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Abstract
This research demonstrates the log-convexity and log-concavity of the modified
Bessel function of the first kind and the related functions. The method of coefficient is
used to verify such properties. One of our results contradicts the conjecture proposed
by Neumann in 2007 which states that modified Bessel function of the first kind Iν is
log-concave in (0,∞) given ν > 0. The log-concavity holds true in some bounded
domain. The application of the other results in Kibble’s bivariate gamma distribution is
also demonstrated.
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1 Introduction
The modified Bessel function of the first kind (MBF-I), Iν , is a special function which is
one of two solutions of the modified Bessel differential equation,

x2y′′ + xy′ –
(
x2 + ν

)
y = 0.

The MBF-I function is found as a part in many probability distribution functions [1, 2].
During the last decades, there has been a number of studies related to the logarithmic
concavity, as well as the logarithmic convexity, of the MBF-I and relevant functions. The
results help proving other properties related to MBF-I [3, 4] and it might be the useful
properties in some optimizing statistical problems as the convex optimization is well con-
structed. In this research, the logarithmic convexity and logarithmic concavity of the MBF-
I and the related functions are studied and the applications of the results are demonstrated.

The MBF-I has no closed-form expression. It is usually expressed by the series of gamma
functions, Γ :

Iν(t) = (t/2)ν
∞∑

k=0

[(
t2/4

)k/k!Γ (ν + k + 1)
]
. (1)

The other expression of MBF-I is in the form of the hypergeometric function, γν(t):

Iν(t) = 2–νγν

(
t2)tν/Γ (ν + 1), (2)
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equivalently,

γν(t) = 2νΓ (ν + 1)t–ν/2Iν(
√

t). (3)

The hypergeometric function γν(t) is defined as

γν(t) :=
∞∑

k=0

(1/4)ktk/((ν + 1)kk!), (4)

where ν > –1 and (p)k denotes �(p + k)/�(p) ( p /∈ {0, –1, –2, · · · } ). In this research, the
derivative test and the series cofficients rearrangement are used to prove the log-convexity
and log-concavity of MBF-I related functions. Thus, the derivative and other properties
of the hypergeometric function are reviewed.

γ (n)
ν (t) =

∞∑

k=0

Γ (ν + 1)(1/4)k+n

Γ (ν + n + k + 1)k!
tk , (5)

γ (n)
ν (0) =

Γ (ν + 1)(1/4)n

Γ (ν + n + 1)
, (6)

where the term γ (n)
ν denotes the derivative of the order n with respect to t of γν . Equa-

tion (2) is found in [5]. The map t �→ γν(t) is log-concave in (0,∞) provided that ν > –1.
The map t �→ γν(t2) is log-convex in (0,∞) provided that ν > –1/2. The studies of MBF-
I were usually performed by using inequalities and the infinite product expansion of γν

[3, 5, 6],

Iν(t) = γν

(
t2) =

∏

n≥1

(
1 + t2/j2

ν,n
)
. (7)

The following lemma is fundamental identity for the simplification of the representa-
tion of the MBF-I related functions which are mentioned in many parts of this pa-
per.

Lemma 1

trγ (k)
ν (t)γ (m)

μ (t) =
∞∑

n≥r

n!
(n – r)!

(
2n – 2r + ν + μ + k + m

n – r + ν + k

)

· 4–n–k–m+rΓ (ν + 1)Γ (μ + 1)tn

Γ (n + ν + μ + k + m – r + 1)n!
, (8)

where r ∈R
+; k, m ∈N0, where N0 is the set of natural numbers including 0; and ν,μ ∈R.

Proof The term trγ (k)
ν (t)γ (m)

μ (t) can be expanded as the Taylor series with

trγ (k)
ν (t)γ (m)

μ (t) =
∞∑

n=0

antn, (9)
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where an := [trγ (k)
ν (t)γ (m)

μ (t)](n)
t=0. Then

an =

{ n∑

i=0

(
n
i

)
(
tr)(i)[

γ (k)
ν (t)γ (m)

μ (t)
](n–i)

}

t=0

(10)

=
(

n
r

)
r!
[
γ (k)

ν (t)γ (m)
μ (t)

](n–r)
t=0 (11)

=
n!

(n – r)!

{ n–r∑

j=0

(
n – r

j

)[
γ (k)

ν (t)
](j)[

γ (m)
μ (t)

](n–r–j)
}

t=0

(12)

=
n!

(n – r)!

n–r∑

j=0

(
n – r

j

)
γ (k+j)

ν (0)γ (m+n–r–j)
μ (0), (13)

an =
n!

(n – r)!

n–r∑

j=0

(
n – r

j

)(
Γ (ν + 1)(1/4)k+j

Γ (ν + k + j + 1)

)

·
(

Γ (μ + 1)(1/4)m+n–r–j

Γ (μ + m + n – r – j + 1)

)
(14)

=
n!

(n – r)!
4–n–k–m+rΓ (ν + 1)Γ (μ + 1)
Γ (n + ν + μ + k + m – r + 1)

·
n–r∑

j=0

(
n – r

j

)(
n + ν + μ + k + m – r

ν + k + j

)
. (15)

By the Chu–Vandermonde identity proposed in [7], that is,

n∑

k=0

(
n
k

)(
s

t + k

)
=
(

n + s
n + t

)
, (16)

the series in (15) is simplified as follows:

n–r∑

j=0

(
n – r

j

)(
n + ν + μ + k + m – r

ν + k + j

)

=
(

2n – 2r + ν + μ + k + m
n – r + ν + k

)
. (17)

Correspondingly, by substituting Eqs. (15) and (17) into (9), Eq. (8) is proved. �

Lemma 1 simplifies the coefficients of Cauchy product in closed forms. A similar ap-
proach was used to prove a Turán type inequality of the modified Bessel function by de-
termining the signs of the coefficients of the function found in [8, 9]. In this work, the
convexity and the concavity of functions on positive real domain (0,∞) can be proved
by verifying non-negativity and non-positivity of the second derivative of corresponding
functions. In some conditions, mentioned in Lemma 2, the coefficient technique ensures
that a function is neither entirely non-positive nor non-negative on (0, ∞).

Lemma 2 Given f (t) =
∑∞

i=0 aktk . If there exists an m such that an > 0, ∀n > m then there
exists a constant τ > 0 such that f (t) > 0 on (τ ,∞).
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Proof Suppose that there exists an integer m such that ak ≤ 0, ∀k ≤ m and an > 0 for all
n > m, the function f can be split into a sum of polynomial with degree m and a series with
positive coefficients as follows:

f (t) =
∞∑

k=0

aktk =
m+1∑

k=0

aktk +
∞∑

n=m+2

antn. (18)

We have

lim
t→∞

(m+1∑

i=0

aktk

)
/

tm+1 = am+1 > 0. (19)

There exist a constant ε = am+1 and a constant τ > 0 such that

(m+1∑

k=0

aktk

)
/

tm+1 ∈ (0, ε) ⊆ (0, 2am+1) ⊆ (0,∞), ∀t > τ . (20)

The summation between the polynomial and non-negative series is positive on (τ ,∞). �

2 Main results
Theorem 3 The map

t �→ Iμ/Iν (21)

is log-concave on (–∞, 0) and (0,∞) if 0 < ν < μ.
The inequalities

1 <
I2
ν (t)

Iν+δ(t)Iν–δ(t)
<

Γ (ν + δ + 1)Γ (ν – δ + 1)
Γ 2(ν + 1)

(22)

hold true on (–∞, 0) and (0,∞), where δ > 0, ν > –1 and ν – δ + 1 ∈ (0,∞).

Proof Let μ = ν + δ for some δ > 0 and

Rμ,ν(t) := ln

[
Iμ(t)
Iν(t)

]
= ln

[
tδΓ (ν + 1)γν+δ(t2)
2Γ (ν + δ + 1)γν(t2)

]
. (23)

By taking advantage of Lemma 1, we have

R′
μ,ν(t) = δ(2ν + δ)

1
t

∑∞
n=0 ant2n

∑∞
n=0 bnt2n , (24)

where

an =
1
4n

Γ (ν + δ + 1)Γ (ν + 1)Γ (2n + 2ν + δ)
Γ (n + 2ν + δ + 1)Γ (n + ν + δ + 1)Γ (n + ν + 1)

, (25)

bn =
1
4n

Γ (ν + δ + 1)Γ (ν + 1)Γ (2n + 2ν + δ + 1)
Γ (n + 2ν + δ + 1)Γ (n + ν + δ + 1)Γ (n + ν + 1)

. (26)
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The ratio 1/t is strictly decreasing on (0,∞). Since the ratio of the coefficients an and bn

is given by

rn =
an

bn
=

1
2n + 2ν + δ

−→ 0 as n −→ ∞, (27)

the function F(t) := (
∑∞

n=0 ant2n)/(
∑∞

n=0 bnt2n) is decreasing on (0,∞). Since R′
μ,ν(t) is the

product of the positive decreasing functions 1/t and F(t) and the constant δ(2ν +δ), R′
μ,ν(t)

is strictly decreasing on (0,∞). Thus R′
μ,ν(t) > 0, and R′′

μ,ν(t) < 0, ∀t > 0. Also, R′
μ,ν(t) =

–|R′
μ,ν(t)| where |R′

μ,ν(t)| is increasing on (–∞, 0), so it is clear that R′
μ,ν(t) is decreasing

on negative real domain. Thus, t �→ Iμ/Iν is log-concave on (–∞, 0) and (0,∞). The strict
log-concavity holds only when μ �= ν .

To prove the latter part of the theorem, we claim the following property:

Γ 2(n + ν + 1)
Γ (n + ν + δ + 1)Γ (k + ν – δ + 1)

>
Γ 2(ν + 1)

Γ (ν + δ + 1)Γ (ν – δ + 1)
(28)

for any integer n ≥ 1, provided that n + ν – δ + 1 > 0, ν > –1, δ > 0 and ν + 1 > δ. When
n + ν – δ + 1 > 0, we have Γ (n + ν + δ + 1)Γ (n + ν – δ + 1) > 0. Consequently, the following
holds true:

Γ 2(n + ν + 1)
Γ (n + ν + δ + 1)Γ (n + ν – δ + 1)

=
Γ 2(n + ν)

Γ (n + ν + δ)Γ (n + ν – δ)
· (n + ν)2

(n + ν)2 – δ2

>
Γ 2(n + ν)

Γ (n + ν + δ)Γ (n + ν – δ)
. (29)

By induction, Eq. (29) implies

Γ 2(n + ν + 1)
Γ (n + ν + δ + 1)Γ (n + ν – δ + 1)

>
Γ 2(n + ν)

Γ (n + ν + δ)Γ (n + ν – δ)
(30)

>
Γ 2(ν + 1)

Γ (ν + δ + 1)Γ (ν – δ + 1)
, (31)

for any integer n ≥ 1. According to Lemma 1, The product of Iν+δ and Iν–δ becomes

Iν+δ(t)Iν–δ(t) = t2ν γν+δ(t2)γν–δ(t2)
22νΓ (ν + δ + 1)Γ (ν – δ + 1)

(32)

=
∞∑

n=0

Γ (2n + 2ν + 1)
Γ (n + 2ν + 1)Γ (n + ν + δ + 1)

· 1
Γ (n + ν – δ + 1)

t2n+2ν

22n–2νn!
(33)
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=
∞∑

n=0

(
Γ 2(n + ν + 1)

Γ (n + ν + δ + 1)Γ (n + ν – δ + 1)

)

· Γ (2n + 2ν + 1)
Γ (n + 2ν + 1)Γ 2(n + ν + 1)

t2n+2ν

22n–2νn!
. (34)

By applying (28), we have

Iν+δ(t)Iν–δ(t) >
(

Γ 2(ν + 1)
Γ (ν + δ + 1)Γ (ν – δ + 1)

)
t2ν

·
∞∑

n=0

1
22n–2ν

Γ (2n + 2ν + 1)
Γ (n + 2ν + 1)Γ 2(n + ν + 1)

t2n

n!
. (35)

Since

I2
ν (t) = t2ν

∞∑

n=0

1
22n–2ν

Γ (2n + 2ν + 1)
Γ (n + 2ν + 1)Γ 2(n + ν + 1)

t2n

n!
, (36)

the result is

I2
ν (t)

Iν+δ(t)Iν–δ(t)
<

Γ (ν + δ + 1)Γ (ν – δ + 1)
Γ 2(ν + 1)

. (37)

To prove that 1 < I2
ν (t)/[Iν+δ(t)Iν–δ(t)], we need to claim that

g(ν, δ) :=
Γ 2(n + ν + 1)

Γ (n + ν + δ + 1)Γ (n + ν – δ + 1)
< 1. (38)

By letting

G(ν, δ) := ln

[
Γ 2(n + ν + 1)

Γ (n + ν + δ + 1)Γ (n + ν – δ + 1)

]
, (39)

taking ∂/∂δ on G(ν, δ) yields

∂

∂δ
G(ν, δ) = –ψ(n + ν + δ + 1) + ψ(n + ν – δ + 1), (40)

where ψ denotes the digamma function. It can be expanded to the sum of Euler–
Mascheroni constant [10], i.e. γE , and the harmonic series

∂

∂δ
G(ν, δ) = –

(

–γE +
∞∑

k=0

(
1

k + 1
–

1
k + n + ν + δ + 1

))

+

(

–γE +
∞∑

k=0

(
1

k + 1
–

1
k + n + ν – δ + 1

))

= –2
∞∑

k=0

(
δ

(k + n + ν + 1)2 – δ2

)
< 0, (41)
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so g(ν, δ) is strictly decreasing for δ ∈ (0,∞) given n and ν . Since g(ν, δ) −→ 1 as δ −→ 0,
g(ν, δ) < 1, where δ ∈ (0,∞). From the inequalities (37) and (38), we conclude that

I2
ν (t) – Iν+r(t)Iν–r(t)

=
∞∑

n=0

[
Γ (2n + 2ν + 1)
Γ (n + 2ν + 1)

t2n+2ν

22n–2νn!
1

Γ 2(n + ν + δ + 1)

·
(

1 –
Γ 2(n + ν + δ + 1)

Γ (n + ν + 1)Γ (n + ν + 2δ + 1)

)]

> 0. (42)

Hence, 1 < I2
ν (t)/[Iν+δ(t)Iν–δ(t)]. �

The inequality (42) is equivalent to the Turán type inequality reported in [8]. There are
numerous versions of the inequality. Thiruvenkatachar et al. originally proved the inequal-
ity using the coefficient comparison method [9]. Later, Joshi et al. [6] and Baricz [3] took
advantage of product expansions to demonstrate the property but their proofs are differ-
ent in details. The inequality is used to prove other properties as found in [11, 12]. Our
study uses the Cauchy product of series expansion as in Thiruvenkatachar’s paper but we
refined the property to cover the non-integer δ condition.

Theorem 4 Given ν > –1/2, t �→ tμIν(t) is strictly log-concave on (0,∞) for

⎧
⎨

⎩
μ > –ν; –1/2 < ν < 1/2,

μ > 1/2; ν ≥ 1/2,
⎧
⎨

⎩
μ > –ν; –1/2 < ν < 1/2,

μ > 1/2; ν ≥ 1/2,

and is strictly log-convex on (0,∞) for μ < –ν .

Proof According to (2), the MBF-I can be rewritten in terms of γν(t2) as

tμIν(t) =
tμ+νγν(t2)
2νΓ (ν + 1)

. (43)

Then the derivatives of

ln tμIν(t) = (μ + ν) ln t + lnγν

(
t2) + ln 2νΓ (ν + 1) (44)

with respect to t are described by the following:

d
dt

[
ln tμIν(t)

]
=

μ + ν

t
+ 2t

γ ′
ν(t2)

γν(t2)
, (45)

d2

dt2

[
ln tμIν(t)

]
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= –
μ + ν

t2 + 2
γ ′

ν(t2)
γν(t2)

+ 4t2 γ ′′
ν (t2)γν(t2) – [γ ′

ν(t2)]2

γ 2
ν (t2)

(46)

=

{ ∞∑

n=0

Γ 2(ν + 1)Γ (2n + 2ν – 1)
4nΓ (n + 2ν + 1)(Γ (n + ν + 1))2

t2n

n!

·
[(

2ν2 – ν – n
1 – 2ν – 2n

)
– μ

]}

· [t2γ 2
ν

(
t2)]–1. (47)

From (46), we consider the term

Sn :=
(

2ν2 – ν – n
1 – 2ν – 2n

)
– μ. (48)

The conditions ν > 1/2 implies 1 – 2ν – 2n ≤ 1 – 2ν < 0 for n ≤ 0, so we have

inf

{
2ν2 – ν – n
1 – 2ν – 2n

}
=

⎧
⎨

⎩
1/2; –1/2 < ν < 1/2,

–ν; ν ≥ 1/2,
(49)

sup

{
2ν2 – ν – n
1 – 2ν – 2n

}
=

⎧
⎨

⎩
–ν; –1/2 < ν < 1/2,

1/2; ν ≥ 1/2.
(50)

For μ > sup{(2ν2 – ν – n)/(1 – 2ν – 2n)}, it implies Sn < 0, and the product of the non-
positive coefficient series in (47) and the positive function [tγν(t2)]–2 is non-negative.
Therefore, (d2/dt2)(ln tμIν(t)) < 0 which makes tμIν log-concave on (0,∞). Notice that un-
less μ = ν = 1/2, Sn < 0 for some n ∈ N that implies (d2/dt2)(ln tμIν(t)) is strictly negative.
Therefore, t �→ tμIν(t) is strictly log-concave on (0,∞).

For log-convex μ < inf{(2ν2 – ν – n)/(1 – 2ν – 2n)}, Sn > 0, which implies that under
condition ν > –1/2, μ > 1/2. Thus, we see that (d2/dt2)(ln tμIν(t)) is a product of negative
coefficient series and non-negative function [tγ 2

ν (t2)]–2. Therefore, tμIν is log-concave on
(0,∞). �

Theorem 4 gives an alternative approach to proving the log-concavity of the map u �→√
uIν(u) in (0,∞) which had already been reported in [13]. When μ+ν = 0, the term –(μ+

ν)/t2γ 2
ν (t2) vanishes. Then D2(ln tμIν(t)) exists for all t > 0, so we can extend the domain

of log-convexity to R
+. The result yields another approach to proving log-convexity of

t �→ γν(t2) = 2νΓ (ν + 1)t–νIν(t) on R
+ demonstrated by Neumann [3, 5]. In this work, we

extend the condition of log-concavity for ν ∈ (–1/2, 1/2). According to (46), (49) and (50),
one can see that t �→ t1/2Iν(t), t �→ t–νIν(t), ν > 1/2, seems to be the finest conditions for
log-concavity and log-convexity, respectively, in the form of tμIν(t).

Theorem 5 The map (x, y) �→ (xy)μγν(xy) is log-concave in R
+ × R

+ provided that μ =
ν + 1/2, ν > 1/2. Equivalently,

(x, y) �→ (xy)ν/2+1/2Iν(
√

xy) (51)

is log-concave in first quadrant provided that ν > 1/2.
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Proof For l(x, y) = – ln[(xy)μγν(xy)], its derivatives are expressed as follows:

∂l
∂x

= –
μ

x
– y

γ ′
ν(xy)

γν(xy)
, (52)

∂2l
∂x2 =

μ

x2 – y2 γ ′′
ν (xy)γν(xy) – [γ ′

ν(xy)]2

γ 2
ν (xy)

, (53)

∂2l
∂y2 =

μ

y2 – x2 γ ′′
ν (xy)γν(xy) – [γ ′

ν(xy)]2

γ 2
ν (xy)

, (54)

∂2l
∂xy

= –
γ ′

ν(xy)
γν(xy)

– xy
γ ′′

ν (xy)γν(xy) – [γ ′
ν(xy)]2

γ 2
ν (xy)

. (55)

Then the Hessian matrix of l(x, y) is

[
μ

x2 – y2g ′′
ν (xy) –g ′

ν(xy) – xyg ′′
ν (xy)

–g ′
ν(xy) – xyg ′′(xy) μ

y2 – x2g ′′
ν (xy)

]

, (56)

where

gν(t) = lnγν(t),

g ′
ν(t) = γ ′

ν(t)/γν(t) > 0,

g ′′
ν (t) = γ ′′

ν (t)/γν(t) –
(
γ ′

ν(t)/γν(t)
)2 < 0.

The second derivative is negative as t �→ γν is log-concave in (0,∞) provided that ν > –1.
We have to prove that the Hessian matrix is positive definite by letting

E =

[
u
v

]T [
μ

x2 – y2g ′′
ν (xy) –g ′

ν(xy) – xyg ′′
ν (xy)

–g ′′
ν (xy) – xyg ′′

ν (xy) μ

y2 – x2g ′′
ν (xy)

][
u
v

]

=
(

u2y2 + v2x2

x2y2

)
μ – (uy + vx)2g ′′

ν (xy) – 2uvg ′
ν(xy). (57)

Case 1: uv < 0. It is obvious that

E(u, v) =
(

u2y2 + v2x2

x2y2

)
q – (uy + vx)2g ′′

ν (xy) – 2uvg ′
ν(xy)

> 0. (58)

Case 2: uv > 0.

E(u, v) =
(

u2y2 + v2x2

x2y2

)
μ – (uy + vx)2g ′′

ν (xy) – 2uvg ′
ν(xy)

=
(uy – vx)2

x2y2 μ – (uy – vx)2g ′′
ν (xy)

+
2uv
xy

μ – 4uvxyg ′′
ν (xy) – 2uvg ′

ν(xy)

≥ 2uv
xy

μ – 4uvxyg ′′
ν (xy) – 2uvg ′

ν(xy)
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=
uv

xyγν(xy)γν(xy)

· (2μγν(xy)γν(xy) – 4x2y2γ ′′
ν (xy)γν(xy)

+ 4x2y2[γ ′
ν(xy)

]2 – 2xyγ ′
ν(xy)γν(xy)

)

=
uvH(xy)

xyγν(xy)γν(xy)
, (59)

where

H(xy) =
∞∑

n=0

Γ 2(ν + 1)Γ (2n + 2ν – 1)
4nΓ (n + 2ν + 1)Γ 2(n + ν + 1)

Q(n,ν,μ)
(xy)n

n!
, (60)

Q(n,ν,μ) = 2(n + ν)
(
n + 2nν + 4ν2 – 2

)
. (61)

Next, we find the conditions implying Q(n,ν,μ) > 0. If n + ν > 0 for all n ≥ 0, we have
ν > 0. By considering n + 2nν + 4ν2 – 2 > 0, we have ν < –1/2 or ν > 1/2 – n/4. For ν >
1/2 – n/4, we have ν ≥ 1/2 > 1/2 – n/4 for all n ≥ 0. Hence, Q(n,ν,μ) > 0 when ν ≥ 1/2.

Then we suppose that μ = ν + 1/2, ν > 1/2. By definition, the Hessian matrix of
– ln(xy)μγν(xy) is a positive definite matrix. The mapping (x, y) �→ (xy)μγν(xy) is log-
concave under the condition of μ = ν + 1/2 where ν > 1/2. Furthermore,

(xy)μγν(xy) = 2νΓ (ν + 1)(xy)μ–ν/2Iν(
√

xy)

= 2νΓ (ν + 1)(xy)ν/2+1/2Iν(
√

xy) (62)

implies that (x, y) �→ (xy)ν/2+1/2Iν(√xy) is log-concave. �

Theorem 5 can be applied to statistics as it proves the log-concavity of log-likelihood
function of Kibble’s bivariate gamma distribution [14–16] whose probability density func-
tion is

f (x, y|ν,λ1,λ2,ρ) =
(λ1λ2)ν

(1 – ρ)Γ (ν)

(
xy

ρλ1λ2

) ν–1
2

· exp

(
–

λ1x + λ2y
1 – ρ

)
Iν–1

(
2
√

ρλ1λ2xy
1 – ρ

)
. (63)

In the situation where the degree of freedom ν and the shape parameter ρ are given,
the maximal likelihood estimation of the distribution reduces to a convex optimization
problem. The details of proof are given as follows:

f (x, y|ν,λ1,λ2,ρ) =
(λ1λ2)ν

(λ1λ2) ν–1
2

(xy/ρ) ν–1
2

(1 – ρ)Γ (ν)

· exp

(
–

λ1x + λ2y
1 – ρ

)
Iν–1

(
2
√

ρλ1λ2xy
1 – ρ

)
(64)

=
[

(xy/ρ) ν–1
2

(1 – ρ)Γ (ν)

][
exp

(
–

λ1x + λ2y
1 – ρ

)]

·
[

(λ1λ2)
ν+1

2 Iν–1

(
2
√

ρλ1λ2xy
1 – ρ

)]
. (65)
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Let κ = 2√
ρxy/(1 – ρ) and we claim that log-concavity is conserved under an affine

transformation of domain. Consequently, the following situations are equivalent:

(λ1,λ2) �→ (λ1λ2)
ν+1

2 Iν–1(
√

λ1λ2) is log-concave, (66)
(
κ2λ1,λ2

) �→ (
κ2λ1λ2

) ν+1
2 Iν–1(κ

√
λ1λ2) is log-concave, (67)

(λ1,λ2) �→ (
κ2λ1,λ2

)

�→ (
κ2λ1λ2

) ν+1
2 Iν–1(κ

√
λ1λ2) is log-concave, (68)

(λ1,λ2) �→ (λ1λ2)
ν+1

2 Iν–1(κ
√

λ1λ2) is log-concave. (69)

By considering the domain of λ1 and λ2, f (λ1,λ2) is the product of 3 components:

(xy)
ν–1

2 /
[
ρ

ν–1
2 (1 – ρ)Γ (ν)

]
(constant), (70)

exp
[
–(λ1x + λ2y)/(1 – ρ)

]
(log-linear function), (71)

(λ1λ2)
ν+1

2 Iν–1(κ
√

λ1λ2) (log-concave function). (72)

Thus, the map (λ1,λ2) �→ f is log-concave in R
+ ×R

+.

Theorem 6 If –1/2 < ν < 0, Iν is log-convex on (0,∞) and if ν > 0, Iν is log-concave function
on

(
0,

(
16ν4 – 16ν3 – 24ν2 + 4ν + 5

)1/2/2
)
.

In 2007, Neumann conjectured [4] that the modified Bessel function of the first kind is
log-concave on (0,∞). To the best of our knowledge, it seems to remain an open question
[13]. In our investigation, the function is log-concave just on a specific interval determined
by parameter ν .

Proof The second derivative of ln Iν with respect to t is –ν/t2 +2γ ′
ν(t2)/γν(t2)+4t2(γ ′′

ν (t2) ×
γν(t2) – (γ ′

ν(t2))2)/γ 2
ν (t2). The term can be simplified to Ω(t)/[tγν(t2)]2 where Ω(t) =

–νγν(t2)γν(t2) + 2t2γ ′
ν(t2)γν(t2) + 4t4γ ′′

ν (t2)γν(t2) – 4t4γ ′
ν(t2)γ ′

ν(t2). The sign of the second
derivative of ln Iν is determined by Ω(t) as the denominator is non-negative. By adopting
(8), Ω(t) is rewritten in the form of the series

Ω(t) =
∞∑

n=0

an
t2n

n!
, (73)

where

an =
Γ 2(ν + 1)Γ (2n + 2ν – 1)

4nΓ (n + 2ν + 1)Γ 2(n + ν + 1)
[
2(n + ν)

(
n – 2ν2 + ν

)]
. (74)

Then we consider

Ω(t) = a0 +
∞∑

n=1

an
t2n

n!
= –ν +

∞∑

n=1

an
t2n

n!
. (75)
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The terms Γ 2(ν +1), Γ (2n+2ν –1), Γ (n+2ν +1), Γ (n+ν +1), and n+ν of {an} are positive
for ν > –1/2 and n ≥ 1. Therefore, the sign of {an} is determined only by n – 2ν2 + ν . Given
–1/2 < ν < 0, n – 2ν2 + ν is positive, so we conclude that an is positive for any n ≥ 0. For
arbitrary t �= 0, Ω(t) is a positive function so that the second derivative of ln Iν is positive.
This proves the log-convexity of Iν under the first condition. For the case of ν > 0, an < 0
is equivalent to n – 2ν2 + ν < 0 and n < 2ν2 – ν , so we can infer that there exists an n0 such
that am ≤ 0 for any m ≤ n0 and an > 0 for any n > n0. By Lemma 2, we conclude that there
is a t > 0 such that

Ω(t) =
∞∑

n=0

Γ 2(ν + 1)Γ (2n + 2ν – 1)
4nΓ (n + 2ν + 1)Γ 2(n + ν + 1)

· [2(n + ν)
(
n – ν(2ν – 1)

)] t2n

n!

=
∞∑

n=0

Γ 2(ν + 1)Γ (2n + 2ν + 1)
4nΓ (n + 2ν + 1)Γ 2(n + ν + 1)

·
(

1
2

–
(ν – 1

2 )(ν + 1
2 )

n + ν – 1
2

)
t2n

n!
. (76)

By Lemma 1, we have

Ω(t) =
1
2
γν

(
t2)γν

(
t2) –

{
(ν – 1

2 )(ν + 1
2 )

(ν + 1)

·
[ ∞∑

n=0

Γ (ν + 1)Γ (ν + 2)Γ (2n + 2ν + 2)
4nΓ (n + 2ν + 2)Γ (n + ν + 2)Γ (n + ν + 1)

· (n + ν + 1)(n + 2ν + 1)
(n + ν – 1

2 )(2n + 2ν + 1)
t2n

n!

]}

. (77)

Since ∀n ∈N0 and ν > 1/2, we have

(n + ν)2 + (ν + 2)(n + ν) + (ν + 1) > (n + ν)2 –
1
4

, (78)

(n + ν + 1)(n + 2ν + 1)
(n + ν – 1

2 )(2n + 2ν + 1)
>

1
2

. (79)

Thus, we have the inequality

Ω(t) <
1
2
γν

(
t2)γν

(
t2) –

{
(ν – 1

2 )(ν + 1
2 )

2(ν + 1)

·
[ ∞∑

n=0

Γ (ν + 1)Γ (ν + 2)
4nΓ (n + 2ν + 2)

Γ (2n + 2ν + 2)
Γ (n + ν + 1)Γ (n + ν + 2)

t2n

n!

]}

=
1
2
γν

(
t2)γν

(
t2)

[
1 –

(ν – 1
2 )(ν + 1

2 )
(ν + 1)

γν+1(t2)
γν(t2)

]

=
1
2
γν

(
t2)γν

(
t2)

[
1 – 2

(
ν –

1
2

)(
ν +

1
2

)
Iν+1(t)
tIν(t)

]
. (80)
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Owing to the work of Kokologiannaki [17], we can use of the inequality

–
ν + 1

t2 +
√

(ν + 1)2

t4 +
1
t2 <

Iν+1(t)
tIν(t)

. (81)

The inequality (80) becomes

Ω(t) <
1
2
γν

(
t2)γν

(
t2)Fν(t), (82)

where

Fν(t) = 1 – 2
(

ν –
1
2

)(
ν +

1
2

)
Iν+1(t)
tIν(t)

< 1 +
2(ν – 1

2 )(ν + 1
2 )(ν + 1)

t2

– 2
(

ν –
1
2

)(
ν +

1
2

)√
(ν + 1)2

t4 +
1
t2 . (83)

Since γν > 0, the function Ω(t) < 0 if and only if F (ν, t) ≤ 0. Consequently, the log-
concavity of the modified Bessel function of the first kind is guaranteed on the interval
(0, (16ν4 – 16ν3 – 24ν2 + 4ν + 5)1/2/2). �

According to the proof, MBF-I should not be log-concave on R
+ as it was conjectured.

However, we suspect that the actual upper bound of the interval that ensures the log-
concavity property of MBF-I should be at least 2ν2.

3 Conclusion
This research demonstrates the logarithmic concavity and logarithmic convexity proper-
ties of the MBF-I and its related functions. The proofs cover the case of bivariate function.
In our techniques, we simplify the coefficients and exploit the Chu–Vandermonde identity
in order to prove such properties. The results might help solving optimization problems in
univariate and multivariate probabilistic models. The result from Theorem 6 suggests that
log-concavity of the mapping t �→ Iν+1(t) is true on (0, (16ν4 – 16ν3 – 24ν2 + 4ν + 5)1/2/2)
but not entirely on R

+ as is conjectured by Neuman.
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