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Abstract
This paper deals with the model of fractional HIV-1 infection of CD4+T cells
transformation with homogeneous Neumann boundary conditions. Numerical
methods for solving fractional time differential equations are developed with
Caputo’s definition. The forward difference methods were constructed applied to the
approximation of the fractional time differential equation. The MLPG method is used
to solve the problem of fractional HIV models for spatial discretization. Approximated
solutions at the time level n use conventional iterative methods such as fixed point
iterations to handle the nonlinear parts. An analysis of stability and convergence of
numerical schemes is presented along with the eigenvalue of the matrix. The abilities
of the developed formula was confirmed through four numerical examples base on
convergence and accuracy of numerical results. The results of the numerical
experiments were compared with the solution of the integer order differential
equation to confirm the accuracy and efficiency of the proposed scheme. The
simulation results show that the formula is easy to use and useful for those interested
in fractional derivatives.
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1 Introduction
There are currently many countries where people are infected by the human immunode-
ficiency virus (HIV). Around the world, more people die from this virus. HIV is a retro-
virus virus that targets CD4+T white blood cells, the most abundant white blood cells in
the immune system. Although HIV is infected in other cells as well, it can cause the most
damage in CD4+T cells by causing the cells to deteriorate and be destroyed, reducing the
resistance of the immune system. Mathematical modeling is a very important branch of
applied mathematics. By using this approach, we can convert problems in the real world
into mathematical modules and then analyze in a better manner. Mathematical models
have been proven to be valuable in understanding the dynamics of HIV infection. In 1989,
Perelson developed a simple model for primary infection with HIV. This model was im-
portant in the creation of mathematical models of HIV infection. Perelson et al. expanded
the model in 1993. They determined four categories: CD4+T cells that are non-infected,
CD4+T cells that are infected, CD4+T cells that are effectively infected and virus popu-
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lations. Next, Rong et al. modified the model further by incorporating anti-virus effects
to study the evolution of drug resistance. They considered three classes of CD4+T cells:
non-infected cells, cells infected with the eclipse phase and effectively infected cells [1].
In Wang et al., the densities of non-infected cells, infected cells, and free viruses are as-
sumed to be located at position x at time t, denoted by u(x, t), v(x, t), w(x, t), respectively.
The spatial domain is assumed to be one-dimensional, (x, t) ∈ (–∞,∞) × (0,∞). Brauner
et al. extended their work to a two-dimensional square domain (0, l) × (0, l) with periodic
boundary conditions and provided a recruitment rate that was space dependent. They pro-
posed a zero-flux boundary condition in a general bounded domain Ω ∈R

d with smooth
boundary ∂Ω (homogeneous Neumann boundary condition). In recent work, Wang et
al. argued that there should be a real spatial space, but generally not a square under the
appropriate boundary conditions. They offered zero-flux boundary conditions in the gen-
eral domain Ω ∈ R

d with a smooth boundary condition. Recent studies have shown that
the effectiveness of viral infection is important, indicating that the virus is transmitted to
non-infected target cells. In this case, the virus particles can be transferred from infected
target cells to non-infected ones through virus synapses. The results of this study suggest
that direct cell-mediated infection affects the mechanism of HIV transmission through
the body. Therefore, the details of cell change between HIV cells with delay and without
delay can be rewritten as follows:

∂p(x, t)
∂t

= λ(x) – β1(x)p(x, t)r(x, t) – β2(x)p(x, t)q(x, t) – a(x)p(x, t), (1.1)

∂q(x, t)
∂t

= β1(x)p(x, t)r(x, t) + β2(x)p(x, t)q(x, t) – b(x)q(x, t), (1.2)

∂r(x, t)
∂t

= D�r(x, t) + k(x)q(x, t) – m(x)r(x, t) (1.3)

for (x, t) ∈ Ω × (0,∞); Ω ∈ R
d , d = 1, 2, 3 with the homogeneous Neumann boundary

condition ∂r(x,t)
∂n = 0; x ∈ ∂Ω , t > 0 where n denotes an outward unit normal to ∂Ω and

initial conditions p(x, 0) = p0(x) ≥ 0, q(x, 0) = q0(x) ≥ 0, r(x, 0) = r0(x) ≥ 0; x ∈ Ω . The
density of non-infected cells, the density of infected cells and the density of free viruses are
denoted by p(x, t), q(x, t) and r(x, t), respectively. λ(x), a(x) and b(x) denoted the number of
newly produced non-infected cells, the death rate of non-infected cells and the death rate
of infected cells, respectively. The death rate of free viruses, the transmission coefficient for
virus to cell infection and the transmission coefficient for cell to cell infection are denoted
by m(x), β1(x) and β2(x), respectively. k(x), D and � denote the rate of virus production
due to the lysis of infected cells, the diffusion coefficient and the Laplacian, respectively
[2].

In applied mathematics, one of the most often used concepts is that of the deriva-
tive. Derivatives show the rate of change of functions that are useful in explaining many
real phenomena. The concept of fractional calculus is especially important for model-
ing real-world problems. Many physical problems have been simulated using the con-
cept of fractional order derivatives. However, most fractional order differential equations
that describe real-world problems are highly complex and sometimes cannot be managed
through analytical methods. Therefore it is necessary to find new numerical methods for
fractional order differential equations. Due to these problems, there are initial conditions,
boundary condition and source terms which are difficult to find from analytical solutions.
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This means that the next state of the system does not depend on the current state only but
still depends on all historical state. This is more realistic and is one reason why fractional
calculus becomes more popular.

The meshless local Petrov–Galerkin (MLPG) method is a fundamental base for the
derivation of many meshless formulations since the trial and test functions can be cho-
sen from different functional spaces. The MLPG method has been proposed by Atluri
and Zhu [3, 4] and Atluri, Kim and Cho [5] for solving linear and nonlinear boundary
problems. This method is truly meshless, as no finite element or boundary element meth-
ods are required in this approach, either for purposes of interpolation of the trial and
test functions for the solution variables or for the purpose of the integration of the weak
form; while other meshless methods require background cells. Remarkable successes of
the MLPG method have been reported in solving the convection-diffusion problems by
Lin and Atluri [6], fracture mechanics problems by Kim and Atluri [7] and Ching and Ba-
tra [8], Navier–Stokes flows by Lin and Atluri [9], and plate bending problems by Gu and
Liu [10] and Long and Atluri [11]. Based on the MLPG methods concept, these variants of
the MLPG method are labeled MLPG1, MLPG2, MLPG3, MLPG4, MLPG5, and MLPG6,
respectively. Six different MLPG methods derived from six different nodal-based local
test functions are also selected. The test function over a local sub-domain is the same as
the weight function in the moving least square approximation: The resultant is denoted
as MLPG1. The test function over the local sub-domain is the collocation Dirac’s delta
function (collocation method): The resultant is denoted MLPG2. The test function over
a local sub-domain is the same as the error function in the differential equation, using
discrete least squares: The resultant is denoted MLPG3. The test function over local sub-
domain is the modified fundamental solution to the differential equation (local boundary
integral equation method): The resultant is denoted MLPG4. The test function over local
sub-domain is the Heaviside step function (constant over each local sub-domain): The re-
sultant is denoted as MLPG5. The test function over local sub-domain is identical to the
trial function (Galerkin method): The resultant is denoted as MLPG6. The MLPG2 does
not involve any numerical integration to generate the global stiffness matrix, thus it is the
simplest form of the meshless method. The MLPG4 does not involve the domain integral
to generate the stiffness matrix but does involve a singular integral. The MLPG1, MLPG3
and MLPG6 methods involve domain integrals to generate the stiffness matrix, which is
difficult in meshless methods due to the complexity of the integrand, especially for the
MLPG3 and MLPG6. The MLPG5 does not involve any domain and singular integrals to
generate the global stiffness matrix; it only involves a regular boundary integral [12].

The MLPG method has been applied to various problems in different fields. But also
one found that constructing shape functions is one of the most important problems in the
MLPG method because of the difficulty in implementing some essential boundary condi-
tions [13]. There are many methods for constructing shape functions such as the moving
least squares (MLS) method, the weighted least squares (WLS) method and the moving
Kriging interpolation (MKI) method. In this paper, the MLPG method based on the mov-
ing Kriging is developed to solve the system of nonlinear partial differential equations. The
moving Kriging for constructing shape function has the Kronecker delta property, which
is a good property for constructing the shape function [14].

The aim of this paper is to study a numerical approximation of the HIV model in
fractional derivatives of Caputo’s definition which is used in the meshless local Petrov–
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Galerkin (MLPG) method in the field of numerical analysis. The outline of this paper is
organized as follows: Sect. 1 is the review of the previous models proposed in previous
work, Sect. 2 gives an idea about the generalized forward difference formula about the
time fractional derivative equation in Caputo’s sense. Then Sect. 3 presents the idea of
generalized MLPG method for solving fractional order differential equations. In Sect. 4, a
stability analysis of the infection-free steady state based on the eigenvalue of the matrix is
presented. In Sect. 5, the numerical examination is given to support the proposed scheme
formula. Finally, the results of this study can be concluded in Sect. 6.

2 Approximation of Caputo fractional order derivative
The approximation solution of the time fractional derivative in Caputo’s sense is shown in
this section. The first-order approximation formula for computation of the time fractional
derivative of order α is based on a quadrature rule and finite difference method [15, 16].
The Caputo fractional derivative is presented as follows.

Definition 1 The fractional derivative of f (t) in Caputo’s sense is defined as

Dα
t f (t) =

1
Γ (n – α)

∫ t

0
(t – τ )n–α–1 dnf (τ )

dτ n dτ ; n – 1 < α < n, n ∈ N , t > 0, (2.1)

where Γ (·) denotes the gamma function. For n = 1, a numerical approximation based upon
the Caputo fractional derivative as Eq. (2.2):

Dα
t f (t) =

1
Γ (1 – α)

∫ t

0
(t – τ )–α df (τ )

dτ
dτ ; 0 < α < 1, t > 0, (2.2)

for some positive integer N , the grid size in time for finite difference technique is defined
by �t = T

N . The grid points in the time interval [0, T] are labeled tj = j�t; j = 0, 1, 2, . . . , N .
The value of the function f at the grid point is f j = f (tj). We have

Dα
t f (tn) =

1
Γ (1 – α)

∫ tn

t0

(tn – τ )–α df (τ )
dτ

dτ ; 0 < α < 1. (2.3)

By
∫ tn

t0
f (y) dy =

∑n–1
j=0

∫ tj+1
tj

f (y) dy, Eq. (2.3) can be rewritten as Eq. (2.4):

Dα
t f (tn) =

1
Γ (1 – α)

n–1∑
j=0

∫ tj+1

tj

(tn – τ )–α df (τ )
dτ

dτ . (2.4)

The approximation formula at the time level n can be obtained as Eq. (2.5):

Dα
t f (tn) =

1
Γ (1 – α)

n–1∑
j=0

∫ tj+1

tj

(tn – τ )–α

(
f j+1 – f j

�t
+ O(�t)

)
dτ

=
1

Γ (1 – α)

n–1∑
j=0

∫ (j+1)�t

(j)�t
(n�t – τ )–α

(
f j+1 – f j

�t
+ O(�t)

)
dτ

=
1

Γ (1 – α)

n–1∑
j=0

(
f j+1 – f j

�t
+ O(�t)

)(
(n�t – j�t)1–α – (n�t – (j + 1)�t)1–α

1 – α

)
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=
�t1–α

Γ (1 – α)

n–1∑
j=0

(
f j+1 – f j

�t
+ O(�t)

)(
(n – j)1–α – (n – j – 1)1–α

1 – α

)

=
�t1–α

Γ (2 – α)

n–1∑
j=0

(
f j+1 – f j

�t
+ O(�t)

)
dj, (2.5)

where Γ (z + 1) = zΓ (z) and dj = (n – j)1–α – (n – j – 1)1–α . Then defining the indices n – j
as k, which dn–k = k1–α – (k – 1)1–α . Thus Eq. (2.5) can be written as Eq. (2.6):

Dα
t f (tn) =

�t1–α

Γ (2 – α)

n∑
k=1

(
f n–k+1 – f n–k

�t
+ O(�t)

)
dn–k

=
�t–α

Γ (2 – α)

n∑
k=1

(
f n–k+1 – f n–k)dn–k +

O(�t2–α)
Γ (2 – α)

n∑
k=1

dn–k , (2.6)

Letting Dα
t f (tn) = Dα

t f (tn) + O(�t) and σα = �t–α

Γ (2–α) . The first-order approximation for-
mula of the time fractional derivative in Caputo’s sense is given as Eq. (2.7):

D
α
t f (tn) = σα

n∑
k=1

(
f n–k+1 – f n–k)dn–k . (2.7)

3 The spatial discretization
This section demonstrates the approximation solution of the fractional HIV model for
the spatial discretization. In the MLPG method, the moving Kriging interpolation are em-
ployed to construct the shape function which employs the Kronecker delta property [13,
14]. The Dirac delta function is applied in the local weak form as the test function [17].
Equations (1.1)–(1.3) can be transformed into fractional order differential equations of
order α as follows:

∂αp(x, t)
∂tα

– λ(x) + β1(x)p(x, t)r(x, t) + β2(x)p(x, t)q(x, t) + a(x)p(x, t) = 0, (3.1)

∂αq(x, t)
∂tα

– β1(x)p(x, t)r(x, t) – β2(x)p(x, t)q(x, t) + b(x)q(x, t) = 0, (3.2)

∂αr(x, t)
∂tα

– D�r(x, t) – k(x)q(x, t) + m(x)r(x, t) = 0, (3.3)

for (x, t) ∈ Ω × (0,∞); Ω ∈ R
d , d = 1, 2, 3 with the homogeneous Neumann boundary

condition ∂r(x,t)
∂n = 0; x ∈ ∂Ω , t > 0 where n denotes an outward unit normal to ∂Ω and we

have initial conditions p(x, 0) = p0(x) ≥ 0, q(x, 0) = q0(x) ≥ 0, r(x, 0) = r0(x) ≥ 0; x ∈ Ω .
Create the local weak form over local sub-domains, ΩS , which is a small region taken for

each node in the global domain, Ω . By multiplying the test function wi to Eqs. (3.1)–(3.3)
and then integrating over a local sub-domains associated with the point xi; i = 1, 2, 3, . . . , N
where N is the number of nodes in the sub-domain, the result can be written as follows:

∫
Ω i

S

(
∂αp(x, t)

∂tα
– λ(x) + β1(x)p(x, t)r(x, t) + β2(x)p(x, t)q(x, t) + a(x)p(x, t)

)
wi(x) dΩ

= 0, (3.4)
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∫
Ω i

S

(
∂αq(x, t)

∂tα
– β1(x)p(x, t)r(x, t) – β2(x)p(x, t)q(x, t) + b(x)q(x, t)

)
wi(x) dΩ

= 0, (3.5)
∫

Ω i
S

(
∂αr(x, t)

∂tα
– D�r(x, t) – k(x)q(x, t) + m(x)r(x, t)

)
wi(x) dΩ = 0, (3.6)

substituting p(x, t), q(x, t) and r(x, t) in Eqs. (3.4)–(3.6) for the trial functions ph(x, t),
qh(x, t) and rh(x, t), respectively. Equations (3.4)–(3.6) can be presented as follows:

N∑
j=1

(∫
Ω i

S

φj(x)wi(x) dΩ

)
D

α
t p̂j(t) –

∫
Ω i

S

λ(x)wi(x) dΩ

+
N∑

j=1

(∫
Ω i

S

β1(x)r(x, t)φj(x)wi(x) dΩ

)
p̂j(t)

+
N∑

j=1

(∫
Ω i

S

β2(x)q(x, t)φj(x)wi(x) dΩ

)
p̂j(t)

+
N∑

j=1

(∫
Ω i

S

a(x)φj(x)wi(x) dΩ

)
p̂j(t) = 0, (3.7)

N∑
j=1

(∫
Ω i

S

φj(x)wi(x) dΩ

)
D

α
t q̂j(t) –

∫
Ω i

S

β1(x)r(x, t)φj(x)wi(x) dΩ

–
N∑

j=1

(∫
Ω i

S

β2(x)p(x, t)φj(x)wi(x) dΩ

)
q̂j(t)

+
N∑

j=1

(∫
Ω i

S

b(x)φj(x)wi(x) dΩ

)
q̂j(t) = 0, (3.8)

N∑
j=1

(∫
Ω i

S

φj(x)wi(x) dΩ

)
D

α
t r̂j(t) –

N∑
j=1

(∫
Ω i

S

Dφj,xx(x)wi(x) dΩ

)
r̂j(t)

–
∫

Ω i
S

k(x)φj(x)wi(x) dΩ +
N∑

j=1

(∫
Ω i

S

m(x)φj(x)wi(x) dΩ

)
r̂j(t) = 0, (3.9)

where ph(x, t) =
∑N

j=1 φj(x)p̂j(t), qh(x, t) =
∑N

j=1 φj(x)q̂j(t) and rh(x, t) =
∑N

j=1 φj(x)r̂j(t). The
shape function, φj, is constructed by a moving Kriging interpolation that satisfies the Kro-
necker delta property. Using MLPG2, the test function in the local weak form is chosen as
Dirac delta function. The test function is defined with significance for each node in sub-
domain as a unit value while all other nodes are set as zero. Integrating Eqs. (3.7)–(3.9)
over sub-domain Ω i

S , the results can be shown as follows:

N∑
j=1

φj(xi)Dα
t p̂j(t) +

N∑
j=1

β1(xi)r(xi, t)φj(xi)p̂j(t) +
N∑

j=1

β2(xi)q(xi, t)φj(xi)p̂j(t)

+
N∑

j=1

a(xi)φj(xi)p̂j(t) = λ(xi), (3.10)
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N∑
j=1

φj(xi)Dα
t q̂j(t) –

N∑
j=1

β2(xi)p(xi, t)φj(xi)q̂j(t) +
N∑

j=1

b(xi)φj(xi)q̂j(t)

= β1(xi)p(xi, t)r(xi, t), (3.11)

N∑
j=1

φj(xi)Dα
t r̂j(t) –

N∑
j=1

Dφj,xx(xi)r̂j(t) +
N∑

j=1

m(xi)φj(xi)r̂j(t) = k(xi)q(xi, t). (3.12)

Equations (3.10)–(3.12) can be written in a matrix form as Eq. (3.13):

ADα
t U + B(U)U = C(U), (3.13)

where

A = [Aij]N×N ; Aij = φj(xi) =

⎧⎨
⎩

0; i �= j,

1; i = j,
B =

⎡
⎢⎣

B11 0 0
0 B22 0
0 0 B33

⎤
⎥⎦ ;

B11 =
[
β1(xi)r(xi, t)φj(xi) + β2(xi)q(xi, t)φj(xi) + a(xi)φj,x(xi)

]
,

B22 =
[
b(xi)φj(xi) – β2(xi)p(xi, t)φj(xi)

]
, B33 =

[
m(xi)φj(xi) – Dφj,xx(xi)

]
,

C =
[
C1 C2 C3

]T ; C1 =
[
λ(xi)

]
,

C2 =
[
β1(xi)r(xi, t)φj(xi)

]
, C3 =

[
k(xi)φj(xi)

]
,

U =
[
P̂ Q̂ R̂

]T ; P̂ =
[
p̂1 p̂2 · · · p̂N

]T ,

Q̂ =
[
q̂1 q̂2 · · · q̂N

]T , R̂ =
[
r̂1 r̂2 · · · r̂N

]T .

Since the shape function constructed by the moving Kriging interpolation satisfies the
Kronecker delta property, A is an identity matrix. Next, Eq. (3.13) is approximated by dis-
cretizing with the time level n of Eq. (3.13). By substituting the approximation formula
of time fractional derivative in Caputo’s sense, Dα

t U . Equation (3.14) is an approximate
solution of computing the vector U at the time level n as Eq. (3.14):

σα

n∑
k=1

(
Un–k+1 – Un–k)dn–k + B

(
Un)Un = C

(
Un). (3.14)

Let Bn = B(Un) and Cn = C(Un). For n = 1, at the first-time level of Eq. (3.14) can be
presented as follows:

σα

(
U1 – U0)d0 + B1U1 = C1, (3.15)

U1 – U0 +
1

σαd0
B1U1 =

1
σαd0

C1, (3.16)

U1 +
1

σαd0
B1U1 = U0 +

1
σαd0

C1, (3.17)
(

I +
1

σαd0
B1

)
U1 = U0 +

1
σαd0

C1, (3.18)

U1 =
(

I +
1

σαd0
B1

)–1(
U0 +

1
σαd0

C1
)

. (3.19)
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For n ≥ 2, the time level ncorresponding to Eq. (3.19) can be written as follows:

σα

(
Un – Un–1)dn–1 + σα

n∑
k=2

(
Un–k+1 – Un–k)dn–k + BnUn = Cn, (3.20)

Un – Un–1 +
1

dn–1

n∑
k=2

(
Un–k+1 – Un–k)dn–k +

1
σαdn–1

BnUn =
1

σαdn–1
Cn, (3.21)

Un +
1

σαdn–1
BnUn = Un–1 –

1
dn–1

n∑
k=2

(
Un–k+1 – Un–k)dn–k +

1
σαdn–1

Cn, (3.22)

(
I +

1
σαdn–1

Bn
)

Un = Un–1 –
1

dn–1

n∑
k=2

(
Un–k+1 – Un–k)dn–k +

1
σαdn–1

Cn, (3.23)

Un =
(

I +
1

σαdn–1
Bn

)–1
(

Un–1 –
1

dn–1

n∑
k=2

(
Un–k+1 – Un–k)dn–k +

1
σαdn–1

Cn

)
, (3.24)

where Gn = (I + 1
σαdn–1

Bn)–1. The matrix Gn must be non-singular.
In order to find the approximated solution at the time level n, we need to know the

approximate solution at every time level. The previous time step is used to approximate
the solution of the next time step with appropriate small time increment. Alternatively,
the use of a conventional time as fixed point iteration can improve the accuracy of the
solution when dealing with nonlinearities [18]. We can rewrite nonlinear Eq. (3.24) in the
form of Eq. (3.25):

Un,γ +1 =
(

I +
1

σαdn–1
B
(
Un,γ ))–1

×
(

Un–1 –
1

dn–1

n∑
k=2

(
Un–k+1 – Un–k)dn–k +

1
σαdn–1

Cn

)
, (3.25)

where n denotes the time level and γ denotes the number of iterations for solving non-
linear system. In the first-time level, γ = 0, we pick Un as initial guess Un,0 = Un–1. When
the solution is updated, the numerical results from the previous time is used as the de-
fault for the next replication. The process is repeated indefinitely until the condition of
‖Un,γ +1 – Un,γ ‖∞ ≤ ε is satisfied. In this paper, ε is selected as 0.5 × 10–8. That is, the
process is repeated until the computed values for all points satisfy the stopping criteria.

4 Stability analysis of the numerical scheme
In this section, a stability analysis based on the eigenvalue of the matrix is applied to verify
the condition of stability of the MLPG method [18]. A small perturbation at each nth time
level is set as Eq. (4.1):

en = Un – Ûn, (4.1)

where Un denotes the exact solution at the time level n and Ûn represents the approximate
solution at the time level n. So that from Eq. (3.24) can be rewritten as Eq. (4.2):

en = Gn

(
en–1 –

1
dn–1

n∑
k=2

(
en–k+1 – en–k)dn–k

)
. (4.2)
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It can be seen that stability can be assumed, if all eigenvalues of the matrix Gn =
(I + 1

σαdn–1
Bn)–1 satisfy the condition | σαdn–1

λ
| ≤ 1 where λ is the eigenvalue of the ma-

trices B. Equation (4.1) will be stable if en is bounded as n increases indefinitely. That
is, there exists a positive number M such that ‖Gn‖ ≤ M. Then ‖en‖ ≤ M‖e0‖. Consider
Eq. (4.2) in the case of n = 1 and n ≥ 2. We prove that ‖en‖ ≤ ‖Gn‖‖e0‖; ∀n ∈ N . When
n = 1, it is easy to see that e1 = G1e0. Taking the norm of both sides and making use the
compatibility condition for matrix norms and the triangle inequality, it can be written as
‖e1‖ ≤ ‖G1‖‖e0‖.

If ‖G1‖ ≤ 1, then ‖e1‖ ≤ ‖e0‖. In the case of n ≥ 2, it can be done by means of mathe-
matical induction. Equation (4.2) be rearranged as Eq. (4.3):

en = Gn

(
en–1 –

1
dn–1

n∑
k=2

(
en–k+1 – en–k)dn–k

)

= Gn

(
en–1 –

1
dn–1

n∑
k=2

en–k+1dn–k +
1

dn–1

n∑
k=2

en–kdn–k

)

= Gn

(
en–1 –

1
dn–1

en–1dn–2 –
1

dn–1

n∑
k=3

en–k+1dn–k +
1

dn–1
e0d0 +

1
dn–1

n–1∑
k=2

en–kdn–k

)

= Gn

(
en–1 –

dn–2

dn–1
en–1 –

1
dn–1

n–1∑
k=2

en–kdn–k–1 +
d0

dn–1
e0 +

1
dn–1

n–1∑
k=2

en–kdn–k

)

= Gn

(
en–1 –

dn–2

dn–1
en–1 +

1
dn–1

n–1∑
k=2

en–k(dn–k – dn–k–1) +
d0

dn–1
e0

)

= Gn
((

1 –
dn–2

dn–1

)
en–1 +

dn–2

dn–1
en–2

)
. (4.3)

Taking the norm of both sides of Eq. (4.3) and making use of the compatibility condition
for matrix norms and the triangle inequality, it can be written as Eq. (4.4):

∥∥en∥∥ ≤ ∥∥Gn∥∥
(∣∣∣∣1 –

dn–2

dn–1

∣∣∣∣
∥∥en–1∥∥ +

∣∣∣∣dn–2

dn–1

∣∣∣∣
∥∥en–2∥∥

)
. (4.4)

Since dn–k = k1–α – (k – 1)1–α ; k = 1, 2, 3, . . . , n, and {dj} is the increasing sequence, we
have di

dj
< 1 for i < j. When n = 2, it can be defined as Eq. (4.5):

∥∥e2∥∥ ≤ ∥∥G2∥∥
(∣∣∣∣1 –

d0

d1

∣∣∣∣
∥∥e1∥∥ +

∣∣∣∣d0

d1

∣∣∣∣
∥∥e0∥∥

)

≤ ∥∥G2∥∥
(∣∣∣∣1 –

d0

d1

∣∣∣∣
∥∥G1∥∥∥∥e0∥∥ +

∣∣∣∣d0

d1

∣∣∣∣
∥∥e0∥∥

)

≤ ∥∥G2∥∥∥∥e0∥∥
(∣∣∣∣1 –

d0

d1

∣∣∣∣
∥∥G1∥∥ +

∣∣∣∣d0

d1

∣∣∣∣
)

≤ ∥∥G2∥∥∥∥e0∥∥
(∣∣∣∣1 –

d0

d1

∣∣∣∣ +
∣∣∣∣d0

d1

∣∣∣∣
)

≤ ∥∥G2∥∥∥∥e0∥∥. (4.5)
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If ‖Gm‖ ≤ 1, then ‖em‖ ≤ ‖e0‖. Suppose that ‖em‖ ≤ ‖Gm‖‖e0‖; ∀m ≥ 2; we have to
show that ‖em+1‖ ≤ ‖Gm+1‖‖e0‖ which can be written as Eq. (4.6):

∥∥em+1∥∥ ≤ ∥∥Gm+1∥∥
(∣∣∣∣1 –

dm–1

dm

∣∣∣∣
∥∥em∥∥ +

∣∣∣∣dm–1

dm

∣∣∣∣
∥∥em–1∥∥

)

≤ ∥∥Gm+1∥∥
(∣∣∣∣1 –

dm–1

dm

∣∣∣∣
∥∥Gm∥∥∥∥e0∥∥ +

∣∣∣∣dm–1

dm

∣∣∣∣
∥∥Gm–1∥∥∥∥e0∥∥

)

≤ ∥∥Gm+1∥∥∥∥e0∥∥
(∣∣∣∣1 –

dm–1

dm

∣∣∣∣
∥∥Gm∥∥ +

∣∣∣∣dm–1

dm

∣∣∣∣
∥∥Gm–1∥∥

)

≤ ∥∥Gm+1∥∥∥∥e0∥∥
(∣∣∣∣1 –

dm–1

dm

∣∣∣∣ +
∣∣∣∣dm–1

dm

∣∣∣∣
)

≤ ∥∥Gm+1∥∥∥∥e0∥∥. (4.6)

If ‖Gm+1‖ < 1, then ‖em+1‖ ≤ ‖e0‖. Thus the proof is complete. The proof shows that
the error made at each time level of calculation will be no more than the error made at
the initial step as long as ‖Gm‖ ≤ 1, which means all eigenvalues of the matrix Gn = (I +

1
σαdn–1

Bn)–1 satisfy the condition | σαdn–1
λ

| ≤ 1 where λ is the eigenvalue of the matrices B.

5 Numerical experiments
This section consists of two parts. The first part is to compare the numerical results of the
integer order differetial equation and those of the fractional order differential equation. In
the second part, the numerical simulations of the fractional order differential equation at
different values of order alpha are performed.

5.1 Comparison between the approximation solutions of integer order with
fractional order differential equation

In this part we attempt to address examples for two cases: β1 is a constant and β1 is a
function that depends on the x value [1]. The approximation of the integer order differen-
tial equation will be compared with the approximation of the fractional order differential
equation. Root mean square errors are used to make the comparison. We wish to con-
firm that the formula for the approximation of the proposed scheme corresponds to the
approximation of the integer order differential equation.

Example 1 Consider the parameters of Eq. (3.24) to have the values α = 0.99, λ = 0.332,
a = 1, b = 1, β2 = 2, k = 2, m = 1, D = 0.01 and β1 = 0.47. The initial conditions in this
case are p(x, 0) = 0.99, q(x, 0) = 0, r(x, 0) = e–(x–5)2 × 10–3, x ∈ Ω = [0, 10]. From Fig. 1(a), it
was found that the density of free virus r(x, t) became zero. Therefore this is a case free of
infection. The approximation solution of the integer order differential equation by finite
difference methods is shown in Fig. 1(b). The absolute error between the approximations
solutions of the fractional order with the integer order differential equation is shown in
Fig. 1(c). The values of the root mean square error between the approximation solutions
of the fractional order with the integer order differential equation is shown in Fig. 1(d). It
was found that the numerical results for the two schemes agree as well.

On the other hand, if β1 = 0.55, then the density of free virus r(x, t) was unstable. The
existence of the infection state is shown in Fig. 2.



Phramrung et al. Advances in Difference Equations        (2019) 2019:377 Page 11 of 14

Figure 1 (a) The approximation solution of the fractional order differential equation. (b) The approximation
solution of the integer order differential equation. (c) The absolute error between the approximation solutions
of the fractional order with the integer order differential equation. (d) The root mean square error between
the approximation solutions of the fractional order with the integer order differential equation

Figure 2 The approximation solution of the fractional order differential equation

Example 2 Let the parameters be α = 0.99, λ = 0.332, a = 1, b = 1, β2 = 2, k = 2, m = 1,
D = 1 × 10–5 and β1 = β̂(1 + 0.1 sin 9πx

10 ). The initial conditions in this case are p(x, 0) =
0.99, q(x, 0) = 0, r(x, 0) = e–(x–5)2 × 10–3, x ∈ Ω = [0, 10]. For β̂ = 0.45, it is found that the
density of free virus r(x, t) became zero. Therefore we have a case free of infection, shown
in Fig. 3(a). The approximation solution of the integer order differential equation by finite
difference methods shown in Fig. 3(b). The absolute error between the approximations
solutions of the fractional order with the integer order differential equation is shown in
Fig. 3(c). The values of the root mean square error between the approximation solutions
of the fractional order with the integer order differential equation is shown in Fig. 3(d). It
was found that the numerical results for the two schemes agree as well.

On the other hand, if β̂ = 0.50, then the density of free virus r(x, t) is unstable. The exis-
tence of the infection state is shown in Fig. 4.

5.2 Numerical simulation for different alpha values
This section presents the numerical results for different alpha values. In Fig. 5(a)–(f ) we
illustrate the numerical solutions for the different orders of fractional differentiation at
α = 0.01, 0.20, 0.40, 0.60, 0.80, 0.99. In this case, λ = 0.332, a = 1, b = 1, β2 = 2, k = 2, m = 1,
D = 0.01, β1 = 0.47. When setting the alpha values differently, it can be seen that the nu-
merical results of the fractional order differential equations clearly explain the behavior of
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Figure 3 (a) The approximation solution of the fractional order differential equation. (b) The approximation
solution of the integer order differential equation. (c) The absolute error between the approximation solutions
of the fractional order with the integer order differential equation. (d) The root mean square error between
the approximation solutions of the fractional order with the integer order differential equation

Figure 4 The approximation solution of the fractional order differential equation

the free virus density r(x, t). For a short time period, lower fractional order solutions dif-
fuse more slowly; however, as time increases the diffusion phenomena become apparent.
This implies that the behavior of the virus density is more noticeable if the alpha value is
decreased.

6 Conclusion
This paper is to meant explain the dynamics of the HIV model extended by the Caputo
fractional derivative. The solution of a fractional HIV model with initial conditions is ap-
proximated by a meshless formulation since the trial and test functions can be chosen
from different functional spaces. In this MLPG method, the moving Kriging interpolation
is used to create the shape function which satisfies the Kronecker delta property. The test
function in a local weak form is chosen such that the property of the Dirac delta function
is satisfied. The MLPG method is truly a meshless method. Thus, it involves not only a
meshless interpolation of trial functions, but it also includes a meshless integration of lo-
cal weak forms. It does not require a mesh or background element. The MLPG method
has an identity in selecting the trial and test functions including the size and shape of sub-
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Figure 5 The approximation solutions of the fractional order differential equation for λ = 0.332, a = 1, b = 1,
β2 = 2, k = 2,m = 1, D = 0.01, β1 = 0.47

domains in the area. The MLPG method is more flexible and can handle problems easily
compared with traditional mesh methods. Moreover, formulas with fixed-point iteration
methods can improve the accuracy of the numerical result when a valid choice of �t can
be selected. Comparing with the numerical result of finite difference methods, it can be
found that the MLPG method for fractional order differential equations is equally reliable
as the solution of the approximation of integer order differential equations. The effect of
changing the value of alpha on the convergent rate of a free virus can be seen clearly when
the value of alpha is small. It shows that fractional order differential equations represent
the behavior of events more clearly than that of the integer order differential equations.
The stability analysis shows that the reliability of the solution can be guaranteed by this
theatrical study as shown in Sect. 4. The stability analysis using this technique is conducted
based on the eigenvalues of the matrix. In addition, the problem is solved by various for-
mulas based on temporal discretization with implicit finite difference. Using the iterative
method, the stability and precision can be satisfied. Therefore, the results of this study
provide an alternative useful approach.
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