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Abstract
A non-autonomous almost periodic prey–predator system with impulsive effects and
multiple delays is proposed in this paper, Holling’s type-IV systems and
ratio-dependent functional responses are also involved in the model. By applying
absolute inequalities, integral inequalities, differential inequalities and the mean-value
theorem and other mathematical analysis techniques, we obtain some sufficient
conditions which guarantee the permanence of the system. Moreover, we obtain the
existence and the uniqueness of the almost periodic solution which is uniformly
asymptotically stable by constructing a series of Lyapunov functionals. Finally, we
present several numerical examples to verify the theoretical results and present some
discussions of pest management in the agricultural ecological system.
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1 Introduction
It is well known that there are two kinds of controlling strategies in the agricultural pest
management: biological control and chemical control. The biological control is utilizing
the predation of natural enemies to control the number of pests, while the chemical control
is to achieve the rapid reduction of pests by artificial insecticides. Naturally, the enemies
of the pests and the crops will also be affected and decrease in the process of artificial
insecticides more or less; see [1].

As the dynamics in the agricultural ecological system is concerned, the specie of crops,
the pests and the enemies constitute a food-chain system, and the artificial insecticides
irregularly decreasing the number of species can be described by impulsive perturbations
on the food-chain system; see [1–4] etc.

On the other hand, when we refer to a prey–predator system or a food-chain system,
a functional response (that is, the preying effects of predators on the prey) is one of the
most important factors which should be considered. As regards the functional response
being considered, Holling originally proposed three types, called Holling type I, II and III,
respectively; see [5]. All of these three functional responses are all bounded monotonic
increasing functions. The inherent feature of these functions means that the more prey
in the environment the better off the predator, which is true in many predator–prey in-
teractions. However, several experiments showed that a non-monotonic response occurs
at the microbial level. When the nutrient concentration reaches a high level an inhibitory
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effect on the specific growth rate may occur. To model such an inhibitory effect, Andrews
suggested the function

μ =
μmaxS

S2/Ki + S + KS
, (1)

which is called the Monod–Haldane function, and the biological meaning of the param-
eters can be found in [6, 7]. Mathematical analysis shows that the Monod–Haldane func-
tion has a jump and declines at a critical value, and it also can be called the Holling type
IV response function.

In addition, it is reported that when the predators have to search, share or compete for
food, a predator-dependent functional response is more reasonable in many situations.
And there is much significant evidence in a laboratory and natural systems. It has been
proved that models with a ratio-dependent functional response can exhibit much richer,
more complicated and more reasonable or acceptable dynamics since Arditi and Ginzburg
proposed the ratio-dependent predator–prey model in [8], which attracted the interest of
many scholars; see [9–13].

Enlightened by the above literature, we will study an impulsive food-chain system with
both Holling type IV and ratio-dependent functional responses, in which digest delays are
also considered in the process of predation,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = x(t)[r1(t) – d1(t)x(t) – m12(t)y(t)

x2(t)+b1(t)x(t)+a1(t) ],
dy
dt = y(t)[r2(t) – d2(t)y(t) + m21(t)x(t–τ1)

x2(t–τ1)+b1(t)x(t–τ1)+a1(t) – m23(t)z(t)
b2(t)z(t)+y(t) ],

dz
dt = z(t)[r3(t) – d3(t)z(t) + m32(t)y(t–τ2)

b2(t)z(t)+y(t–τ2) ],

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, t �= tk ,

x(t+
k ) = (1 + q1k)x(tk),

y(t+
k ) = (1 + q2k)y(tk),

z(t+
k ) = (1 + q3k)z(tk),

⎫
⎪⎪⎬

⎪⎪⎭

, t = tk , k ∈ N ,

(2)

where x(t), y(t), z(t) represent the population density of the prey, and the lower and the
higher predator at time t, respectively. ri(t) and di(t) denote the intrinsic growth rate and
the inner density resistance of them. ai(t), bi(t), mij(t) are the coefficients functions of the
functional response. tk is the impulsive controlling time, τ1, τ2 > 0 is the digest delay and
qik > –1 is the impulsive controlling constants, where qik > 0 means planting and qik < 0
means harvest. For an agricultural ecological control system, the absolute value of the qik is
meant to acknowledge the poisonousness of the pesticide when qik < 0, i, j = 1, 2, 3; k ∈ N .

It is supposed that:
(H1) All the function mentioned above such as ri(t), di(t), ri(t), ai(t), bi(t), mij(t)

(i, j = 1, 2, 3) are all bounded and positive almost periodic functions;
(H2) Qi(t) =

∏
0<tk<t(1 + qik) is almost period functions and there exist positive

constants QL
i and QM

i such that QL
i ≤ Qi(t) ≤ QM

i , i = 1, 2, 3.
In the next section, we will give some useful lemmas and then prove our main results

such as permanence of the system, and the existence and the uniqueness of an almost
periodic solution which is uniformly asymptotically stable by constructing a series of Lya-
punov functionals. In the last section, we give some numerical examples to support our
theoretical results, then we provide a brief discussion and a summary of our main results.



Tian et al. Advances in Difference Equations        (2019) 2019:395 Page 3 of 18

2 Preliminaries
In the beginning of this section, we will give some notation. For a real continuous function
f (t) we define

f L = inf
[0,+∞)

{
f (t)

}
, f M = sup

[0,+∞)

{
f (t)

}
. (3)

Denote K = {tk ∈ R|tk < tk+1, limk→±∞ tk = ±∞, k ∈ N}, in which all the sets of all se-
quences are unbounded and increasing. Let Ω ⊂ R, Ω �= Φ , τ = max1≤i≤2{τi}, ξ0 ∈ R. Also,
we denote by PC(ξ0) the space of all functions φ : [ξ0 – τ , ξ0] → Ω having points of dis-
continuity at μ1,μ2, . . . ∈ [ξ0 – τ , ξ0] of the first kind and being left continuous at these
points.

For J ⊂ R, PC(J , R) is the space of all piecewise continuous functions from J to R with
points of discontinuity of the first kind tk , at which it is left continuous.

Let φ1,φ2,φ3 ∈ PC(0), denote x(t) = x(t; 0,φ1), y(t) = y(t; 0,φ2), z(t) = z(t; 0,φ3), x, y, z ∈
Ω , the solution of system (2) satisfying the following initial conditions:

0 ≤ x(s; 0,φ1) = φ1(s) < ∞, 0 ≤ y(s; 0,φ2) = φ2(s) < ∞,

0 ≤ z(s; 0,φ3) = φ3(s) < ∞, s ∈ [–τ , 0],

x(0; 0,φ1) = φ1(0) > 0, y(0; 0,φ2) = φ2(0) > 0, z(t) = z(t; 0,φ3) = φ3(0) > 0.

(4)

The solution of system (2) with initial conditions (4) is a piecewise continuous function
with points of discontinuity of the first kind tk , k ∈ Z, and for the set of the sequence {tj

k},
tk
j = tk+j – tk , (k, j ∈ N , tk ∈ K), and for the function ϕ ∈ PC(R, R), the uniformly almost

periodicity is defined in the same way as in [14].
For the non-impulsive system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du
dt = u(t)[r1(t) – D1(t)u(t) – M12(t)(t)v(t)

a1(t)+B1(t)u(t)+Q2
1(t)u2(t) ],

dv
dt = v(t)[r2(t) – D2(t)v(t) – M23(t)w(t)

B23(t)w(t)+Q2(t)v(t)

+ M21(t)u(t–τ1)
a1(t)+B1(t)u(t–τ1)+Q2

1(t)u2(t–τ1) ],
dw
dt = w(t)[r3(t) – D3(t)w(t) + M32(t)v(t–τ2)

B23(t)w(t)+Q2(t)v(t–τ2) ],

(5)

with initial values

u(s; 0,φ3) = φ1(s), v(s; 0,φ3) = φ2(s),

w(s; 0,φ3) = φ3(s), φi ∈ PC(0), i = 1, 2,

0 < φ1(s) < +∞, 0 < φ2(s) < +∞, 0 < φ3(s) < +∞, s ∈ (–τ , 0].

(6)

The expressions of the functions Di(t) (i = 1, 2, 3), B1(t), B23(t), M12(t), M21(t), M23(t),
M32(t) are given as follows:

Di(t) = di(t)Qi(t) =
∏

0<tk <t

(1 + qik)di(t),

B1(t) = b1(t)Q1(t) =
∏

0<tk<t

(1 + q1k)b1(t),
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B23(t) = b2(t)Q3(t) =
∏

0<tk <t

(1 + q3k)b2(t),

M12(t) = m12(t)Q2(t) =
∏

0<tk<t

(1 + q2k)m12(t),

M21(t) = m21(t)Q1(t) =
∏

0<tk<t

(1 + q1k)m21(t),

M23(t) = m23(t)Q3(t) =
∏

0<tk<t

(1 + q3k)m23(t),

M32(t) = m32(t)Q2(t) =
∏

0<tk<t

(1 + q2k)m32(t).

Then we have the following lemmas.

Lemma 2.1 Assume that (u(t), v(t), w(t))T is any solution of system (5) with initial condi-
tions (6), then u(t) > 0, v(t) > 0, w(t) > 0 for all t ∈ R+.

Proof Denote

U(t) = r1(t) – D1(t)u(t) –
M12(t)v(t)

a1(t) + B1(t)u(t) + Q2
1(t)u2(t)

,

V (t) = r2(t) – D2(t)v(t) –
M23w(t)

B23(t)w(t) + Q2(t)w(t)

+
M21u(t – τ1)

a1(t) + B1(t)u(t – τ1) + Q2
1(t)u2(t – τ1)

,

W (t) = r3(t) – D3(t)v(t) +
M32(t)v(t – τ2)

B23(t)w(t) + Q2(t)v(t – τ2)
.

Then, from system (5) we have

u(t) = u(0) exp

{∫ t

0
U(s) ds

}

= φ1(0) exp

{∫ t

0
U(s) ds

}

> 0,

v(t) = v(0) exp

{∫ t

0
V (s) ds

}

= φ2(0) exp

{∫ t

0
V (s) ds

}

> 0,

w(t) = w(0) exp

{∫ t

0
W (s) ds

}

= φ3(0) exp

{∫ t

0
W (s) ds

}

> 0.

This completes the proof of this lemma. �

Lemma 2.2 For the impulsive system (2) and the non-impulsive system (5), we have the
following results:

(1) If (u(t), v(t), w(t))T is a solution of system (5), then

(
x(t), y(t), z(t)

)T =
(
Q1(t)u(t), Q2(t)v(t), Q3(t)w(t)

)T

is a solution of system (2);
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(2) If (x(t), y(t), z(t))T is a solution of system (2), then

(
u(t), v(t), v(t)

)T =
(
Q–1

1 (t)x(t), Q–1
2 (t)y(t), Q–1

3 (t)z(t)
)T

is a solution of system (5).

Proof For (u(t), v(t), w(t))T being a solution of system (5), the conclusion follows.
That is, for any t �= tk , k ∈ N ,

(
u(t), v(t), v(t)

)T =
(
Q–1

1 (t)x(t), Q–1
2 (t)y(t), Q–1

3 (t)z(t)
)T

satisfies each equation of system (5), which yields

Q–1
1 (t)x′(t) = Q–1

1 (t)x(t)
[

r1(t) – D1(t)Q–1
1 (t)x(t) –

M12(t)Q–1
2 (t)y(t)

a1(t) + B1(t)Q–1
1 (t)x(t) + x2(t)

]

, (7)

Q–1
2 (t)y′(t) = Q–1

2 (t)y(t)
[

r2(t) – D2(t)Q–1
2 (t)y(t) –

M23(t)Q–1
3 (t)z(t)

B23(t)Q–1
3 (t)z(t) + y(t)

+
M21(t)Q–1

1 (t)x(t – τ1)
a1(t) + B1(t)Q–1

1 (t)x(t – τ1) + x2(t – τ1)

]

, (8)

Q–1
3 (t)z′(t) = Q–1

3 (t)z(t)
[

r3(t) – D3(t)Q–1
3 (t)z(t) –

M32(t)Q–1
2 (t)y(t – τ2)

B23(t)Q–1
3 (t)z(t) + y(t – τ2)

]

, (9)

which can be easily simplified to

x′(t) = x(t)
[

r1(t) – d1(t)x(t) –
m12(t)y(t)

a1(t) + b1(t)x(t) + x2(t)

]

, (10)

y′(t) = y(t)
[

r2(t) – d2(t)y(t) –
m23(t)z(t)

b23(t)z(t) + y(t)

+
m21(t)x(t – τ1)

a1(t) + b1(t)x(t – τ1) + x2(t – τ1)

]

, (11)

z′(t) = z(t)
[

r3(t) – d3(t)z(t) –
m32(t)y(t – τ2)

b2(t)z(t) + y(t – τ2)

]

. (12)

Note that u(t), v(t), w(t) are continuous on each interval (tk , tk+1], in the following we
only need to prove the continuity of them at the impulsive points t = tk .

In fact,

u
(
t+
k
)

=
∏

0<tj≤tk

(1 + q1k)x
(
t+
k
)

=
∏

0<tj<tk

(1 + q1k)x(tk) = u(tk),

u
(
t–
k
)

=
∏

0<tj≤tk

(1 + q1k)x
(
t–
k
)

=
∏

0<tj<tk

(1 + q1k)x(tk) = u(tk),

which yields

u
(
t+
k
)

= u
(
t–
k
)

= u(tk).



Tian et al. Advances in Difference Equations        (2019) 2019:395 Page 6 of 18

Similarly, v(t+
k ) = v(t–

k ) = v(tk), w(t+
k ) = w(t–

k ) = w(tk). These means u(t), v(t), w(t) are con-
tinuous at the impulsive points t = tk .

Therefore, u(t), v(t), w(t) are continuous on the whole interval [0,∞). Then we complete
the proof of the first conclusion.

Similarly, we can easily prove that the second conclusion also holds by the previous
definitions of the function Di(t) (i = 1, 2, 3), B1(t), B23(t), M12(t), M21(t), M23(t), M32(t). �

Let R3 be the plane Euclidean space with element X = (x, y, z)T and norm |X|0 = |x|+ |y|+
|z|, C = C([–τ , 0], R3), B ∈ R+, and denote

CB =
{
ϕ =

(
ϕ1(s),ϕ2(s),ϕ3(s)

)T ∈ C|‖ϕ‖ ≤ B
}

with ‖ϕ‖ = sups∈[–τ ,0] |ϕ(s)|0 = sups∈[–τ ,0](|ϕ1(s)| + |ϕ2(s)| + |ϕ3(s)|).

Definition 2.1 (see [15]) Consider the following almost periodic system with delay:

x′(t) = f (t, xt), t ∈ R+, (13)

where f (t,ϕ) is continuous in (t,ϕ) ∈ R×CB and almost periodic in t uniformly for ϕ ∈ CB,
∀ρ > 0, ∃M(ρ) > 0 such that |f (t,ϕ)| ≤ M(ρ) as t ∈ R, ϕ ∈ Cρ , while xt ∈ CB is defined as
xt(s) = x(t + s) for s ∈ [–τ , 0]. Here

x′(t) = f (t, xt), y′(t) = f (t, yt), t ∈ R+, (14)

is called the associate product system of (13).

By the conclusions of [14, 15], we have Lemma 2.3.

Lemma 2.3 (see [15]) For φ,ψ ∈ CB, suppose that there exists a Lyapunov function
V (t,φ,ψ) defined on R+ × CB × CB satisfying the following three conditions:

(1) u(‖φ – ψ‖) ≤ V (t,φ,ψ) ≤ v(‖φ – ψ‖), where u, v ∈P = {u : R+ → R+|u is
continuous increasing function and u(s) → 0, as s → 0};

(2) there exists a positive constant L > 0, such that for any φ̄, ψ̄ , φ̂, ψ̂ ∈ CB

∣
∣V (t, φ̄, ψ̄) – V (t, φ̂, ψ̂)

∣
∣ ≤ L

(‖φ̄ – φ̂‖ + ‖ψ̄ – ψ̂‖);

(3) D+V (t,φ,ψ)|(14) ≤ –γ V (t,φ,ψ), where γ is a positive constant.
Further, assume that (13) has a solution x(t, v,φ) such that |x(t, v,φ)| ≤ B1 for t ≥ v ≥

0, B > B1 > 0. Then system (13) has a unique almost periodic solution which is uniformly
asymptotically stable.

Lemma 2.4 (see [16, 17]) For a > 0, b > 0, u(0) = u0 > 0:
(1) If the inequality u′(t) ≤ u(t)(a – bu(t)) holds, then lim supt→+∞ u(t) ≤ a

b .
(2) If the inequality u′(t) ≥ u(t)(a – bu(t)) holds, then lim inft→+∞ u(t) ≥ a

b .
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3 Main results
In this section, if we denote conditions (H3) and (H4) as follows:

(H3) rL
1 aL

1 > mM
12QM

2 v∗;
(H4) rL

2 bL
2 > mM

23;
where

u∗ =
rM

1

dL
1 QL

1
, v∗ =

bL
1rM

2 + mM
21

bL
1dL

2 QL
2

, w∗ =
rM

3 + mM
32

dL
3 QL

3
,

u∗ =
rL

1 aL
1 – mM

12QM
2 v∗

aL
1dM

1 QM
1

, v∗ =
rL

2 bL
2 – mM

23

bL
2dM

2 QM
2

, w∗ =
rL

3

dM
3 QM

3
.

Then we have Theorem 3.1.

Theorem 3.1 Assume that the coefficients of system (5) satisfy the conditions (H1)–(H4),
then any positive solution (u(t), v(t), w(t))T of system (5) satisfies

u∗ ≤ lim inf
t→+∞ u(t) ≤ lim sup

t→+∞
u(t) ≤ u∗;

v∗ ≤ lim inf
t→+∞ v(t) ≤ lim sup

t→+∞
v(t) ≤ v∗;

w∗ ≤ lim inf
t→+∞ w(t) ≤ lim sup

t→+∞
w(t) ≤ w∗.

Proof Let (u(t), v(t), w(t))T be any solution of the non-impulsive system (5), if we use in-
equalities to enlarge the right side of each equation of system (5), then we have

u′(t) ≤ u(t)
[
rM

1 – dL
1 QL

1u(t)
]
, (15)

v′(t) ≤ v(t)
[

rM
2 – dL

2 QL
2v(t) +

mM
21Q1(t)u(t – τ1)

aL
1 + bL

1Q1(t)u(t – τ1) + (Q1(t))2u2(t – τ1)

]

≤ v(t)
[(

rM
2 +

mM
21

bL
1

)

– dL
2 QL

2v(t)
]

, (16)

w′(t) ≤ w(t)
[

rM
3 – dL

3 QL
3w(t) +

mM
32Q2(t)v(t – τ2)

bL
2Q3(t)w(t) + Q2(t)v(t – τ2)

]

≤ w(t)
[(

rM
3 + mM

32
)

– dL
3 QL

3w(t)
]
. (17)

It follows from the first inequality of Lemma 2.3 that

lim sup
t→+∞

u(t) ≤ rM
1

dL
1 QL

1
= u∗;

lim sup
t→+∞

v(t) ≤ bL
1rM

2 + mM
21

bL
1dL

2 QL
2

= v∗;

lim sup
t→+∞

w(t) ≤ rM
3 + mM

32

dL
3 QL

3
= w∗.

(18)
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On the other hand, if we use inequalities to decrease the right side of each equation of
system (5), then we have

u′(t) ≥ u(t)
[

rL
1 – dM

1 QM
1 u(t) –

mM
12Q2(t)

aL
1

v(t)
]

≥ u(t)
[(

rL
1 aL

1 – mM
12QM

2 v∗

aL
1

)

– dM
1 QM

1 u(t)
]

, (19)

v′(t) ≥ v(t)
[

rL
2 – dM

2 QM
2 v(t) –

mM
23Q3(t)w(t)

bL
2Q3(t)w(t) + Q2(t)v(t)

]

≥ v(t)
[(

rL
2 –

mM
23

bL
2

)

– dM
2 QM

2 v(t)
]

, (20)

w′(t) ≥ w(t)
[
rL

3 – d3(t)Q3(t)w(t)
] ≥ w(t)

[
rL

3 – dM
3 QM

3 w(t)
]
. (21)

It follows from the second inequality of Lemma 2.3 that

lim inf
t→+∞ u(t) ≥ rL

1 aL
1 – mM

12QM
2 v∗

aM
1 dM

1 QM
1

= u∗;

lim inf
t→+∞ v(t) ≥ rL

2 bL
2 – mM

23

bL
2dM

2 QM
2

= v∗;

lim inf
t→+∞ w(t) ≥ rL

3

dM
3 QM

3
= w∗.

(22)

Thus, combining (18) with (22), we complete the proof of this theorem. �

Theorem 3.2 Assume that (H1)–(H4) hold, then any positive solution (x(t), y(t), z(t))T of
system (2) satisfies

m1 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M1,

m2 ≤ lim inf
t→+∞ y(t) ≤ lim sup

t→+∞
y(t) ≤ M2,

m3 ≤ lim inf
t→+∞ z(t) ≤ lim sup

t→+∞
z(t) ≤ M3.

Here M1 = QM
1 u∗, M2 = QM

2 v∗, M3 = QM
3 w∗; m1 = QL

1u∗, m2 = QL
2v∗, m3 = QL

3w∗.

Proof Since (x(t), y(t), z(t))T is a solution of system (5), then, by the second conclusion of
Lemma 2.2,

(
u(t), v(t), w(t)

)T =
(

x(t)
Q1(t)

,
y(t)

Q2(t)
,

z(t)
Q3(t)

)T

(23)

is a solution of system (5).
Then it follows from Theorem 3.1 that

u∗ ≤ lim inf
t→+∞

x(t)
Q1(t)

≤ lim inf
t→+∞ u(t) ≤ lim sup

t→+∞
u(t) = lim sup

t→+∞
x(t)

Q1(t)
≤ u∗, (24)
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v∗ ≤ lim inf
t→+∞

y(t)
Q2(t)

≤ lim inf
t→+∞ v(t) ≤ lim sup

t→+∞
v(t) = lim sup

t→+∞
y(t)

Q2(t)
≤ v∗, (25)

w∗ ≤ lim inf
t→+∞

z(t)
Q3(t)

≤ lim inf
t→+∞ w(t) ≤ lim sup

t→+∞
w(t) = lim sup

t→+∞
z(t)

Q3(t)
≤ w∗, (26)

which implies that

QL
1u∗ ≤ lim inf

t→+∞ x(t) ≤ lim sup
t→+∞

x(t) ≤ QM
1 u∗, (27)

QL
2v∗ ≤ lim inf

t→+∞ y(t) ≤ lim sup
t→+∞

y(t) ≤ QM
2 v∗, (28)

QL
3w∗ ≤ lim inf

t→+∞ z(t) ≤ lim sup
t→+∞

z(t) ≤ QM
3 v∗. (29)

This completes the proof of this theorem. �

Remark System (2) is permanent under the conditions (H1)–(H4).

Considering the ecological meanings, one of the most important problems which one
is usually concerned with is: does the system have an almost periodic solution? The we
wonder: if there exists an almost periodic solution, is it uniformly asymptotically stable or
not?

Thus, in the following section, we suppose all of the coefficient functions of system (2)
are almost periodic, and system (2) is also called an almost periodic system for this case. It
follows from Lemma 2.3 that, if the almost periodic system (2) satisfies all of three condi-
tions in the lemma, then there exists a unique almost periodic solution which is uniformly
asymptotically stable. Here

K1 = dL
1 QL

1u∗, K2 =
MM

12v∗[BM
1 u∗ + 2(QM

1 u∗)2]
[aL

1 + BL
1u∗ + (QL

1u∗)2]2 ,

K3 =
ML

12v∗[aL
1 + BL

1u∗ + (QL
1u∗)2]2

[aM
1 + BM

1 u∗ + (QM
1 u∗)2]2 ;

L2 =
MM

23QM
2 v∗w∗

(BL
23w∗ + QL

2v∗)2 , L3 =
ML

23QL
2v∗w∗

(BM
23w∗ + QM

2 v∗)2 , L4 =
MM

21aM
1 u∗

[aL
1 + BL

1u∗ + (QL
1u∗)2]2 ;

L1 = dL
2 QL

2v∗, N1 = dL
3 QL

3w∗ +
BL

23v∗w∗
(BM

23w∗ + QM
2 v∗)2 , N2 =

BM
23v∗w∗

(BL
23w∗ + QL

2v∗)2 .

Theorem 3.3 Assume that (H1)–(H4) hold, furthermore assume that there exist three pos-
itive λ1, λ2 and λ3 satisfying:

(H5) λ1K1 > λ1K2 + λ2L4,
(H6) λ1K3 + λ2L1 > λ2L2 + λ3N2,

then there exists an unique almost periodic solution which is uniformly asymptotically sta-
ble for the almost periodic system (2).

Proof First, we prove that system (5) has a unique uniformly asymptotically stable almost
periodic solution.

In order to achieve this aim, we take a transformation

u(t) = ex1(t), v(t) = ey1(t), w(t) = ez1(t), t ∈ R+. (30)
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Then system (5) can be transformed into following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1
dt = r1(t) – D1(t)ex1(t) – M12(t)ey1(t)

a1(t)+B1(t)ex1(t)+Q2
1(t)e2x1(t) ,

dy1
dt = r2(t) – D2(t)ey1(t) – M23(t)ez1(t)

B23(t)ez1(t)+Q2(t)ey1(t) + M21(t)ex1(t–τ1)

a1(t)+B1(t)ex1(t–τ1)+Q2
1(t)e2x1(t–τ1) ,

dz1
dt = r3(t) – D3(t)ez1(t) + M32(t)ey1(t–τ2)

B23(t)ez1(t)+Q2(t)ey1(t–τ2) .

(31)

Suppose that U1(t) = (x1(t), y1(t), z1(t))T and U2(t) = (x2(t), y2(t), z2(t))T are any two so-
lutions of system (31), then the product system of (31) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = r1(t) – D1(t)ex1(t) – M12(t)ey1(t)

a1(t)+B1(t)ex1(t)+Q2
1(t)e2x1(t) ,

dy1
dt = r2(t) – D2(t)ey1(t) – M23(t)ez1(t)

B23(t)ez1(t)+Q2(t)ey1(t) + M21(t)ex1(t–τ1)

a1(t)+B1(t)ex1(t–τ1)+Q2
1(t)e2x1(t–τ1) ,

dz1
dt = r3(t) – D3(t)ez1(t) + M32(t)ey1(t–τ2)

B23(t)ez1(t)+Q2(t)ey1(t–τ2) ,
dx2
dt = r1(t) – D1(t)ex2(t) – M12(t)ey2(t)

a1(t)+B1(t)ex2(t)+Q2
1(t)e2x2(t) ,

dy2
dt = r2(t) – D2(t)ey2(t) – M23(t)ez2(t)

B23(t)ez2(t)+Q2(t)ey2(t) + M21(t)ex2(t–τ1)

a1(t)+B1(t)ex2(t–τ1)+Q2
1(t)e2x2(t–τ1) ,

dz2
dt = r3(t) – D3(t)ez2(t) + M32(t)ey2(t–τ2)

B23(t)ez2(t)+Q2(t)ey2(t–τ2) .

(32)

According to Theorem 3.2, for any t ∈ R+ we have

u∗ ≤ xi(t) ≤ u∗, v∗ ≤ yi(t) ≤ u∗, w∗ ≤ zi(t) ≤ w∗, i = 1, 2. (33)

If we denote

S∗ =
{
φ = (xt , yt , zt)T ∈ C

(
[–τ , 0], R3)|lnu∗ ≤ xt ≤ lnu∗, lnv∗ ≤ yt ≤ lnv∗,

lnw∗ ≤ zt ≤ lnw∗},

then, for any Φ = (φ1,φ2,φ3)T = (x1t , y1t , z1t)T ∈ S∗, we can choose Ψ = (ψ1,ψ2,ψ3)T =
(x2t , y2t , z2t)T ∈ S∗ such that

∣
∣Φ(0) – Ψ (0)

∣
∣
0 =

∣
∣φ1(0) – ψ1(0)

∣
∣ +

∣
∣φ1(0) – ψ1(0)

∣
∣ > 0. (34)

Consider a Lyapunov functional V (t) = V (t,Φ ,Ψ ) = V (t, (x1t , y1t , y1t)T , (x2t , y2t , z2t)T ) de-
fined on R+ × S∗ × S∗ as follows:

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (35)

where

V1(t) = λ1
∣
∣x1(t) – x2(t)

∣
∣, V2(t) = λ2

∣
∣y1(t) – y2(t)

∣
∣,

V3(t) = λ3
∣
∣z1(t) – z2(t)

∣
∣;

(36)

V4(t) = λ2L4

∫ t

t–τ1

∣
∣x1(s) – x2(s)

∣
∣ds + λ3N2

∫ t

t–τ2

∣
∣y1(s) – y2(s)

∣
∣ds. (37)



Tian et al. Advances in Difference Equations        (2019) 2019:395 Page 11 of 18

Obviously, V (t) is a positive-defined Lyapunov functional. Further, by the definitions of
S∗ and V (t) = V (t,Φ ,Ψ ), there is some positive constant M large enough such that

V (t) = V (t,Φ ,Ψ ) ≤ M. (38)

By the structure of V (t), it is easy to see that

V (t) ≥ V1(t) + V2(t) + V3(t)

≥ min{λ1,λ2,λ3}
(∣
∣x1(t) – x2(t)

∣
∣ +

∣
∣y1(t) – y2(t)

∣
∣ +

∣
∣z1(t) – z2(t)

∣
∣
)

= λ
∣
∣Φ(0) – Ψ (0)

∣
∣
0 > 0, (39)

where λ = min{λ1,λ2,λ3} > 0.
Moreover, by the integrative inequality and the absolute-value inequality properties we

have

V (t) ≤ [λ1 + λ2 + λ3 + λ2L4τ + λ3N2τ ]

× sup
s∈[–τ ,0]

[∣
∣x1t(s) – x2t(s)

∣
∣ +

∣
∣y1t(s) – y2t(s)

∣
∣ +

∣
∣z1t(s) – z2t(s)

∣
∣
]

= λ̄‖Φ – Ψ ‖, (40)

where

λ̄ = λ1 + λ2 + λ3 + λ2L4τ + λ3N2τ .

Let u, v ∈ C(R+, R+), choose u = λs, v = λ̄s, then the first condition of Lemma 2.3 is satis-
fied.

For ∀Φ̄ = (x1t , y1t , z1t)T , Ψ̄ = (x2t , y2t , z2t)T , Φ̂ = (x∗
1t , y∗

1t , z∗
1t)T , Ψ̂ = (x∗

2t , y∗
2t , z∗

2t)T ∈ S∗,
then it is easy to make the calculation

V (t, Φ̄ , Ψ̄ ) – V (t, Φ̂ , Ψ̂ )

= λ1
(∣
∣x1(t) – x2(t)

∣
∣ –

∣
∣x∗

1(t) – x∗
2(t)

∣
∣
)

+ λ2
(∣
∣y1(t) – y2(t)

∣
∣ –

∣
∣y∗

1(t) – y∗
2(t)

∣
∣
)

+ λ3
(∣
∣z1(t) – z2(t)

∣
∣ –

∣
∣z∗

1(t) – z∗
2(t)

∣
∣
)

+ λ2L4

∫ t

t–τ1

(∣
∣x1(s) – x2(s)

∣
∣ –

∣
∣x∗

1(s) – x∗
2(s)

∣
∣
)

ds

+ λ3N2

∫ t

t–τ2

(∣
∣y1(s) – y2(s)

∣
∣ –

∣
∣y∗

1(s) – y∗
2(s)

∣
∣
)

ds,

which yields

∣
∣V (t, Φ̄ , Ψ̄ ) – V (t, Φ̂ , Ψ̂ )

∣
∣

≤ λ1
(∣
∣x1(t) – x∗

1(t)
∣
∣ +

∣
∣x2(t) – x∗

2(t)
∣
∣
)

+ λ2
(∣
∣y1(t) – y∗

1(t)
∣
∣ +

∣
∣y2(t) – y∗

2(t)
∣
∣
)

+ λ3
(∣
∣z1(t) – z∗

1(t)
∣
∣ +

∣
∣z2(t) – z∗

2(t)
∣
∣
)
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+ λ2L4

∫ t

t–τ1

(∣
∣x1(s) – x∗

1(s)
∣
∣ +

∣
∣x2(s) – x∗

2(s)
∣
∣
)

ds

+ λ3N2

∫ t

t–τ2

(∣
∣y1(s) – y∗

1(s)
∣
∣ +

∣
∣y2(s) – y∗

2(s)
∣
∣
)

ds.

Thus,

∣
∣V (t, Φ̄ , Ψ̄ ) – V (t, Φ̂ , Ψ̂ )

∣
∣

≤ λ̄

2∑

i=1

sup
s∈[–τ ,0]

[∣
∣xit(s) – x∗

it(s)
∣
∣ +

∣
∣yit(s) – y∗

it(s)
∣
∣ +

∣
∣zit(s) – z∗

it(s)
∣
∣
]

≤ λ̄
(‖Φ̄ – Φ̂‖ + ‖Ψ̄ – Ψ̂ ‖). (41)

This means the second condition of Lemma 2.3 is satisfied.
Now, we only need to check the last condition of Lemma 2.3.
Thus, we calculate the right derivative D+Vi(t) of Vi(t) along the product system (32),

respectively:

D+V1(t) = λ1
(
x′

1(t) – x′
2(t)

)
sgn

(
x1(t) – x2(t)

)
. (42)

By applying the equations in the product system (30) we have

x′
1(t) – x′

2(t) = –D1(t)
[
ex1(t) – ex2(t)]

+
M12(t)ey2(t)

a1(t) + B1(t)ex2(t) + Q2
2(t)e2x2(t) –

M12(t)ey1(t)

a1(t) + B1(t)ex1(t) + Q2
1(t)e2x1(t) .

By reducing the fractions in the above formula to a common denominator and following
the mean-value theorem, we can calculate several terms as follows:

ex1(t) – ex2(t) = eξ1(t)(x1(t) – x2(t)
)
, (43)

ex1(t)ey2(t) – ex2(t)ey1(t)

= ex1(t)ey2(t) – ex2(t)ey2(t) + ex2(t)ey2(t) – ex2(t)ey1(t)

= ey2(t)(ex1(t) – ex2(t)) + ex2(t)(ey2(t) – ey1(t))

= eξ2(t)ey2(t)(x1(t) – x2(t)
)

– ex2(t)eη1(t)(y1(t) – y2(t)
)
, (44)

e2x1(t)ey2(t) – e2x2(t)ey1(t)

= ey2(t)(e2x1(t) – e2x2(t)) – e2x2(t)(ey1(t) – ey2(t))

= ey2(t)(ex1(t) + ex2(t))(ex1(t) – ex2(t)) – e2x2(t)(ey1(t) – ey2(t))

= ey2(t)eξ3(t)(ex1(t) + ex2(t))(x1(t) – x2(t)
)

– e2x2(t)eη2(t)(y1(t) – y2(t)
)
, (45)

where ξi(t) lies between x1(t) and x2(t), ηj(t) lies between y1(t) and y2(t), i = 1, 2, 3; j = 1, 2.
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By applying (43)–(45) and utilizing the absolute inequality we have

D+V1(t) ≤ –λ1DL
2v∗

∣
∣y1(t) – y2(t)

∣
∣ +

λ1MM
12v∗[BM

1 u∗ + 2(QM
1 u∗)2]

[aL
1 + BL

1u∗ + (QL
1u∗)2]2

∣
∣x1(t) – x2(t)

∣
∣

–
λ1ML

12v∗[aL
1 + BL

1u∗ + (QL
1u∗)2]2

[aM
1 + BM

1 u∗ + (QM
1 u∗)2]2

∣
∣y1(t) – y2(t)

∣
∣

≤ –λ1K1
∣
∣x1(t) – x2(t)

∣
∣ + λ1K2

∣
∣x1(t) – x2(t)

∣
∣ – λ1K3

∣
∣y1(t) – y2(t)

∣
∣. (46)

Similarly, for another two Lyapunov functions V1(t), V2(t) we can get

D+V2(t) ≤ –λ2(L1 – L2)
∣
∣y1(t) – y2(t)

∣
∣ – λ2L3

∣
∣z1(t) – z2(t)

∣
∣

+ λ2L4
∣
∣x1(t – τ1) – x2(t – τ1)

∣
∣, (47)

D+V3(t) ≤ –λ3N1
∣
∣z1(t) – z2(t)

∣
∣ + λ3N2

∣
∣y1(t – τ2) – y2(t – τ2)

∣
∣. (48)

On the other hand, utilizing the property of the integral upper limit function we have

D+V4(t) = λ2L4
∣
∣x1(t) – x2(t)

∣
∣ – λ2L4

∣
∣x1(t – τ1) – x2(t – τ1)

∣
∣

+ λ3N2
∣
∣y1(t) – y2(t)

∣
∣ – λ3N2

∣
∣y1(t – τ2) – y2(t – τ2)

∣
∣. (49)

By the definition of V (t) and combining with (46)–(49), we can easily give the following
estimations for the right derivatives of V (t):

D+V (t) ≤ –(λ1K1 – λ1K2 – λ2L4)
∣
∣x1(t) – x2(t)

∣
∣

– (λ1K3 + λ2L1 – λ2L2 – λ3N2)
∣
∣y1(t) – y2(t)

∣
∣

– (λ2L3 + λ3N1)
∣
∣z1(t) – z2(t)

∣
∣. (50)

If we denote δ = min{K1 – K2 – λ2L4
λ1

, λ1K3
λ2

+ L1 – L2 – λ3N2
λ2

, λ2L3
λ3

+ N1}, then δ > 0 by the
inequalities (H5) and (H6) in this theorem.

Therefore, having combined the inequality (50) with (38) and (39) we have

D+V (t) ≤ –δ
[
λ1

∣
∣x1(t) – x2(t)

∣
∣ + λ2

∣
∣y1(t) – y2(t)

∣
∣ + λ3

∣
∣z1(t) – z2(t)

∣
∣
]

= –δ
V1(t) + V2(t) + V3(t)

V (t)
V (t)

≤ –
λ|Φ(0) – Ψ (0)|0

M
δV (t). (51)

Let γ = λ|Φ(0)–Ψ (0)|0
M δ, then γ > 0 and

D+V (t) ≤ –γ V (t), t ∈ R+. (52)

This means the last condition of Lemma 2.3 is satisfied. Thus, by the lemma, system (31)
admits a unique uniformly asymptotically stable almost periodic solution (x(t), y(t), z(t))T .
(u(t), v(t), w(t))T = (ex(t), ey(t), ez(t))T .
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Moreover, by the transformation (30), we can conclude that system (5) admits a unique
uniformly asymptotically stable almost periodic solution.

Finally, we will explain that system (2) has a unique uniformly asymptotically stable al-
most periodic solution.

In fact, from Lemma 2.2, we know that

(
x(t), y(t), z(t)

)T =
( ∏

0<tk <t

(1 + q1k)u(t),
∏

0<tk<t

(1 + q2k)v(t),
∏

0<tk<t

(1 + q3k)v(t)
)T

is a solution of system (2). Since condition (H2) holds, similar to the proofs of Lemma 31
and Theorem 79 in [18], we can also prove that (x(t), y(t), z(t))T is almost periodic.

Therefore, (x(t), y(t), z(t))T is the unique uniformly asymptotically stable almost periodic
solution of system (2) because of the uniqueness and the uniformly asymptotical stability
of (u(t), v(t), w(t))T . This completes the proof of this theorem. �

4 Numerical simulations and discussions
In this section, we will give a numerical example to illustrate the feasibility of our analytical
results, then some discussions of the effects of impulsive perturbations and time delays on
the system are presented in the end of the paper.

Consider a non-autonomous prey–predator system (2) with impulsive effects and delays
with the following periodic coefficient functions:

r1(t) = 1.04 + 0.01 sin(
√

3t), r2(t) = 1.15 + 0.02 sin(
√

3t),

r3(t) = 0.96 + 0.03 sin(
√

3t),

a1(t) = 10.0 + 0.03 sin(
√

5t), b1(t) = 6.0 + 0.05 sin(
√

5t),

b2(t) = 10.0 + 0.05 sin(
√

5t),

d1(t) = 0.95 + 0.05 cos(
√

3t), d2(t) = 1.1 + 0.05 cos(
√

3t),

d3(t) = 2.85 + 0.8 cos(
√

3t),

m12(t) = 0.4 + 0.05 sin(
√

3t), m21(t) = 2.5 + 0.05 sin(
√

3t),

m23(t) = 4.5 + 0.5 sin(
√

3t) and m32(t) = 0.5 + 0.01 sin(
√

3t).

Obviously, they are all positive, bounded and almost periodic functions, which satisfy
the condition (H1) in the paper.

If we set the chemical controlling intensity as q1k = –0.05, q2k = –0.08, q3k = –0.04, tk =
k, t ∈ [0, 15], then one can easily calculate that QL

1 = 0.4633, QL
2 = 0.2863, QL

3 = 0.5421,
QM

1 = QM
2 = QM

3 = 1, and we have

QL
i ≤ Qi(t) =

∏

0<tk<t=20

(1 + qik) ≤ QM
i , i = 1, 2, 3,

which satisfies condition (H2) in the paper.
Furthermore, according to the notations in the previous section we can easily calculate

rM
1 = 1.05, rL

1 = 1.03, rM
2 = 1.17, rL

2 = 1.13, rM
3 = 0.99, rL

3 = 0.93;
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Figure 1 Permanence of system with initial condition φ1(s) = x1(0) = 1.0, φ2(s) = y1(0) = 2.5, φ3(s) = z1(0) = 0.4,
s ∈ [–τ , 0]

dM
1 = 1.0, dL

1 = 0.9, dM
2 = 1.15, dL

2 = 1.05, dM
3 = 3.65, dL

3 = 2.05;

aM
1 = 10.03, aL

1 = 9.97;

bM
1 = 6.05, bL

1 = 5.95, bM
2 = 10.05, bL

2 = 9.95;

mM
12 = 0.45, mL

12 = 0.35, mM
21 = 2.55, mL

21 = 2.45;

mM
23 = 5.0, mL

23 = 4.0, mM
32 = 0.51, mL

32 = 0.49,

which yields

u∗ ≈ 2.5182, u∗ ≈ 0.7900, v∗ ≈ 5.3177,

v∗ ≈ 0.5456, w∗ ≈ 1.3498, w∗ ≈ 0.2548.

At the moment, it is easy to calculate

rL
1 aL

1 ≈ 10.2691 > mM
12QM

2 v∗ ≈ 2.3930 and rL
2 bL

2 ≈ 11.2435 > mM
23 = 5.0

which means conditions (H3) and (H4) in Theorem 3.1 are satisfied. According to the
result of this theorem, system (2) should be permanent. By the numerical simulation with
the initial condition φ1(s) = x1(0) = 1.0, φ2(s) = y1(0) = 2.5, φ3(s) = z1(0) = 0.4, s ∈ [–τ , 0],
one very clearly observes the persistence of all species in Fig. 1.

Similarly, we can check that conditions (H5) and (H6) in Theorem 3.3 are also satisfied
for the above coefficients. By the conclusion of this theorem, system (2) admits a unique
uniformly asymptotically stable almost periodic solution. In order to verify this point, we
choose two different initial conditions as follows:

Case 1: φ1(s) = x1(0) = 1.05, φ2(s) = y1(0) = 4.5, φ3(s) = z1(0) = 1.4, s ∈ [–τ , 0];
Case 2: φ1(s) = x2(0) = 1.2, φ2(s) = y2(0) = 5.5, φ3(s) = z2(0) = 1.6, s ∈ [–τ , 0], where the

other coefficients are the same as above. And we solve system (2) numerically and plot
the time-series of the each specie in these two cases in Fig. 2. On the one hand, we can
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Figure 2 Time-series of the species in system (2) with Case 1: x1(0) = 1.05, y1(0) = 4.5, z1(0) = 1.4 and Case 2:
x2(0) = 1.2, y2(0) = 5.5, z2(0) = 1.6
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Figure 3 Time-series of the pest specie y(t) under three different impulsive strategies and the same initial
values φ1(s) = x1(0) = 1.05, φ2(s) = y1(0) = 4.5, φ3(s) = z1(0) = 1.4, s ∈ [–τ , 0]

observe the periodicity of the each population clearly by this figure. On the other hand, we
can also conclude that, although the initial number of the three populations is different,
the population density of each population becomes the same eventually over time. This
means that there exists an almost periodic solution which is asymptotically stable.

Finally, we will discuss the effect of chemical control; for example, people often use
pesticide on pest control. And we choose the following three different chemical control
strengths for system (2):

Case a: q1k = –0.05, q2k = –0.08, q3k = –0.04, tk = k, t ∈ [0, 50],
Case b: q1k = –0.10, q2k = –0.20, q3k = –0.08, tk = k, t ∈ [0, 50],
Case c: q1k = –0.20, q2k = –0.30, q3k = –0.16, tk = k, t ∈ [0, 50]. with the same initial

condition φ1(s) = x1(0) = 1.05, φ2(s) = y1(0) = 4.5, φ3(s) = z1(0) = 1.4, s ∈ [–τ , 0].
We plot the time-series of the pest specie y(t) for the above three cases in Fig. 3. To

our surprise, from the simulations, we find that even if we continuously increase the con-
centration of pesticides, the average number of pest populations will not decrease, but
increase from 4.7438 (the green line) to 6.3744 (the blue line) and 7.7930 (the red line).

By the theoretical analysis and numerical simulations in this paper, we can conclude that
appropriate chemical control and biological control strategies can guarantee the crops,
pests and natural enemies in the agricultural ecological system to coexist in a certain range
of quantities, and even control their quantity as a good cyclic behavior. On the contrary,
excessive chemical control, such as only increasing the concentration of pesticides, may
increase the resistance of pests and the pest population density will not decrease but in-
crease, which leads to the ultimate failure of pest control.
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