B
(
(uh, ph), (e – ei, ε – εi)

)
=

∑

K∈Th

(–μ�uh + ∇ph, e – ei)

+
∑

E∈Eh

〈JE , e – ei〉 +
∑

K∈Th

(div uh, ε – εi). (4.2)

Then, we have

I2 = –(f , ei – e) + B
(
(u, p), (ei – e, εi – ε)

)
+ G(ph, εi)

= –(f , ei – e) + B
(
(uh, ph), (ei – e, εi – ε)

)

+ G(ph, εi) + B
(
(e, ε), (ei – e, εi – ε)

)

=
∑

K∈Th

(RK , e – ei) –
∑

E∈Eh

〈JE , e – ei〉 –
∑

K∈Th

(div uh, εi – ε)

+ G(ph, εi) + B
(
(e, ε), (ei – e, εi – ε)

)
.
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Noticing (2.14), we obtain

I2 + B
(
(e, ε), (e – ei, ε – εi)

)
=

∑

K∈Th

(RK , e – ei) –
∑

E∈Eh

〈JE , e – ei〉

–
∑

K∈Th

(div uh, ε).

Therefore,

B
(
(e, ε), (e, ε)

)
= B

(
(e, ε), (ei, εi)

)
+ B

(
(e, ε), (e – ei, ε – εi)

)

= I1 + I2 + B
(
(e, ε), (e – ei, ε – εi)

)

≤ j(eiτ ) – j(eτ ) +
∑

K∈Th

(RK , e – ei)

+
∑

E∈Eh

〈JE , e – ei〉 –
∑

K∈Th

(div uh, ε).

Due to the trace inequality and by straightforward calculation,

j(eiτ ) – j(eτ ) ≤
∑

E∈Γ ∩∂K

‖g‖∞,E

∫

E
|eτ – eiτ |ds

≤
∑

E∈Γ ∩∂K

h1/2
E ‖g‖∞,E‖eτ – eiτ‖0,E

≤
∑

E∈Γ ∩∂K

hE‖g‖∞,E‖∇e‖0,K

≤
( ∑

E∈Γ ∩∂K

h2
E‖g‖2

∞,E

)1/2

‖∇e‖0.

Using the Cauchy–Schwarz inequality and the property of the Scott–Zhang interpolation,
we obtain

μ‖∇e‖2
0 = B

(
(e, ε); (e, ε)

)
� η

∥∥∣∣(e, ε)
∥∥∣∣. (4.3)

By the same approach as for Theorem 3.1, we next estimate ‖ε‖0. Let wh ∈ V̄h be arbitrary
and take v = u ± wh separately in (2.6) to obtain

a(u, wh) – d(wh, p) = (f , wh).

Also, taking v = uh ± wh separately in (2.12), we have

a(uh, wh) – d(wh, ph) = (f , wh).

Then, for all wh ∈ V̄h, we have

a(e, wh) – d(wh, ε) = 0. (4.4)
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Since ε ∈ Q, there exists w ∈ [H1
0 (Ω)]2 such that

d(w, ε) = ‖ε‖2
0, ‖∇w‖0 � ‖ε‖0, (4.5)

where the hidden constant is only dependent of Ω . Thus, by (4.4), for all wh ∈ V̄h,

‖ε‖2
0 = d(wh, ε) + d(w – wh, ε)

= a(e, w) + a(e, wh – w) + d(w – wh, ε). (4.6)

A straightforward calculation yields

a(e, wh – w) + d(w – wh, ε) =
∑

K∈Th

(RK , w – wh) +
∑

E∈Eh

〈JE , w – wh〉. (4.7)

Now we choose wh ∈ V̄h such that

‖w – wh‖0 ≤ C‖∇w‖0.

Therefore, using (4.5), (4.6) and (4.7), we deduce

‖ε‖0 ≤ C
(‖∇e‖0 + η

)
. (4.8)

Combining (4.3) and (4.8), we obtain (4.1). �

4.2 Efficiency
We notice that our reliable estimator derived in the previous section includes several
terms. Among them, the terms ‖hK RK‖0,K , ‖div uh‖0,K and ‖h1/2

E JE‖0,E appear even for
Stokes problem with pure Dirichlet boundary conditions. By a standard argument (cf.,
[46, 47]), we can prove that the following efficiency results in conjecture 4.2 are also valid
for Dirichlet boundary problems. The novelty in our estimator is that we have the new
term ‖h

1
2
E g‖0,E which comes from the slip boundary condition. In fact, the presented meth-

ods are still open on the efficiency in theory although numerical experiments reported in
Sect. 5 is reliable and efficient. We have not been able to prove this fact yet.

Conjecture 4.2 Let (u, p) and (uh, ph) be the solutions of (2.6) and (2.12), respectively. For
each K ∈ Th,

‖hK RK‖0,K �
∥∥∣∣(u – uh, p – ph)

∥∥∣∣
K +

∥∥hK (RK – R̄K )
∥∥

0,K , (4.9)

‖div uh‖0,K �
∥∥∣∣(u – uh, p – ph)

∥∥∣∣
K . (4.10)

For each E ∈ Eh,

∥∥h1/2
E JE

∥∥
0,E �

∥∥∣∣(u – uh, p – ph)
∥∥∣∣

ωE
+

∑

K⊂ωE

oscK , (4.11)
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where the oscillation is defined for all K ∈ Th by

osc2
K =

∥∥hK (RK – R̄K )
∥∥2

0,K +
∑

E∈Eh∩∂K

h1/2
E ‖JE – J̄E‖2

0,E

+
∑

E∈Γ ∩∂K

∥∥h
1
2
E (g – ḡE)

∥∥2
0,E ,

with R̄K = 1
|K |

∫
K RK , J̄E = 1

|E|
∫

E JE and ḡE = 1
|E|

∫
E g denote the averages of RK on K , JE and g

on E, respectively.

5 Numerical experiments
In this section, we verify the theoretical findings in previous sections by the following
three numerical examples: the first one is for a problem with a known smooth solution,
the second one is for a problem on L-shape domain with a singular source f , the final one
is for the well-known driven cavity problem. All experiments are implemented by using
the public free finite element software FreeFem++ [15]. Moreover, for a given mesh Th, the
stabilized finite element system (2.12) is solved with Uzawa iteration by the lowest order
pair P1 – P0 and the lowest equal-order pair P1 – P1, respectively.

In the sequel, we always use Dof to denote the cardinality of the triangulation Th. Let
ηg = (

∑
E∈Γ ∩∂K h2

E‖g‖2
∞,E)1/2. Moreover, let Eη = η

‖|(e,ε)‖| be the effective index of our error
estimator η.

5.1 A smooth problem
We consider (2.1) to (2.3) on the square Ω = [0, 1]2 with μ = 1, and

f =

(
6x2 – 6x3 + y(3y – 2)(6x – 2) + 4y – 2
6y3 – 6y2 – x(3x – 2)(6y – 2) + 4x – 2

)

.

The boundary of Ω is split into ∂Ω = ΓD ∪ Γ1 ∪ Γ2, where the Dirichlet boundary ΓD =
({0} × [0, 1]) ∪ ([0, 1] × {0}), the slip boundary Γ = Γ1 ∪ Γ2 with Γ1 = {1} × [0, 1] and Γ2 =
[0, 1] × {1}. On Γ ,

g(x, y) =

⎧
⎨

⎩
4y2(1 – y), (x, y) ∈ Γ1,

4x2(1 – x), (x, y) ∈ Γ2.

This problem admits a smooth solution

u =

(
–x2y(x – 1)(3y – 2)
xy2(y – 1)(3x – 2)

)

, p = (2x – 1)(2y – 1).

Let T1 be an initial mesh obtained by partitioning the unit square into 10 × 10 equal
squares and then dividing each square by connecting its diagonal into two triangles.
Moreover, we let Tn, n = 2, . . . , 7 be a sequence of nested meshes satisfying #Tn � #Tn–1,
n = 2, . . . , 7. We list the errors ‖|(e, ε)‖|, the special error estimator ηg , the error estimator η

and the effectivity index Eη corresponding to these 7 meshes in Tables 1 and 2. From these
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Table 1 Errors, estimators and effectivity ratio: P1 – P0

Meshes Dof ‖∇e‖0 ‖ε‖0 ‖|(e,ε)‖| η ηg Eη

T1 200 0.0781549 0.0827345 0.113812 0.48791 0.0836507 4.2870
T2 392 0.0555608 0.0583028 0.0805371 0.360565 0.0598029 4.4770
T3 800 0.0387081 0.0399877 0.0556537 0.257753 0.0418828 4.6314
T4 1800 0.0257007 0.0260654 0.036605 0.174117 0.0279351 4.7566
T5 3698 0.0178858 0.0178874 0.0252955 0.12227 0.0194876 4.8337
T6 7200 0.0127973 0.0126668 0.0180061 0.0879465 0.0139675 4.8843
T7 14,450 0.00902263 0.00885705 0.0126434 0.062228 0.00985919 4.9218

Table 2 Errors, estimators and effectivity ratio: P1 – P1

Meshes Dof ‖∇e‖0 ‖ε‖0 ‖|(e,ε)‖| η ηg Eη

T1 200 0.0775394 0.0357616 0.0853888 0.475923 0.0836507 5.5736
T2 392 0.0554011 0.0212961 0.0593532 0.342517 0.0598029 5.7708
T3 800 0.0387005 0.0122152 0.0405825 0.24037 0.0418828 5.9230
T4 1800 0.0257246 0.00648786 0.0265301 0.160261 0.0279351 6.0407
T5 3698 0.0179059 0.00370698 0.0182856 0.111726 0.0194876 6.1101
T6 7200 0.0128105 0.00221413 0.0130004 0.080006 0.0139675 6.1541
T7 14,450 0.00903022 0.00129542 0.00912266 0.0564323 0.00985919 6.1859

Figure 1 The convergence order on uniform-type
mesh: P1 – P0

tables, we find that the effectivity indices almost equal 5.0 and 6.0, respectively. These re-
sults imply that our error estimator is reliable and efficient for these examples. And this
fact supports our analysis in Sect. 4.

In order to present precisely the convergence order of the errors, we plot the errors
‖∇e‖0, ‖ε‖0, ‖|(e, ε)‖|, the especial estimator ηg and the estimator η in Figs. 1 and 2. From
the figures, we clearly observe that the errors ‖∇e‖0, ‖ε‖0, and ‖|(e, ε)‖| converge to 0 with
the order 1. This fact nicely support our theoretic result in Theorem 3.1. The convergence
order of the pressure ‖ε‖0 is between 1 and 2 in Fig. 2. This phenomenon may be surprising
because we have used P1 finite elements to approximate the pressure. Since the estimators
ηg and η decrease also with the order 1, the analysis in Sect. 4 is also validated.

5.2 A problem on L-shape domain
We consider (2.1) to (2.3) on an L-shape domain Ω = [–1, 1]2 \ [0, 1]2. Let the resource
function

f =

(
–6r–0.5 cos(0.5θ )
–6r–0.5 sin(0.5θ )

)

,



Li et al. Advances in Difference Equations        (2019) 2019:374 Page 14 of 20

Figure 2 The convergence order on uniform-type
mesh: P1 – P1

Figure 3 The convergence rate of adaptive and uniform refinements for the problem on L-shape domain
with slip boundary condition: g is continuous at (0, 0). (a): P1 – P0; (b): P1 – P1

where (r, θ ) is a polar representation of a point on the L-shape domain. Apparently f is
singular at the corner of domain. The boundary ∂Ω is split into the Dirichlet boundary
ΓD = ([–1, 1] × {–1}) ∪ ({1} × [–1, 0]) ∪ ([–1, 0] × {1}) ∪ ({–1} × [–1, 1]) and slip boundary
Γ = ∂Ω \ ΓD.

Unlike the first example, the exact solution of this problem is not known. In this example,
some singularities arise at the L-corner due to the singular source and the slip boundary
conditions. We consider two choices for the scale function g . In the first example, g is,
respectively, set as Sect. 5.1. In the second example,

g(x, y) =

⎧
⎨

⎩
1, (x, y) ∈ Γ1,

0.5, (x, y) ∈ Γ2,

where Γ = Γ1 ∪Γ2 with Γ1 = [0, 1]×{0} and Γ2 = {0}× [0, 1]. Obviously, g is discontinuous
at point (0, 0) for the latter choice.

Observed from Figs. 3 and 4, the convergence results based on the a posteriori error
estimates are shown. The adaptive refinement clearly leads to the optimal convergence rate
of O(h) approximated by the lowest finite element pair and equal-order finite element pair
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Figure 4 The convergence rate of adaptive and uniform refinements for the problem on L-shape domain
with slip boundary condition: g is discontinuous at (0, 0). (c): P1 – P0; (d): P1 – P1

for the two different g. We note that the adaptive and uniform approaches can both leads
to the optimal order rate of O(h) if g is continuous at (0, 0). However, lots of unknowns
are saved by the adaptive refinement to obtain the same accuracy. In the second example,
the prominent advantage appears that the adaptive stabilized finite element methods have
achieved the same convergence result as theoretical expectation for that lack of convexity
of domains, but the convergence rate of the uniform refinement is reduced.

5.3 Lid driven cavity
Cavity flows have been widely used as test cases for validating the incompressible fluid
dynamics algorithm. It is a popular benchmark problem for testing numerical schemes. In
the classical test, the upper corners where the moving surface meets the stationary walls
are singular points of the flow at which the horizontal velocity is multi-valued. Moreover,
the lower corners are also weakly singular points. The fluid is enclosed in a square box
with an imposed velocity of unity in the horizontal direction on the top boundary, and a
no slip condition on the remaining walls. In our test, we impose a slip boundary condition
to the bottom boundary, in fact, we let u2 = 0, and set g = 1.0, 10.0, 100.0 and μ = 1.0. We
are thus able to study how meshes adapt to various effects on singularities by changing the
slip boundary conditions.

Figures 5–10 show the adaptive refinements by the P1 – P0 and P1 – P1 stabilized meth-
ods, with different g . From Figs. 5–10, the choice of g has important effect on mesh distri-
bution for the presented model since g is a major factor in the estimator, which is different
from the Stokes equations with the Dirichlet boundary condition. Both singularities at
upper and bottom definitely have important impact on the model presented here but the
degree of impaction may be different. As observed from Fig. 5 with smallest g = 1.0, adap-
tive refinement is only generated in the two upper corners of the cavity. The affection of
the slip boundary condition seems weak, only the influence of two singularities arising at
the top corners of the square box are obviously found. As seen from Fig. 6 with g = 10.0,
the influence of two singularities also increases at the two bottom corners, but it is a little
weaker than that of the upper two singularities. As for Fig. 7 with g = 100.0, the influence of
the singularities derived from the slip boundary condition increases and becomes a dom-
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Figure 5 Adaptive refinements by P1 – P0 stabilized method for the cavity flow with slip boundary condition:
g = 1.0. (a): T1; (b): T2; (c): T3; (d): T4; (e): T5; (f): T6

Figure 6 Adaptive refinements by P1 – P0 stabilized method for the cavity flow with slip boundary condition:
g = 10.0. (a): T1; (b): T2; (c): T3; (d): T4; (e): T5; (f): T6

inative factor as the given scalar function g increases. The adaptive refinements for the
two stabilized methods are similar, which means both stabilized methods with adaptive
strategy are effective to solve the incompressible flow with the slip boundary conditions
of friction type.
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Figure 7 Adaptive refinements by P1 – P0 stabilized method for the cavity flow with slip boundary condition:
g = 100.0. (a): T1; (b): T2; (c): T3; (d): T4; (e): T5; (f): T6

Figure 8 Adaptive refinements by P1 – P1 stabilized method for the cavity flow with slip boundary condition:
g = 1.0. (a): T1; (b): T2; (c): T3; (d): T4; (e): T5; (f): T6

6 Conclusion
In this paper, we consider the lower order stabilized finite element methods for the in-
compressible flow arising in arteriosclerosis. The velocity in H1-norm and the pressure in
L2-norm decrease with optimal convergence orde. The reliable and efficient a posteriori
error estimates for our finite element solutions are also derived. Moreover, we achieve a
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Figure 9 Adaptive refinements by P1 – P1 stabilized method for the cavity flow with slip boundary condition:
g = 10.0. (a): T1; (b): T2; (c): T3; (d): T4; (e): T5; (f): T6

Figure 10 Adaptive refinements by P1 – P1 stabilized method for the cavity flow with slip boundary
condition: g = 100.0. (a): T1; (b): T2; (c): T3; (d): T4; (e): T5; (f): T6

series of numerical results for the presented problem [21–23]. Furthermore, we will then
use the efficient methods [18, 34, 35, 37] to solve the similar practical problem for the
coupling problem.
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