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Abstract

The fractional sub-diffusion equation, which is obtained by replacing the time
derivative in ordinary diffusion by a fractional derivative of order ¢+ with 0 < ¥ < 1, has
appeared in numerous complex system. In this paper, we suggest an efficient and
accurate iterative method based on coupling the variational iteration method (VIM)
with an auxiliary parameter for solving three-dimensional FDEs described in the
Riemann-Liouville sense. However, though the standard VIM is often invalid on large
domains, the VIM with an auxiliary parameter is highly efficient in approximating the
solution of complex systems even on large domains. The procedure of obtaining an
optimal auxiliary parameter is illustrated through some examples, while the
theoretical analysis confirms the convergence of the proposed method. Comparing
the results of standard VIM and modified VIM by the auxiliary parameter confirms the
effectiveness of using the new technique on the magnitude of the convergence
region.
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1 Introduction
Fractional calculus deals with derivatives and integrals of arbitrary real or complex or-
der [1]. This subject has attracted attention of many scientists in mathematics, physics
and engineering. So, it has become a hot issue in recent years. However, fractional calcu-
lus extends the notion of derivative for those cases that the derivative order is not inte-
ger. Many phenomena in engineering and applied sciences can be described successfully
by developing models using fractional calculus, such as material science and mechanics,
anomalous diffusion, signal processing, finance, biological systems, hydrology [1-8]. The
interested reader is referred to [9-20] for recent developments in fractional calculus and
its applications.

Anomalous diffusion equations are an important class of fractional differential equa-
tions, which have been widely applied in modeling of anomalous diffusive systems, uni-
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fication of diffusion, description of fractional random walk and wave propagation phe-
nomenon, etc. [21].

The fractional sub-diffusion equation, which is obtained by replacing the time deriva-
tive in ordinary diffusion by a fractional derivative of order ¢ with 0 < ¢ < 1, has been
observed in numerous complex system, such as biopolymers, polymers, liquid crystals,
organisms, proteins, ecosystems, and fractal and percolation clusters [22]. Some analyt-
ical and numerical solutions of sub-diffusion equations have been proposed in [23-36].
An implicit difference approximation is suggested by Zhuang and Liu for solving two-
dimensional space-time and time fractional diffusion equations [37, 38]. In [39], Liu et
al. have developed an implicit meshless approach based on the radial basis functions for
solving two-dimensional time fractional diffusion equations. In [40], Chen et al. have con-
structed a two-dimensional anomalous sub-diffusion equation. In [41], Zhang and Sun
have proposed two numerical techniques for solving the solution of a two-dimensional
anomalous sub-diffusion equation with a time fractional derivative.

It is worth noting that the computational complexity and CPU time are the main prob-
lems of applying the numerical algorithms for solving high-dimensional equations, par-
ticularly for the systems defined on the large domain. It motivates our interest to propose
an efficient and accurate method to avoid the mentioned issue in such problems. Based
on the above discussions, the main objective of this paper is to propose an efficient and
accurate method based on the VIM upgraded by an auxiliary parameter for solving the
following three-dimensional modified anomalous sub-diffusion equation:

du(x,y,z, t) ol -k ol
=4 B C
ot g o T gy

2u(x,y,z,t)  %ulx,y,z,t) %ulx,y,zt)
X + +
dx? dy? 922

+gxy,2,t), (xyzt) €2, (1.1)

where 2 =[0,4] x [0,b] x [0,c] x [0, T], with the initial condition

u(x,,2,0) = ¢(x,9,2), (1.2)
o al—
where O <, B,y <1 and A, B, C are the positive constants. The symbols ;tl—“"’ 5’;—,’; and
;’ ::; are the Riemann-Liouville fractional derivative operators, defined as follows:
M %uyzt) 1 8 [t ulxyzs)
e = 7@t o Gt w 98
Bl’ﬁu(x,y,z,t) 1 3 tulxyzs)
= @ ot Jo Gogr 95 (1.3)
al-r uxyzt) _ 19 [t ulxyzs)
T = Tyt Jo oty 95

The VIM was proposed by Ji-Huan He [42] as a modification of general Lagrange multi-
pliers method [43]. The main characteristic of the method is the flexibility and the ability
to obtain solutions of nonlinear equations accurately and conveniently [44—46]. It is worth
noting that the identification of Lagrange multipliers is very important in the VIM, but the
main problem in the fractional calculus is that the integral by parts in integer order case
cannot hold in fractional calculus. The interested reader can consult [47, 48] to identify

Page 2 of 14



Ma et al. Advances in Difference Equations (2019) 2019:367 Page 3 of 14

the Lagrange multiplier by use of the Laplace transform. We recall that there are many
modifications of the VIM, among which the Herisanu and Marincas modification is much
more attractive, where the VIM is coupled with the least squares method, and it should be
noted that one iteration leads to ideal results [49]. In [46], Yilmaz and Inc constructed a
variational iteration algorithm, where an auxiliary parameter was introduced to adjust the
convergence rate, but they did not give a general rule for the best choice of the auxiliary
parameter. This modification was further developed by Hosseini et al., which gave some
profitable rules for optimally determination of the auxiliary parameter [50—53].

In the present paper VIM with an auxiliary parameter is successfully used to obtain an
approximate solution of three-dimensional modified anomalous fractional sub-diffusion
equation on the large domains. The residual function and its norm two error are defined
to choose the auxiliary parameter optimally. The obtained results confirm the reliability
and efficiency of the proposed method for such problems on the large domains.

The paper is organized as follows: In Sect. 2, the VIM and VIM with an auxiliary pa-
rameter are described. In Sect. 3, the proposed method is described for solving three-
dimensional modified anomalous fractional sub-diffusion equation. In Sect. 4, the con-
vergence of the VIM with an auxiliary parameter is discussed. In Sect. 5, some numerical
examples are chosen to investigate the applicability of the described approach. Finally, a
conclusion is drawn in Sect. 6.

2 The VIM and VIM with an auxiliary parameter
In this section, we briefly review the standard VIM and then the VIM upgraded by an
auxiliary parameter.

To illustrate the basic concepts of the VIM, we consider the following partial deferential
equation (PDE):

Lu(x,y,2,t) + Nu(x,v,z,t) = g(x, 9,2, 1), (2.1)

where L is a linear operator, \V is a nonlinear operator, and g is the source term.
In the VIM, a correction functional for Eq. (2.1) can be written as follows:

Up+1 (xryy Z, t)

t
= u,(x%,9,2,t) + / A Lutn(%,9,2,8) + Ntiu(%,7,2,9) — g(x,5,2,5)} ds, (2.2)
0

where A is a general Lagrange multiplier, which can be identified optimally via the vari-
ational theory, u, is the nth approximate solution, and %, denotes a restricted variation,
which means 8%, = 0. After identification of the multiplier, a variational iteration algo-

rithm is constructed as
u(x,y,zt) = lim u,(x,y,z,t). (2.3)
n—0o0
Accordingly, the following variational iteration formula for (2.1) is highlighted as

uo(x, 9,2, t) is an initial approximation,
Upil (x; Yz, t) (24')
=u,(x,9,2,t) + fot)»(s){[,un(x,y, z,8) + Nu,(x,y,2,5) — g(x,9,2,8)}ds, n>0.
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Considering Eq. (2.4), an auxiliary parameter / can be inserted into the variational itera-

tion algorithm, to obtain

uo(x, 7,2, t) is an initial approximation,
ur(x,9,2,t, h)

= uo(x,9,2,t) + h [y M(s){Luo(x,9,2,5) + Nuo(x,9,2,5) — g(x,9,2,5)} ds, 25)
U1 (%, 9,2, t, h)

=u,(x,9,2,t,h) + hfot)»(s){ﬁuy,(x,y, z,8,h) + Nu,(x,v,2,8,h) — g(x,9,2,5)} ds,

n>1.

The approximate solutions u,.1(x,,2,t,h), n > 1 contain the unknown auxiliary param-
eter si. The validity of the method is based on the assumption that the approximation
Un1(x, 9,2, t,h), n > 1 converges to the exact solution. It is the auxiliary parameter which
ensures that this assumption can be satisfied. In general, by means of the error of norm
two of the residual function, it is straightforward to choose a proper value for /# which ap-
proves that the approximate solutions are convergent. In fact, the described methodology

approximates the solution more accurately on a large area.

3 Implementation of the proposed method
We construct an iteration formula by applying Egs. (1.1) and (2.1) as follows:

Up1(%, 9,2, 1)

! (%, 9,2, 5) 9l 9l-p gl-v
s +/0 Ms){ ds B (Aasla TR " 8517>
20, (%,9,2,5)  un%9,25)  0%u.(xy,25)
- [ dx? ¥ 3y? * 922 } —g(x,y,z,s)} ds. (3.1)

By taking the variation with respect to u, and noticing that §u,(x, y,z,0) = 0, we obtain the

stationary conditions

1+ A(s)|s=t =0,
A(s)=0.

(3.2)

The Lagrangian multiplier can consequently be identified as, A(s) = —1. Substituting A(s) =
-1 into the correction functional equation system (3.1) results in the following iteration

formula:

uo(x, y,z,t) is an initial approximation,

Upi1 (?C, Y Z, t)
t o V22 al—a al—ﬂ al—y
= un(x,y,z,t) — fo{% — (Aasl—"" + Basl‘ﬂ + Cm)

2un(xy,zs) | 02un(xyzs) | 02un(xy.25)
(52— + nayZ + = gy, 2,9 ds, n>1.
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So the VIM with an auxiliary parameter is defined as

uo(x, 7,2, t) is an initial approximation,

ul(xyyyz;t h)
t.o 2, al-a a1-8 al-y
= uo(w,y,z,t) — I [y {2G2) (AL BRI 4 O
92 92 92
x [ 4 et DR - g(xy,2,5)) ds, (3.3)

un+1(x,y,Zyt h)
L dun(%9,2,5, 1
- I/ln(x,y,z,t h) hf M - (A()sl —a r)sl C(;)sl 1/)

021, (x,,2,5,h) 021, (x, zsh) 021, (x,9,2,5,1)
x [Itepesh) y Snesl) | ClREl) — o(x,y,z,5)}ds, = 1.

dlu

By starting from uo(x,y,z, t) = u(x,y,2,0), and using the iterative formula (3.3) for the first
few n = N iterations, we obtain an approximate solution u(x, y, z, £) >~ un(x, y, z, t, ) with an
unknown suitable /. In order to find a proper value for / to obtain an accurate approximate

solution, we define the following residual function:

’"N(x;y; z, t1 h)
auN(x,y, z, tr h) 81—0{ B 81_ﬂ C 81—}/
= — + +
ot atl« otl-p 9l

[8214N(x,y,z,t by tun(xyzth)  0%un(x,y,2.t,h)
X +

ox2 9y? 072 i| ~8ky21),

and the following error of norm two of the residual function:

T pc pb pa %
ex(h) = (/ / / / ri[(x,y, z,t,h) dxdydzdt) .
o Jo Jo Jo

Now we apply a numerical integration scheme to calculate ey (%), approximately. Note that

the optimal value of # minimizes the norm two of the residual function.

4 Convergence of the proposed method
Now we investigate the convergence of the proposed method for three-dimensional equa-

tion. In the sequel, the linear operator is £ = % Also, we define the operator F as follows:

t
Fulx,y,z,t,h) = —h/ Ru(x,y,z,s,h)ds, (4.1)
0
where
Ru(x,y,z,t,h)
8 1y )14 Ly L 1-8 L=y
_ u(xyzth)_ 0 +Ba +CB
ot ol oti-p oty

82 ) )tih 82 ) )tlh 82 ) it’h
[Psloyath) | sy aih)  Putey st

02 972 022 ] ~gwy10).
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Moreover, the recurrence scheme can be defined as follows:

VO(x;y;Zr t) = MO(x)yyzv t)1 d V1(9C,)/;Z, tv h) = -7:50(96,)/;2» t)r
an
So(x%, 9,2, t) = vo(x, 9,2, £), s1(6y,2,t,h) = s0(x, 9,2, t) + vi(x, ¥, 2, £, h),

and in general for n > 1,

VVHI(x,y, z, tr h) = ‘an(xryr z, t} h))

(4.2)
Su1 (0¥, 2,8, h) = 8,(%, y, 2, 6, 1) + Vi1 (%, 3, 2, £, ).
Consequently we have
u(x,y,z,t,h) = lim s,(x,9,2,t,h) =vo(x, 5,2, £) + Z vu(x, 92,8, h). (4.3)
n— o0

n=1

The initial approximation uo(x, y, z, £) can be freely chosen and the only restriction is satis-

faction of the given initial conditions defined in (2) with Lug(x,y,z,t) = 0. For the approx-
o0

imation purpose, the solution u(x,y,z,¢t,h) = vo(x, 9,2, t) + anl

vu(x,,2,t,h) is approxi-
mated by the Nth-order truncated series uyn(x,y,2,t, 1) = vo(x, 7,2, £) + 22[:1 vu(x%, 9,2, t, h).
The approximate solution ux (%, y,z, £, 1) contains the auxiliary parameter /. It is the aux-
iliary parameter which ensures that the assumption can be satisfied by means of the error
of norm two of the residual function. The following theorems provide the sufficient con-

ditions for convergence and validity of the proposed method.

Theorem 4.1 Let H be a real Hilbert space and F be an operator on H. If there is h* # 0
and 0 < & < 1 such that

||f30(x,y:2: t)” S S”SO(x’y’Zy t)”’
| Fs1(x, 9,2, 8, 1) | < &l Fso(x,%,2, 1), (4.4)
| Fsu(x, 9,2, 6, h*)|| < &\ Fsp-1(x, 9,26, 1|, n=2,3...,

then the series solution defined in (4.3) with

u®,y,z,t,h) = im s,(x,5,2,6, ") = vo(x,,2,2) + 21: V(% 9,2, 8, 1) (4.5)
n=
converges.
Proof The proof is straightforward by noting the proof of Theorem 4.1 in [53]. O

Theorem 4.2 Let L = % If we have u(x,y,z,t) = vo(%,,2,8) + Y ooy Vu(%,9,2,t, h*), then
u(x, y,z, t), is the exact solution of the problem (1.1).

Proof The proof is straightforward by noting the proof of Theorem 4.2 in [53]. d

Theorem 4.3 Suppose that the series solution u(x,y,z,£) = vo(%,9,2,£) + > e Vu(%, 9,2, £,
h*) defined in (4.3), is convergent to the exact solution of the problem (1.1). If the truncated
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series un(x,9,2,t) = vo(%, 9,2, 8) + >, _1 V%, 5, 2, 8, 1), is used as an approximate solution,
then the maximum error is estimated as

[, 3,20) — 12, 8) | = —— ¥ .

=1
Proof The proof is straightforward by noting the proof of Theorem 4.3 in [53]. 0

5 Numerical examples
In this section, some test problems are provided to investigate the practical computational
efficiency and reliability of the proposed method.

Example1 Consider the following three-dimensional modified anomalous fractional sub-
diffusion equation:

du(x,y,z,t)
ot
ol 3P ALV NT%u(x,y,z,t)  d%ulx,y,zt) 0%u(x,y,zt)
= + +
agl-e  9gl-f - el dx? dy? 922
+gx,y,2t), (xyzt) €8, (5.1)

where
IrC+a+p+y)
rl+2a+B+vy)

'Q+a+pB+y) 2By | g rQ+a+p+1) PRI}
F'l+a+28+y) IF'l+oa+p+29)

g(x,y,2,t) = sin(x + y + z)((l ra+ By 43 2a+fry

with the initial condition u(x,y,z,0) = 0, which admits the exact solution u(x,y,z,t) =
Y gin(x + y + 2).
Take £2 = [0,87] x [0,87] x [0,87] x [0,2]. According to the standard VIM, we have the

following variational iteration formula:
Up+l (xryr z, t)
( 9 /’[ O, (%,9,2,5) gt-e 9= v
= u,(x,9,2,t) - - + +
) 0 s dsl-« = 9sl-B  Qgsl-v

u,(x,9,2,5)  u(x,9,25) 0*u.(xy,25)
X + +
dx? 9y? 022

} _g(x;yyzrs)}dsr nZO.

By starting the solution procedure from uy(x,y,z,t) = u(x,y,2z,0) = 0, we may stop at
u7(x,9,z,t). The graphs of the approximate solution and the absolute error function of
u;(x, 81,87, t) for (x,t) € [0,87] x [0,2] and (« = B = i, y = %) are shown in Figs. 1 and 2
(left side), respectively. Also, the graphs of the absolute error function of u;(x, 87,87, 0.5)
and u;(x,8m,8m,1.5) for x € [0,87] are shown in Figs. 3 and 4 (left side), respectively.
From these figures it can be seen that u7(x,,z,t) is not accurate for the large values of x,

9, z and t. Now, by applying the recurrence scheme (3.3), we successively have

uo(x,y,2,t) = u(x,y,2,0) =0,
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Approximate u(x,8m,8m,t)
Approximate u(x,8m,8m,t)

Figure 1 The graphs of the approximate solution u(x, 87,87, t) for Example 1 via the standard VIM (left side)

and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case (@ = 8 = %,y =1

Absolute error
Absolute error

Figure 2 The graphs of the absolute error function of u(x, 87, 87, t) for Example 1 via the standard VIM (left
side) and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case (@ = 8 = %, y = %)

15000

10000

Absolute error
Absolute error

5000

Figure 3 The graphs of the absolute error function of u(x, 8, 8,0.5) for Example 1 via the standard VIM (left
side) and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case (@ = 8 = %, y= %)

ui1(x,y,z,t,h)
r+a+pB+y)
Fr+2a+pB+y)

I'+a+p+y)
F2+a+p+2y)

31"(2+a+/3+y)

t1+2o¢+ﬁ+y
Fr+a+28+y)

t1+o¢+2ﬁ+y

=hsin(x+y+z)<3

t1+a+ﬁ+y + t1+a+ﬂ+2y) ,

Page 8 of 14



Ma et al. Advances in Difference Equations (2019) 2019:367 Page 9 of 14

Absolute error
Absolute error

Figure 4 The graphs of the absolute error function of u(x, 8,87, 1.5) for Example 1 via the standard VIM (left
side) and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case (@ = 8 = %, y= %)

and in general

Upi1 (x)y) zZ, t; h)

Y Ouu(x,y,2,5,h) (% 3F Bl
= n ) yt:h _h —_
Un(%,y, 2,8, h) fo { o (asl-a gy +851-V>
u,(x,y,2,8h)  u.x,9.2z,8h) *u,(xy,25h)
X + +
dx? 9y? 922

] -gxy,z s)} ds,

n>1.

In order to find a proper value for % to obtain an accurate approximate solution of (5.1),

we define the following residual function:

’”7(?5;)’; 2, t’ h)
ouz(x,y,2,t, h) R R B
= - + +
ot ot~  grl-B  9rl-v
8 |:82u7(x,y, zth)  %u;(x,y,z,t,h)  0%us(x,y,z.th)

axz + ayz + 822 ] - g(x) )’; z, t);

and the following error defined based on the norm two of residual function:

2 8 8 8 %
es(h) = (/ / / / r2(x,9,2,t,h) dxdydzdt) .
o Jo Jo Jo

The minimum point of e; (%) when (@ = 8 = ‘—11, y = %) is obtained at /# >~ 0.18 by using Maple
software. Substituting / = 0.18 in u7(x, 87,87, ¢, 1), reduces the absolute error of the 7th-
step remarkably. The graphs of the approximate solution and the absolute error functions
of u;(x,8m,8m,t,0.18) for (x, £) € [0,87] x [0, 2] are shown in Figs. 1 (right side) and 2 (right
side), respectively. Also, the graphs of the absolute error functions of u7(x, 87, 87,0.5,0.18)
and u;(x,87,87,1.5,0.18) for x € [0,87] are shown in Figs. 3 and 4 (right side), respec-
tively. These figures imply that u-(x, y,z,¢,0.18) is a highly accurate approximate solution

even for large values of x, y, z and ¢.



Ma et al. Advances in Difference Equations (2019) 2019:367 Page 10 of 14

Example2 Consider the following three-dimensional modified anomalous fractional sub-
diffusion equation:

ou(x,y,z,t)
Jt
1 9l 1 9 1 3l
- (P ot T 20 2 atl—r>

82 ) ) )t 82 bl b 1t 82 ) ) It
X[ u@y2)+ uuyZ)+ u@yZ)]

Ox2 8y2 072
+eley0), (6220 € 0,40] x [0,40] x [0,40) x [0,2], 52)
where
tlve B iy
)2 t) = 2t+6 6 6 ’
g(x,y,2,t) cos(ﬂ(x+)’+z))( + r2+a) * r2+p) * r2+ y))

with the initial condition u(x, y,z,0) = 0, and the exact solution u(x, y,z,t) = cos(w (x + y +
2))t2.

According to the standard VIM, we have the following variational iteration formula:

Unl (x¢y¢ z, t)

Y[ dun(x,y, 2, 1 9 1 3“F 1 97
:un(x,y,z,t)—f{ “ (xyzs)_( + )
0

- - +
s w2 9sl~* 72 9sl-F = 72 9sl-v

82 (%9, 2, 82 (%, 2, 82 n\Xs Y, <,
y u(xyzs)+ u(xyzs)+ un(%,9,2,8) —g(x,y28) tds, n>0.
dx2 dy* 0z

By starting the solution procedure from uy(x, y,z,£) = u(x,y,z,0) = 0, we may repeat until
to compute u7(x,,z,t). The graphs of the approximate solution and the absolute error
functions of u;(x, 40,40, t) for (x,t) € [0,40] x [0,2] and (&« = i,ﬁ = %,y = %) are shown
in Figs. 5 (left side) and 6 (left side), respectively. Also, the graphs of the absolute error
functions of u7(x, 40,40,0.5) and u7(x, 40,40, 1.5) for x € [0,40] are, respectively, shown in
Figs. 7 and 8 (left side). It can be seen that u7(x, y,z, t) is not accurate for large values of x,
¥, z and t. Now, by using the recurrence formula defined in (3.3), we successively have

Approximate u(x,40,40,t)
Approximate u(x,40,40,t)

Figure 5 The graphs of the approximate solution u(x,40,40,t) for Example 2 via the standard VIM (left side)

and the upgraded VIM with h =0.18 as an auxiliary parameter (right side) in the case (@ = %,ﬂ = %,y = %)
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Absolute error

@=tp=ty=1
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Absolute error
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2

Figure 6 The graphs of the absolute error function of u(x, 40,40, t) for Example 2 via the standard VIM (left
side) and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case

1800
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Absolute error

@=41B=1y=2

Absolute error
8 o o N o

w

~

Figure 7 The graphs of the absolute error function of u(x,40,40,0.5) for Example 2 via the standard VIM (left
side) and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case
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Figure 8 The graphs of the absolute error function of u(x, 40,40, 1.5) for Example 2 via the standard VIM (left
side) and the upgraded VIM with h = 0.18 as an auxiliary parameter (right side) in the case

uo(x,,2,t) = u(x,9,2,0) = 0,

w1 (%,y,2,t,h) = heos(m (x +y + 2)) <6

2+a t2+)3 t2+y

FGra) °TG+p °TGy

)”2)’
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and in general

un+l(xry' Z, t, h)

Y Qunlx, v, 2,8, h) 1ot 1 931 1 9t
= un(x;y;Z, t, I’l) - hA { s - (ﬁ Eyse + ; 951F + ; 9517 )
2u,(x,y,2,8h)  u.x,9.2z,8h) *u,(xy,25h)
X + +
ox? 3y? 922

] - g9,z s)} ds,

n>1.

In order to find a proper value for % which leads to the accurate approximation, we define
the following residual function:

r7(x:y;Zytyh)
_ur(x,y,2,t,h) <1 ol 1 9 1 81”)

ot w2 ot w2 9tl-F g2 9ty

|:32u7(x,y, z,t,h)  us(x,y,z,t,h)  0%ur(x,y,zt,h)
x + +

- » ) yty
dx? dy? 922 ] g&y.20)

and the following error of norm two of residual function:

2 040 40 40 )
ez(h) = </ / / / r2(x,,2,t, h) dxdydzdt) .
o Jo Jo Jo

The minimum point of e;(4) when (« = %,,B = %, y = %) is obtained at # >~ 0.18 by using
Maple software. Substituting # = 0.18 in u7(x, 40,40, t, k), remarkably reduces the absolute
error of approximation method. The graphs of the approximate solution and the abso-
lute error functions of u;(x,40,40,¢,0.18) for (x,¢) € [0,40] x [0,2] are shown in Figs. 5
(right side) and 6 (right side), respectively. The graphs of the absolute error functions
of u7(x,40,40,0.5,0.18) and u7(x,40,40, 1.5,0.18) for x € [0,40] are respectively shown in
Figs.7 and 8 (right side). The demonstrated figures reveal that 7 (x, ¥, z, £, 0.18) is the highly
accurate approximate solution even for the large values of x, y, z and ¢.

6 Conclusion

The well-known anomalous diffusion equations are an important class of fractional dif-
ferential equations. Since they have been widely applied in modeling of many phenomena,
finding the accurate solution of this system still is of interest for many researchers. In this
paper, a three-dimensional modified anomalous fractional sub-diffusion equation defined
on the large domain has been studied. The VIM with an auxiliary parameter which is
famed for computational efficiency on the large domain, was proposed and scrutinized.
This method provides a simple way to extend the convergence region for the approximate
solutions. An optimal auxiliary parameter was determined by the error of norm two of the
residual function. The experimental results and graphical representations confirm the re-
liability and the efficiency of the proposed method. In the future, the problem investigated
in this paper might be solved by other numerical methodologies like those discussed in
[54, 55].
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