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Abstract
In this paper, we prove complete monotonicity of some functions involving
k-polygamma functions. As an application of the main result, we also give new upper
and lower bounds of the k-digamma function.
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1 Introduction
The Euler gamma function is defined for all positive real numbers x by

Γ (x) =
∫ ∞

0
tx–1e–t dt.

The logarithmic derivative of Γ (x) is called the psi or digamma function. That is,

ψ(x) =
d

dx
lnΓ (x) =

Γ ′(x)
Γ (x)

= –γ –
1
x

+
∞∑

n=1

x
n(n + x)

,

where γ = 0.5772 . . . is the Euler–Mascheroni constant. The polygamma functions ψ (m)(x)
for m ∈N are defined by

ψ (m)(x) =
dm

dxm ψ(x) = (–1)mm!
∞∑

n=0

1
(n + x)m+1 , x > 0.

The gamma, digamma and polygamma functions play an important role in the theory
of special functions, and are closely related to factorial, fractional differential equations,
mathematical physics and crops up in many unexpected place in analysis [13–17, 22–28,
40–45]. For some of the work as regards origin, history, the complete monotonicity, and
inequalities of these special functions one may refer to [1–12, 18–21, 29, 30, 33–39] and
the references therein.

In 2007, Díaz and Pariguan [16] defined the k-analog of the gamma function for k > 0
and x > 0 as

Γk(x) =
∫ ∞

0
tx–1e– tk

k dt = lim
n→∞

n!kn(nk)
x
k –1

x(x + k) · · · (x + (n – 1)k)
,
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where limk→1 Γk(x) = Γ (x). Similarly, we may define the k-analog of the digamma and
polygamma functions as

ψk(x) =
d

dx
lnΓk(x) and ψ

(m)
k (x) =

dm

dxm ψk(x).

Hence, the authors continued the study of this family of generalized functions, and sug-
gested that many properties of classical gamma, digamma and polygamma functions have
a counterpart in this more general setting. It would be natural to generalize the properties
of classical functions to the k-gamma, digamma and polygamma functions.

It is well known that the k-analogues of the digamma and polygamma functions satisfy
the following recursive formula and series identities (see [16, 31, 32]):

Γk(x + k) = xΓk(x), x > 0, (1.1)

ψk(x) =
ln k – γ

k
–

1
x

+
∞∑

n=1

x
nk(nk + x)

= –
∫ ∞

0

e–xt

1 – e–kt dt, (1.2)

and

ψ
(m)
k (x) = (–1)m+1m!

∞∑
n=0

1
(nk + x)m+1

= (–1)m+1
∫ ∞

0

1
1 – e–kt tme–xt dt. (1.3)

A function f is said to be completely monotonic on an interval I if f has derivatives
of all orders on I and satisfies (–1)nf (n)(x) ≥ 0 for x ∈ I and n ≥ 0. A characterization of
completely monotonic functions is given by the Bernstein–Widder theorem which reads
that a function f (x) on x ∈ [0,∞) is completely monotonic if and only if there exists a
bounded and non-decreasing function g(t) such that the integral

f (x) =
∫ ∞

0
e–xt dg(t)

converges for x ∈ [0,∞). That is, a function f (x) is completely monotonic on x ∈ [0,∞) if
and only if it is a Laplace transform of a bounded and non-decreasing measure g(t). From
the above theorem it follows that completely monotonic functions on [0,∞) are always
strictly completely monotonic unless they are constant (see [34]).

At present, these functions have been extensively studied. In [46], Yin et al. gave a con-
cave theorem and some inequalities for the k-digamma function. Furthermore, Yin et al.
[47] showed several monotonic and concave results related to the generalized digamma
and polygamma functions. In [48], Zhao, Guo and Qi showed several complete mono-
tonicity of two functions involving the tri- and tetra-gamma functions. Motivated by their
work, we give a k-analog of their results. Furthermore, we also prove a new double in-
equality about k-polygamma functions. Finally, an application of the main result leads to
new upper and lower bounds of the k-digamma function.
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2 Main results
Lemma 2.1 For k > 0, we have

ψk(x) =
ln k
k

+
ψ(x/k)

k
(2.1)

and

ψ ′
k(x) =

1
k2 ψ ′

(
x
k

)
. (2.2)

Proof Taking logarithms and differentiating on both sides of the formula

Γk(x) = k
x
k –1Γ

(
x
k

)
, (2.3)

we easily obtain Eq. (2.1). Differentiating on both sides of (2.1), we get (2.2). �

Lemma 2.2 For k > 0, the following recursion formulas hold true:

ψ ′
k(x + k) = ψ ′

k(x) –
1
x2 ,

ψ ′′
k (x + k) = ψ ′′

k (x) +
2
x3 .

(2.4)

Proof By using Eq. (1.1), we easily obtain the proof. �

Lemma 2.3 ([48, Eq. (12)]) Let r > 0. Then

1
xr =

1
Γ (r)

∫ ∞

0
tr–1e–xt dt. (2.5)

Theorem 2.1 Let k > 0. Then the function

fk(x) = (x + k)2
[
ψ ′

k(x) –
1
x2 –

1
k(x + k)

]

is completely monotonic on (0,∞).

Proof By the integral representation (1.3) and integration by parts, we have

xψ ′
k(x) = x

∫ ∞

0

te–xt

1 – e–kt dt =
∫ ∞

0

–t
1 – e–kt de–xt

=
–te–xt

1 – e–kt

∣∣∣0

∞
–

∫ ∞

0

d
dt

(
–t

1 – e–kt

)
e–xt dt

= lim
t→0

te(k–x)t

ekt – 1
+

∫ ∞

0

d
dt

(
tekt

ekt – 1

)
e–xt dt

=
1
k

+
∫ ∞

0

e2kt – ekt – ktekt

(ekt – 1)2 e–xt dt. (2.6)
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By using (2.6) and integration by parts, we also easily obtain

x2ψ ′
k(x) =

x
k

+ x
∫ ∞

0

e2kt – ekt – ktekt

(ekt – 1)2 e–xt dt

=
x
k

+
1
2

+ x
∫ ∞

0

ekt((k2t – 2k)ekt + 2k + k2t)
(ekt – 1)3 e–xt dt. (2.7)

Furthermore, direct computation results in

fk(x) = x2ψ ′
k(x) + 2kxψ ′

k(x) + k2ψ ′
k(x) – 2 –

x
k

–
2k
x

–
k2

x2 . (2.8)

Considering (2.6)–(2.8) and Lemma 2.3, we easily get

fk(x) =
1
2

+
∫ ∞

0

Wk(t)
(ekt – 1)3 e–xt dt,

where

Wk(t) =
(
k2t – 2k

)
ekt + 2k + k2t.

Next, we shall prove Wk(t) > 0 for t ∈ (0,∞). Simple calculation gives

W ′
k(t) = k3tekt – k2ekt + k2

and

W ′′
k (t) = k4tekt > 0.

From the facts that W ′
k(0+) = limt→0+ W ′

k(t) = 0 and Wk(0+) = limt→0+ Wk(t) = 0, it follows
that the functions W ′

k(t) and Wk(t) are increasing and positive on (0,∞). By computation,
we get

–f ′
k (x) =

∫ ∞

0

tWk(t)
(ekt – 1)3 e–xt dt.

In consequence, the function –f ′
k (x) is completely monotonic on (0,∞). This means that

(–1)n(–f ′
k (x)

)(n) = (–1)n+1(fk(x)
)(n+1) > 0.

It is easy to check that fk(x) ≥ 1
2 > 0. Consequently, the function fk(x) is completely mono-

tonic on (0,∞). �

Corollary 2.1 For x > 0 and k > 0, we have

1
k(x + k)

+
1
x2 +

a
(x + k)2 < ψ ′

k(x) <
1

k(x + k)
+

1
x2 +

b
(x + k)2

with the best possible constants a = 1
2 and b = π2

6 – 1.
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Proof Complete monotonicity of the function fk(x) implies that the function fk(x) is de-
creasing on (0,∞). Therefore, we have

lim
x→∞ fk(x) = fk(∞) < fk(x) < fk

(
0+)

= lim
x→0+

fk(x).

Applying Lemma 2.2, we get

fk(x) = (x + k)2
[
ψ ′

k(x + k) –
1

(x + k)2

]
.

It is easily seen that fk(0+) = k2ψ ′
k(k) – 1 = π2

6 – 1. On the other hand, using the asymptotic
formula (see [1])

ψ ′(x) ∼ 1
x

+
1

2x2 +
1

6x3 –
1

30x5 + · · · , x → ∞,

and (2.2), we can conclude

fk(x) =
1
2

+ o
(

1
(x + k)

)
→ 1

2
, x → ∞.

This completes the proof. �

Remark 2.1 In [47, Lemma 2.4], Yin et al. gave an estimation of ψ ′
k(x) as follows:

1
kx

< ψ ′
k(x) <

1
kx

+
1
x2 .

Here, we give another inequality of ψ ′
k(x).

Theorem 2.2 Let 0 < k ≤ 1. Then the functions

αk(x) = k
(
ψ ′

k(x)
)2 + ψ ′′

k (x) –
k(x2 + 12k2)
12x4(x + k)2

and

βk(x) =
k(x + 12k)
12x4(x + k)

– k
(
ψ ′

k(x)
)2 – ψ ′′

k (x)

are completely monotonic on (0,∞). As a direct result, for 0 < k ≤ 1 and x ∈ (0,∞), we have
the following double inequality:

k(x2 + 12k2)
12x4(x + k)2 < k

(
ψ ′

k(x)
)2 + ψ ′′

k (x) <
k(x + 12k)
12x4(x + k)

. (2.9)

Proof By the recursion formula (2.4), we get

αk(x) – αk(x + k) = k
[
ψ ′

k(x) + ψ ′
k(x + k)

][
ψ ′

k(x) – ψ ′
k(x + k)

]

+ ψ ′′
k (x) – ψ ′′

k (x + k) –
[

k(x2 + 12k2)
12x4(x + k)2 –

k((x + k)2 + 12k2)
12(x + k)4(x + 2k)2

]
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=
2k
x2

[
ψ ′

k(x) –
1

2x2 –
1
kx

–
(x2 + 12k2)

24x2(x + k)2 +
x2((x + k)2 + 12k2)
24(x + k)4(x + 2k)2

]

=
2k
x2 gk(x),

where

gk(x) = ψ ′
k(x) –

1
x2 –

k2

2(x + k)4 –
2k

(x + k)3

+
7

2(x + k)2 –
43

6k(x + k)
+

37
6k(x + 2k)

+
13

6(x + 2k)2 .

Applying (1.3) and (2.5), we have

gk(x) =
1

12k

∫ ∞

0

qk(x)
ekt – 1

e–(x+2k)t dt,

where

qk(x) = e2kt(k3t3 – 12k2t2 + 12kt + 42t – 86
)

+ ekt(–k3t3 + 12k2t2 – 16t + 160
)

– 26t – 74.

Direct calculation yields

q′
k(x) = e2kt(2k4t3 – 21k3t2 + 84kt + 42 – 160k

)

+ ekt(–k4t3 + 9k3t2 +
(
24k2 – 16k

)
t + 160k – 16

)
– 26

and

q′′
k (x) = ektλk(x),

where

λk(x) = ekt(4k5t3 – 36k4t2 + 168k2t – 42k3t + 168k – 320k2)

– k5t3 + 6k4t2 +
(
42k3 – 16k2)t + 184k2 – 32k.

Further computation gives

λ′
k(x) = k2(–16 + 42k + 12k2t – 3k3t2)

+ 2k2ekt(168 – 57k2t – 12k3t2 + 2k4t3 – 181k + 84kt
)
,

λ′′
k (x) = 2k3[–3k(–2 + kt) + ekt(252 – 81k2t – 6k3t2 + 2k4t3 + 14k(–17 + 6t)

)]
,

λ′′′
k (x) = –6k5 + 2k4ekt[336 – 319k +

(
84k – 93k2)t + 2k4t3].

Since 0 < k ≤ 1, the function 336 – 319k + (84k – 93k2)t + 2k4t3 attains minimum value
14 – 3

√
6 as t → √

3/2 and k → 1. This implies λ′′′
k (x) > 0. From the facts λ′

k(0) = k2(320 –
320k) > 0 and λ′′

k (0) = 2k3(252 – 232k) > 0, it follows that the functions λ′
k(x),λ′′

k (x),λ′′′
k (x)
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are increasing and positive on (0,∞). Thus, the derivative q′′
k (x) is positive, and so the

function q′
k(x) is increasing on (0,∞). Since q′

k(0) = 0, the function q′
k(t) is positive and

qk(t) is increasing on (0,∞). Since qk(0) = 0, qk(t) is positive on (0,∞).
Positivity of qk(t) leads to the complete monotonicity of gk(x) on (0,∞). Since 2k

x2 is com-
pletely monotonic on (0,∞) and the product of finite completely monotonic functions is
also completely monotonic, the difference αk(x) – αk(x + k) is completely monotonic on
(0,∞). That is,

(–1)n(αk(x) – αk(x + k)
)(n) = (–1)n(αk(x)

)(n) – (–1)n(αk(x + k)
)(n) > 0.

By mathematical induction, we get

(–1)n(αk(x)
)(n) > (–1)n(αk(x + k)

)(n) > · · · > (–1)n(αk(x + ik)
)(n) → 0.

So, we prove that the function αk(x) is completely monotonic on (0,∞). A completely
similar method may apply to the function βk(x). Here, we omit the details for the sake of
simplicity. �

Remark 2.2 Taking k = 1 in inequality (2.9), we obtain [48, Theorem 1(8)].

3 An application
In this section, we shall give an application to obtain the bounds of the k-digamma func-
tion by using Theorem 2.2.

Lemma 3.1 For x > 0 and 0 < k ≤ 1, we have ψ ′
k(x)ekψk (x) < 1

k .

Proof By using inequality (2.9), we have

d
dx

(
kψk(x) + lnψ ′

k(x)
)

> 0, x > 0.

This means that kψk(x) + lnψ ′
k(x) is strictly increasing on (0,∞). By [31] for x > 0 and

0 < k ≤ 1, we have

1
k

ln x –
1
x

< ψk(x) <
1
k

ln x.

This gives

xψ ′
k(x)e– k

x < ψ ′
k(x)ekψk (x) < xψ ′

k(x). (3.1)

Using Eq. (2.2) and an asymptotic representation of ψ(x), we can get

ψ ′
k(x) ∼ 1

kx
+

1
2x2 +

k
6x3 – · · · , x → ∞.

Furthermore, we get limx→∞ xψ ′
k(x) = 1

k . Hence, by inequality (3.1), we find that
limx→∞ kψk(x) + lnψ ′

k(x) = ln( 1
k ). So the proof follows from the monotonicity of the func-

tion kψk(x) + lnψ ′
k(x). �
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Lemma 3.2 Let 0 < k ≤ 1. Then the function Ak(x) = 1
k ekψk (x+k) – x

k is strictly decreasing
and strictly convex on (–k,∞).

Proof Simple computation yields

A′
k(x) = ψ ′

k(x + k)ekψk (x+k) –
1
k

and

A′′
k (x) =

[
k
(
ψ ′

k(x + k)
)2 + ψ ′′

k (x + k)
]
ekψk (x+k).

By applying Lemma (3.1) and inequality (2.9), we easily obtain A′
k(x) < 0 and A′′

k (x) > 0.
The proof is complete. �

Theorem 3.1 For 0 < k ≤ 1 and x > 0, we have

ln k
k

+
1
k

ln

(
x
k

+
1
2

)
–

1
x

< ψk(x) <
ln k
k

+
1
k

ln

(
x
k

+ e–γ

)
–

1
x

. (3.2)

The constants 1
2 and e–γ in (3.2) are the best possible as x → ∞.

Proof Direct calculation results in limx→0+ Ak(x) = ek[ψk (k)– ln k
k ] = e–γ and limx→∞ Ak(x) =

1
2 . Noting that the function Ak(x) is strictly increasing on (0,∞), we easily complete the
proof. �

4 Conclusion
In this paper, we mainly proved the following theorems: Let k > 0. Then the function

fk(x) = (x + k)2
[
ψ ′

k(x) –
1
x2 –

1
k(x + k)

]

is completely monotonic on (0,∞).
Let 0 < k ≤ 1. Then the functions

αk(x) = k
(
ψ ′

k(x)
)2 + ψ ′′

k (x) –
k(x2 + 12k2)
12x4(x + k)2

and

βk(x) =
k(x + 12k)
12x4(x + k)

– k
(
ψ ′

k(x)
)2 – ψ ′′

k (x)

are completely monotonic on (0,∞). As an application of Theorem 2.2, we also give new
upper and lower bounds of the k-digamma function.
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