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Abstract
In this paper, our purpose is to present a wavelet Galerkin method for solving the
time-fractional KdV-Burgers-Kuramoto (KBK) equation, which describes nonlinear
physical phenomena and involves instability, dissipation, and dispersion parameters.
The presented computational method in this paper is based on Gegenbauer
wavelets. Gegenbauer wavelets have useful properties. Gegenbauer wavelets and the
operational matrix of integration, together with the Galerkin method, were used to
transform the time-fractional KBK equation into the corresponding nonlinear system
of algebraic equations, which can be solved numerically with Newton’s method. Our
aim is to show that the Gegenbauer wavelets-based method is efficient and powerful
tool for solving the KBK equation with time-fractional derivative. In order to compare
the obtained numerical results of the wavelet Galerkin method with exact solutions,
two test problems were chosen. The obtained results prove the performance and
efficiency of the presented method.

Keywords: Galerkin method; Gegenbauer wavelets; KdV-Burgers-Kuramoto (KBK)
equation; Operational matrix of integration

1 Introduction
Wavelets analysis is the decomposition of a function onto shifted and scaled versions of
the basic wavelet. Wavelets possess many good features, such as compact support, or-
thogonality, exact representation of polynomials to a certain degree and facility to corre-
spond functions at various levels of resolution. So, it has been applied in many various
fields of engineering and science. Wavelets, introduced by Daubechies, have been used
to obtain approximate solution of physical and mathematical problems related to various
branches of engineering and applied sciences. Since the beginning of 1990s, wavelet-based
methods have been used to solve partial differential equations. Generally, the wavelet al-
gorithms for solving partial differential equation have been established on the Galerkin
or collocation methods. But the Daubechies wavelet family has a drawback. Because the
Daubechies wavelet family have implicit expression, analytical differentiation or integra-
tion of Daubechies wavelets is impossible. And thus, simpler wavelets, which are based
on orthogonal polynomials, such as Haar, Gegenbauer, Legendre, Hermite and Cheby-
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shev polynomials, are commonly used in wavelet-based numerical methods by many re-
searchers.

Many important nonlinear phenomena in the mathematical, physical, chemical and en-
gineering sciences can be well modeled by partial differential equations and fractional
partial differential equations. It is well known that most physical and engineering prob-
lems are nonlinear, and it may be very difficult to find exact solutions of fractional partial
differential equations for some cases. Due to this fact, numerical solutions of nonlinear
fractional partial differential equations are very important. For that we need a reliable and
efficient technique for the numerical solution of nonlinear partial differential equations
and fractional partial differential equations.

In this paper, we introduce a numerical solution by aid of the Gegenbauer wavelet
Galerkin method for the following time-fractional KdV-Burgers-Kuramoto (KBK) equa-
tion [1]:

∂αu(x, t)
∂tα

+ u(x, t)
∂u(x, t)

∂x
– α1

∂2u(x, t)
∂x2 + α2

∂3u(x, t)
∂x3 + α3

∂4u(x, t)
∂x4 = f (x, t),

t > 0, x > 0 (1)

with initial and boundary conditions

u(x, 0) = 0 (2)

and

⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = h1(t), u(1, t) = h2(t),

ux(0, t) = h3(t),

uxx(0, t) = h4(t),

(3)

in which α is the order of the fractional time derivative, f (x, t) is the forcing term and the
α1,α2,α3 parameters characterize instability, dispersion, and dissipation, respectively [2].
The study of nonlinear physical phenomena has been an active subject in various fields of
science, such as applied mathematics and physics, and issues related to engineering. The
classical KBK equation, which is one of the best-known equations among nonlinear par-
tial differential equations, describes some physical processes in motion of turbulence and
other unstable process systems. This equation can be also used to describe long waves on
a viscous fluid flowing down along an inclined plane [3], unstable drift waves in plasma [4],
and a turbulent cascade model in a barotropic atmosphere [5]. The classical KBK equation
given with initial and boundary conditions can be solved analytically in spite of nonlinear-
ity. As computational techniques develop, to compare numerical results with exact solu-
tions, many authors have applied different numerical and semi-analytical methods to solve
the classical KBK equation. They have obtained high accuracy and good performance. In
[6], a trigonometric function expansion method was applied to find exact solution of the
KBK equation. In [7], the KBK equation was converted into an equivalent 3D system, and
then this system was solved with the Lie symmetry reduction method and the Preller–
Singer procedure. In [8], the KBK equation was solved using a combination method. He
Shuqi and Chen Lie used the (g ′/g ∼ 2) expansion method to solve the KBK equation [9].
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Sayed and Elhamahmy proposed a scheme to solve the KBK equation using a sech-tanh
method and Wu’s elimination method [10]. But the study of the nonlinear time-fractional
KBK equation is very few in the literature. In [11], Legendre wavelet method was pre-
sented to solve the fractional KBK equation. Song and Zhang used the homotopy analysis
method to solve a fractional KBK equation [12]. In [13], the fractional KBK equation was
solved using He’s variational iteration method and Adomian’s decomposition method.

For many years, the Galerkin method has been used to find numerical solutions of differ-
ential equations. The most important advantage of the presented method is that it trans-
forms Eq. (1) into a nonlinear system of algebraic equations which can be easily solved with
Newton’s method. Until recently, the Galerkin method has been used to obtain numerical
solutions to fractional-order boundary value problems in [14], to the fractional Benney
equation in [15], to hyperbolic partial differential equations in [16], to the stochastic heat
equation in [17], to fractional sub-diffusion and time-fractional diffusion-wave equations
in [18], to nonlinear stochastic integral equations in [19], to ordinary differential equations
with non-analytic solution in [20], to the one-dimensional advection-diffusion equation
in [21] and to second-order parabolic partial differential equations in [22].

The structure of this article is as follows. Firstly some definitions and mathematical pre-
liminaries of the fractional calculus is mentioned in Sect. 2. Gegenbauer polynomials and
Gegenbauer wavelets are introduced in Sect. 3. The approximation of a function by using
Gegenbauer wavelets, followed by block pulse functions and nonlinear term approxima-
tion by Gegenbauer wavelets are given in Sect. 4 and Sect. 5, respectively. We define the
operational matrix of fractional integration in Sect. 6. In Sect. 7, to obtain the numerical
solution for the time-fractional KBK equation, the Gegenbauer wavelet Galerkin method
(GWGM) is applied. In Sect. 8 presents the test examples. A conclusion is given in Sect. 9.

2 Preliminaries and notations
We give some fundamental definitions and properties of the fractional calculus theory
which are required for establishing our results.

Definition (Riemann–Liouville fractional integral operator of order α) The Riemann–
Liouville fractional integral operator Iα(α > 0) of a function u(t), is defined as [23, 24]

Iαu(t) =

⎧
⎨

⎩

1
Γ (α)

∫ t
0 (t – ρ)α–1u(ρ) dρ, α > 0,α ∈ R+.

u(t), α = 0.

The operator Iα has the following properties:

IαIμ = Iα+μ, (α > 0,β > 0),

IαIμ = IμIα ,
(
IαIμu

)
(t) =

(
IμIαu

)
(t),

Iα(t – a)γ =
Γ (γ + 1)

Γ (α + γ + 1)
(t – a)α+γ , (γ > –1).
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Definition (Caputo fractional derivative operator of order α) The fractional derivative
operator of order α > 0 in the Caputo sense is given as [23, 24]

Dα
t u(t) = Im–αDmu(t) =

⎧
⎨

⎩

1
Γ (m–α)

∫ t
0

1
(t–ρ)(α–m+1)

dmu(ρ)
dρm dρ, m – 1 < α ≤ m, m ∈ N ,

dmu(ρ)
dρm , α = m, m ∈ N .

Some of the properties of Caputo fractional derivative are:

(i) IαDαu(t) = u(t) –
m–1∑

k=0

u(k)(0+) tk

k!
, m – 1 < α ≤ m, m ∈ N

(ii) DαIαu(t) = u(t)

(iii) Dαtμ =

⎧
⎨

⎩

Γ (μ+1)
Γ (μ–α+1) tμ–α , μ > α – 1,

0, μ ≤ α – 1.

3 Gegenbauer polynomials and Gegenbauer wavelets
For Gegenbauer polynomials (a special type of Jacobi polynomials) [25], Gβ

n (x) is defined,
for β > – 1

2 , n ∈ Z+, on [–1, 1], and the Gegenbauer polynomial recurrence formulas are
defined by

Gβ
0 (x) = 1, Gβ

1 (x) = 2βx,

Gβ
n+1(x) =

1
n + 1

(
2(n + β)xGβ

n (x) – (n + 2β – 1)Gβ
n–1(x)

)
, n = 1, 2, 3, . . . .

These polynomials are defined by the generating function

1
(1 – 2xt + t2)β

=
∞∑

n=0

Gβ
n (x)tn.

Some of the properties of Gegenbauer polynomials are

d
dx

(
Gβ

n (x)
)

= 2βGβ+1
n–1 (x),

dk

dxk

(
Gβ

n (x)
)

= 2kβkGβ+k
n–k (x), n ≥ 1,

(n + β)Gβ
n (x) = β

(
Gβ+1

n (x) – Gβ+1
n–2 (x)

)
, n ≥ 2,

d
dx

(
Gβ

n+1(x) – Gβ
n–1(x)

)
= 2β

(
Gβ+1

n (x) – Gβ+1
n–2 (x)

)
= 2(n + β)Gβ

n (x).

The equation given as

∫
(
1 – x2)β–1/2Gβ

n (x) dx = –
2β(1 – x2)β+1/2

n(n + 2β)
Gβ+1

n–1 (x), n ≥ 1

is obtained from Rodrigues formula [25].
Gegenbauer polynomials are orthogonal with respect to the weight function ω(x) = (1 –

x2)β– 1
2 ; that is,

∫ 1

–1

(
1 – x2)β– 1

2 Gβ
m(x)Gβ

n (x) dx = Kβ
n δnm, β > –

1
2
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in which Kβ
n = π21–2βΓ (n+2β)

n!(n+β)(Γ (β))2 is called the normalizing factor, and δnm is the Kronecker sym-
bol.

Legendre polynomials and Chebyshev polynomials are special types of Gegenbauer
polynomials. For β = 0, we get the first-kind Chebyshev polynomials; for β = 1/2, we get
Legendre polynomials; for β = 1, we get second-kind Chebyshev polynomials.

The basic wavelet (mother wavelet) is given on the basis of scaling and translation pa-
rameters as

ψa,b(x) =
1√|a|ψ

(
x – b

a

)

, a, b ∈ R, a 	= 0,

in which a and b are the scaling and translation parameters, respectively. By restricting
a, b to discrete values as a = a–k

0 , b = nb0a–k
0 , where a0 > 1, b0 > 0 and k, n ∈ N , we acquire

the following discrete wavelets:

ψk,n(x) = (a0)
k
2 ψ

(
ak

0x – nb0
)

in which an orthogonal basis of L2(R) is formed. If a0 = 2 and b0 = 1, then ψk,n forms an
orthonormal basis.

The discrete wavelet transform is defined as

ψk,n(x) = (2)
k
2 ψ

(
2kx – n

)
.

Gegenbauer wavelets are defined on the interval [0, 1] by

ψβ
n,m(x) =

⎧
⎪⎨

⎪⎩

1√

Kβ
m

2 k
2 Gβ

m(2kx – n̂), n̂–1
2k ≤ x ≤ n̂+1

2k ,

0, elsewhere,

in which k = 1, 2, 3, . . . , is the level of resolution, n = 1, 2, 3, . . . , 2k–1, n̂ = 2n – 1, is the trans-
lation parameter, and m = 0, 1, 2, . . . , M – 1 is the order of the Gegenbauer polynomials,
M > 0. Corresponding to each β > – 1

2 , a different wavelet family is obtained, i.e., when
β = 1

2 , Gegenbauer wavelets are identical to Legendre wavelets. For β = 0 and β = 1, we
obtain the Chebyshev wavelets of the first kind and the Chebyshev wavelets of the second
kind, respectively. In this study, we use the Gegenbauer wavelets at the values β = 1

2 and
β = 3

2 .
For Gegenbauer wavelets the weight function is given as follows:

ωn(x) =

⎧
⎨

⎩

ω(2kx – 2n + 1) = (1 – (2kx – 2n + 1)2)β– 1
2 , x ∈ [ n–1

2k–1 , n
2k–1 ],

0, otherwise.

4 Function approximation
u(x) ∈ L2[0, 1] can be expanded in terms of Gegenbauer wavelets as

u(x) =
∞∑

n=0

∞∑

m=0

cn,mψn,m(x) (4)
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in which cn,m values are wavelet coefficients, and cn,m wavelet coefficients can be deter-
mined by

cn,m =
〈
u(x),ψn,m(x)

〉

ωn
.

We approximate the infinite series expansion in Eq. (4) by a truncated series as

u(x) =
2k–1
∑

n=1

M–1∑

m=0

cn,mψn,m(x) = CTΨ (x), (5)

where T means transposition and Ψ (x) and C are 2k–1M × 1 matrices.
For simplicity, Eq. (4) can be written as

u(x) =
m̃∑

i=1

ciψi(x) (6)

in which m̃ = (2k–1M), C = [c1, c2, . . . , cm̃]T ,

Ψ (x) =
[
ψ1(x), . . . , ψ̃m̃(x)

]T (7)

and the index i can be obtained from the relation i = M(n – 1) + m + 1.
Similarly, u(x, t) ∈ L2([0, 1] × [0, 1]) can be approximated in terms of a Gegenbauer

wavelet as

u(x, t) =
m̃∑

i=1

m̃∑

j=1

ui,jψi(x)ψj(t) = Ψ T (x)UΨ (t) (8)

in which the ui,j wavelets coefficients can be calculated by

ui,j =
〈
ψi(x),

〈
u(x, t),ψj(t)

〉

ωn

〉

ωn
.

By substituting the collocation points xi = 2i–1
2m̃ , i = 1, 2, . . . , m̃ into Eq. (7), the Gegenbauer

wavelet matrix Φm̃×m̃ is defined as

Φm̃×m̃ =
[

Ψ

(
1

2m̃

)

,Ψ
(

3
2m̃

)

, . . . ,Ψ
(

2m̃ – 1
2m̃

)]

. (9)

We need the following theorem for the convergence analysis for the Gegenbauer wavelet
expansion.

Theorem 4.1 (Bernstein-type inequality [26]) For Gegenbauer polynomials,

(sin θ )β
∣
∣Gβ

m(cos θ )
∣
∣ <

21–βΓ (m + 3β/2)
Γ (β)Γ (m + 1 + β/2)

, 0 ≤ θ ≤ π , 0 < β < 1.

Theorem 4.2 (Convergence theorem) A function u(x, t) ∈ L2(R × R) defined on [0, 1] ×
[0, 1] can be expanded as an infinite series of Gegenbauer wavelets, which converges uni-
formly to u(x, t), provided u(x, t) has a bounded mixed fourth partial derivative | ∂4u(x,t)

∂x2 ∂t2 | ≤
M.
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Proof Let u(x, t) be a function defined on [0, 1] × [0, 1] and | ∂4u(x,t)
∂x2 ∂t2 | ≤ M. The Gegenbauer

wavelet coefficients of continuous functions u(x, t) are defined as

uij =
∫ 1

0

∫ 1

0
u(x, t)ψi(x)ψj(t)ω(x)ω(t) dx dt

=
1

√

Kβ
m1

1
√

Kβ
m2

2
k1+k2

2

∫ n2
2k2–1

n2–1
2k2–1

∫ n1
2k1–1

n1–1
2k1–1

u(x, t)Gβ
m1

(
2k1 x – 2n1 – 1

)

× ω
(
2k1 x – 2n1 – 1

)
ψj

(
2k1 t – 2n1 – 1

)
ω

(
2k1 t – 2n1 – 1

)
dx dt. (10)

Let us use the change of variable 2k1 x – 2n1 – 1 = x1, we get

uij =
1

√

Kβ
m1

1
√

Kβ
m2

2
k1+k2

2

2k1

∫ n2
2k2–1

n2–1
2k2–1

(∫ 1

–1
u
(

x1 + 2n – 1
2k1

, t
)

Gβ
m1 (x1)ω(x1) dx1

)

× ψj
(
2k1 t – 2n1 – 1

)
ω

(
2k1 t – 2n1 – 1

)
dt. (11)

Now, we calculate the integral using the integration by parts, to obtain

∫ 1

–1
u
(

x1 + 2n – 1
2k1

, t
)

Gβ
m1 (x1)ω(x1) dx1

=
1

2k1

2β

m1(m1 + 2β)

∫ 1

–1

∂u( x1+2n–1
2k1 , t)

∂x1
Gβ+1

m1–1(x1)
(
1 – x2

1
)β+1/2 dx1. (12)

Provided we integrate (12) by parts again, we obtain

∫ 1

–1
u
(

x1 + 2n – 1
2k1

, t
)

Gβ
m1 (x1)ω(x1) dx1

=
22β(β + 1)

22k1 m1(m1 + 2β)(m1 – 1)(m1 + 1 + 2β)

×
∫ 1

–1

∂2u
∂x2

1
Gβ+2

m1–2(x1)
(
1 – (x1)2)β+3/2 dx1. (13)

Let x1 = cos θ1, then

∫ 1

–1
u
(

x1 + 2n – 1
2k1

, t
)

Gβ
m1 (x1)ω(x1) dx1

=
22β(β + 1)

22k1 m1(m1 + 2β)(m1 – 1)(m1 + 1 + 2β)

×
∫ π

0

∂2u
∂θ2

1
Gβ+2

m1–2(cos θ1)(sin θ1)2β+4 dθ1. (14)

By substituting Eq. (14) in Eq. (11),

uij =
1

√

Kβ
m1

1
√

Kβ
m2

2
k1+k2

2

23k1

22β(β + 1)
m1(m1 + 2β)(m1 – 1)(m1 + 1 + 2β)
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×
∫ π

0

(∫ n2
2k2–1

n2–1
2k2–1

∂2u
∂θ2

1
Gβ

m2

(
2k2 t – 2n2 – 1

)
w

(
2k2 t – 2n2 – 1

)
dt

)

× Gβ+2
m1–2(cos θ1)(sin θ1)2β+4 dθ1. (15)

Similarly, we can calculate the following integral using the integration by parts

∫ n2
2k2–1

n2–1
2k2–1

∂2u
∂θ2

1
Gβ

m2

(
2k2 t – 2n2 – 1

)
ω

(
2k2 t – 2n2 – 1

)
dt

=
1

2k2

∫ 1

–1

∂2u( cos θ1+2n–1
2k1 , t1+2n–1

2k2 )
∂θ2

1
Gβ

m2 (t1)ω(t1) dt1, (16)

where 2k1 t – 2n2 – 1 = t1. If we integrate (16) two times by parts and make use of the
substitution: t1 = cos θ2, then

1
2k2

∫ 1

–1

∂2u( cos θ1+2n1–1
2k1 , cos θ2+2n2–1

2k2 )
∂θ2

1
Gβ

m2 (t1)ω(t1) dt1

=
22β(β + 1)

23k2 m2(m2 + 2β)(m2 – 1)(m2 + 1 + 2β)

×
∫ π

0

∂4u
∂θ2

1 ∂θ2
2

Gβ+2
m2–2(cos θ2)(sin θ2)2β+4 dθ2. (17)

By substituting Eq. (17) in Eq. (15), we obtain

uij =
1

√

Kβ
m1

1
√

Kβ
m2

2
k1+k2

2

23k1 23k2

× 24β2(β + 1)2

m1(m1 + 2β)(m1 – 1)(m1 + 1 + 2β)m2(m2 + 2β)(m2 – 1)(m2 + 1 + 2β)

×
∫ π

0

(∫ π

0

∂4u
∂θ2

1 ∂θ2
2

Gβ
m2 (cos θ2)(sin θ2)2β+4 dθ2

)

Gβ+2
m1–2(cos θ1)(sin θ1)2β+4 dθ1,

uij =
1

√

Kβ
m1

1
√

Kβ
m2

1

2
5(k1+k2)–8

2

β2(β + 1)2

(m1 – 1)2(m1 – 1 + 2β)2(m2 – 1)2(m2 – 1 + 2β)2

×
∫ π

0

(∫ π

0

∂4u
∂θ2

1 ∂θ2
2

Gβ+2
m1–2(cos θ1)(sin θ1)2β+4

× Gβ
m2 (cos θ2)(sin θ2)2β+4 dθ1 dθ2

)

. (18)

From | ∂4u(x,t)
∂x2∂t2 | ≤ M and Theorem 4.2,

|uij| ≤ 1
√

Kβ
m1

1
√

Kβ
m2

1

2
5(k1+k2)–8

2

β2(β + 1)2

(m1 – 1)2(m1 – 1 + 2β)2(m2 – 1)2(m2 – 1 + 2β)2

×
∫ π

0

∫ π

0

∣
∣
∣
∣

∂4u
∂θ2

1 ∂θ2
2

∣
∣
∣
∣

∣
∣Gβ+2

m1–2(cos θ1)
∣
∣(sin θ1)2β+4∣∣Gβ

m2 (cos θ2)
∣
∣(sin θ2)2β+4 dθ1 dθ2
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≤ λM
∫ π

0

∫ π

0

∣
∣Gβ+2

m1–2(cos θ1)
∣
∣(sin θ1)2β+4∣∣Gβ

m2–2(cos θ2)(sin θ2)
∣
∣2β+4 dθ1 dθ2

< λMπ2 1
22β+2

Γ (m1 + 1 + 3β

2 )Γ (m2 + 1 + 3β

2 )
Γ (m1 + β

2 )Γ (m2 + β

2 )Γ (β + 2)2
,

where

λ =
1

√

Kβ
m1

1
√

Kβ
m2

1

2
5(k1+k2)–8

2

β2(β + 1)2

(m1 – 1)2(m1 – 1 + 2β)2(m2 – 1)2(m2 – 1 + 2β)2
.

Accordingly,
∑∞

i=0
∑∞

i=0 uij is absolutely convergent. �

5 Block Pulse Functions (BPFs)
Block pulse functions (BPFs) constitute a complete set of orthogonal functions [27], which
are given on the interval [0, b) by

bi(x) =

⎧
⎨

⎩

1, i–1
m̂ ≤ x < i

m̂ b,

0, otherwise,
i = 1, 2, . . . , m̂.

An arbitrary function u(x) on the interval [0, b) can be represented by BPFs as

u(x) 
 ζ T Bm̂(x),

where

ζ T = [u1, u2, . . . , um̂],

Bm̂ =
[
b1(x), b2(x), . . . , bm̃(x)

]

in which the ui variables are the coefficients of the block pulse function,

ui =
m̃
b

∫ b

0
u(x)bi(x) dx =

m
b

∫ (i/m)b

((i–1)/m)b
u(x)bi(x) dx.

Lemma 1 Assume that f (x) and g(x) are two absolutely integrable functions, and these
functions can be expanded in block pulse functions as

f (x) = FT B(x),

g(x) = GT B(x).

Then

f (x)g(x) = FT B(x)BT (x)G = HB(x)

in which H = FT ⊗ GT [28].



Secer and Ozdemir Advances in Difference Equations        (2019) 2019:386 Page 10 of 19

Lemma 2 Assume that f (x, t) and g(x, t) are two absolutely integrable functions, and these
functions can be expanded in block pulse functions as

f (x, t)g(x, t) = BT (x)HB(x)

in which H = F ⊗ G [28].

5.1 Nonlinear term approximation by Gegenbauer wavelets
Gegenbauer wavelets may be represented [28] with an m̃-set of block pulse functions as

Ψ (t) = Φm̃×m̃Bm̃(t). (19)

The operational matrix of the product of Gegenbauer wavelets can be calculated us-
ing the properties of BPFs. The absolutely integrable f1(x, t) and f2(x, t) functions can be
represented by Gegenbauer wavelets as

f1(x, t) = Ψ T (x)F1Ψ (t) (20)

and

f2(x, t) = Ψ T (x)F2Ψ (t). (21)

From Eq. (19), Eqs. (20)–(21) can be written as

f1(x, t) = Ψ T (x)F1Ψ (t) = BT (x)ΦT
m̃xm̃F1Φm̃xm̃B(t) = BT (x)FaB(t),

f2(x, t) = Ψ T (x)F2Ψ (t) = BT (x)ΦT
m̃xm̃F2Φm̃xm̃B(t) = BT (x)FbB(t),

(22)

where Fa = ΦT
m̃xm̃F1Φm̃xm̃ and Fb = ΦT

m̃xm̃F2Φm̃xm̃. Let F3 = Fa ⊗ Fb, then

f1(x, t)f2(x, t) = BT (x)F3B(t)

= BT (x)ΦT
m̃xm̃inv

(
ΦT

m̃xm̃
)
F3inv(Φm̃xm̃)Φm̃xm̃B(t)

= Ψ T (x)F4Ψ (t)

in which F4 = inv(ΦT
m̃xm̃)F3inv(Φm̃xm̃).

6 Operational matrix of integration
The fractional integration of the vector Ψ (x), which is defined in (7), can be approximated
as

(
IαΨ

)
(x) 
 PαΨ (x),

where Pα is called the Gegenbauer wavelet operational matrix of fractional integration. As
given in [15], the matrix Pα is defined as

Pα 
 Φm̂×m̂P̃αΦ–1
m̂×m̂,
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where the m̂× m̂ matrix P̃ is called the BPFs operational matrix of integration and is given
in [29, 30] as

P̃α =
1

m̃α

1
Γ (α + 2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 χ1 χ2 . . . χm̃–1

0 1 χ1 . . . χm̃–2

0 0 1 . . . χm̃–3
...

...
...

. . .
...

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where χj = (j + 1)α+1 – 2jα+1 + (j – 1)α+1.

7 Description of the presented method
In this section, the Gegenbauer wavelet expansion combined with the operational matrix
of fractional integration, is applied to obtain the numerical solution of the nonlinear time-
fractional KBK equation, defined by

∂αu(x, t)
∂tα

+ u(x, t)
∂u(x, t)

∂x
– α1

∂2u(x, t)
∂x2 + α2

∂3u(x, t)
∂x3 + α3

∂4u(x, t)
∂x4 = f (x, t),

t > 0, x > 0 (23)

subject to the initial and boundary conditions

u(x, 0) = 0 (24)

and
⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = h1(t), u(1, t) = h2(t),

ux(0, t) = h3(t),

uxx(0, t) = h4(t),

(25)

in which α1,α2,α3 ≥ 0 parameters are constant. u(x, t) is a function to be determined.
To solve Eq. (23), when we use the fractional integration of order α with respect to t to

Eq. (23) and consider the initial condition (24), then the following equation is obtained:

u(x, t) = –
(

Iα
t u

∂u
∂x

)

(x, t) + α1

(

Iα
t
∂2u
∂x2

)

(x, t) – α2

(

Iα
t
∂3u
∂x3

)

(x, t)

– α3

(

Iα
t
∂4u
∂x4

)

(x, t) +
(
Iα

t f
)
(x, t). (26)

Now we approximate ∂4u(x,t)
∂x4 by the Gegenbauer wavelets as follows:

∂4u(x, t)
∂x4 


m̃∑

i=1

m̃∑

j=1

uijψi(x)ψj(t) = Ψ T (x)UΨ (t) (27)

in which U = [uij]m̃×m̃ is an unknown matrix that should be determined and Ψ (·) is the
Gegenbauer wavelet vector defined in (7). Then we integrate Eq. (27) four times with re-
spect to x and consider the boundary conditions in (25), and the following relations can
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be acquired:

∂3u(x, t)
∂x3 =

∂3u(x, t)
∂x3

∣
∣
∣
x=0

+ Ψ T (x)PT UΨ (t), (28)

∂2u(x, t)
∂x2 =

∂2u(x, t)
∂x2

∣
∣
∣
x=0

+ x
(

∂3u(x, t)
∂x3

∣
∣
∣
x=0

)

+ Ψ T (x)
(
P2)T UΨ (t), (29)

∂u(x, t)
∂x

=
∂u(x, t)

∂x

∣
∣
∣
x=0

+ x
(

∂2u(x, t)
∂x2

∣
∣
∣
x=0

)

+
x2

2

(
∂3u(x, t)

∂x3

∣
∣
∣
x=0

)

+ Ψ T (x)
(
P3)T UΨ (t), (30)

u(x, t) = u(0, t) + x
(

∂u(x, t)
∂x

∣
∣
∣
x=0

)

+
x2

2

(
∂2u(x, t)

∂x2

∣
∣
∣
x=0

)

+
x3

6

(
∂3u(x, t)

∂x3

∣
∣
∣
x=0

)

+ Ψ T (x)
(
P4)T UΨ (t). (31)

By taking x = 1 into Eq. (31), we acquire

∂3u(x, t)
∂x3

∣
∣
∣
x=0

= 6h2(t) – 6h1(t) – 6h3(t) – 3h4(t) – 6Ψ T (1)
(
P4)T UΨ (t). (32)

We can expand h1(t), h2(t), h3(t) and h4(t) can be expressed by the Gegenbauer wavelets
as follows:

h1(t) = HT
1 Ψ (t),

h2(t) = HT
2 Ψ (t),

h3(t) = HT
3 Ψ (t),

h4(t) = HT
4 Ψ (t),

(33)

in which H1, H2, H3, and H4 are the Gegenbauer wavelet coefficients vectors. When we
substitute (31) into (32), we get

∂3u(x, t)
∂x3

∣
∣
∣
x=0

=
(
6HT

2 – 6HT
1 – 6HT

3 – 3HT
4 – 6Ψ T (1)

(
P4)T U

)
Ψ (t) = ŨTΨ (t). (34)

By substituting (34) into Eqs. (28)–(31), we obtain

∂3u(x, t)
∂x3 = Ψ T (x)A1Ψ (t), (35)

∂2u(x, t)
∂x2 = Ψ T (x)A2Ψ (t), (36)

∂u(x, t)
∂x

= Ψ T (x)A3Ψ (t), (37)

u(x, t) = Ψ T (x)A4Ψ (t), (38)

where

A1 = EŨT + PT U ,
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A2 = EHT
4 + XŨT +

(
P2)T U ,

A3 = EHT
3 + XHT

4 + H5ŨT +
(
P3)T U ,

A4 = EHT
1 + XHT

3 + H5HT
4 + H6ŨT +

(
P4)T U

and X, H5, H6 and E are the Gegenbauer wavelet coefficients vectors for x, x2

2 , x3

6 and the
unit step function, respectively. We can also expand f (x, t) by the Gegenbauer wavelets as
follows:

f (x, t) = Ψ T (x)FΨ (t) (39)

in which F is the Gegenbauer wavelet coefficient vector.
Now, we substitute Eqs. (35)–(39) and (27) into Eq. (26) and, by using the operational

matrix of fractional integration, the residual function R(x, t) for Eq. (23) can be written as
follows:

R(x, t) = Ψ T (x)
[
A4 + ΛPα – α1A2Pα + α2A1Pα + α3UPα – FPα

]
Ψ (t) (40)

in which [Ψ T (x)A3Ψ (t)][Ψ T (x)A4Ψ (t)] = Ψ T (x)ΛΨ (t).
As in a typical Galerkin method [31], we obtain a system of nonlinear algebraic equations

which are solved numerically by Newton’s method and whose solution gives the Gegen-
bauer wavelet coefficients, uij, i, j = 1, 2, . . . , m̂, as

∫ 1

0

∫ 1

0
R(x, t)ψi(x)ψj(t)wn(x)wn(t) dx dt = 0, i, j = 1, 2, . . . , m̂. (41)

When this system is solved for the unknown matrix, we acquire an approximate solution
for this problem.

8 Test problems
In this section, we present two test problems to check the accuracy of the presented
method. In order to measure the difference between the analytic and numerical solutions,
we use the following error functions:

E(xi, ti) =
∣
∣uexactsol(xi, ti) – u(xi, ti)

∣
∣,

L∞ = max
1≤i≤m̂

∣
∣uexactsol(xi, ti) – u(xi, ti)

∣
∣.

(42)

Here, the our test problems are applied by the presented method for k = 1, M = 3.

Example 1 Let us consider the following time-fractional KBK equation:

∂αu(x, t)
∂tα

+ u(x, t)
∂u(x, t)

∂x
– α1

∂2u(x, t)
∂x2 + α2

∂3u(x, t)
∂x3 + α3

∂4u(x, t)
∂x4 = f (x, t)

in which f (x, t) = tα cos(x)
Γ (1+α) – t4α cos(x) sin(x)

(Γ (1+2α))2 + α1
t2α cos(x)
Γ (1+2α) + α2

t2α sin(x)
Γ (1+2α) + α3

t2α cos(x)
Γ (1+2α) and α1 = α2 =

α3 = 1. Initial and boundary conditions are given as

u(x, 0) = 0
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Figure 1 (a) Graph of the exact solution of Example 1; (b) Numerical simulation of Example 1 according to
β = 1/2

and

⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = t2α

Γ (1+2α) , u(1, t) = t2α cos(1)
Γ (1+2α) ;

ux(0, t) = 0,

uxx(0, t) = – t2α

Γ (1+2α) .

The exact solution for this problem is u(x, t) = t2α cos(x)
Γ (1+2α) , given in [11].

Table 1 and Table 2 display the absolute errors between the approximate solution ac-
quired using the GWGM for β = 1/2,β = 3/2,α = 1 and the exact solution of Example 1.
Table 3 shows L∞ errors obtained using the GWGM for β = 1/2,α = 1 and the Legendre
wavelet method used in [11] at different points of x and t. In addition, the graphics of the
exact and approximate solutions for β = 1/2 and α = 1 are given in Fig. 1. From Table 1
and Table 2, we can see that the numerical solution acquired by using the GWGM for
β = 1/2,β = 3/2 and α = 1 is in good agreement with the exact solution more than the ac-
quired numerical solution using Legendre wavelet method in [11]. From Table 4, we can
see that the numerical solution acquired by using the GWGM for β = 1/2,α = 0.75 and
α = 0.90 is in good agreement with the exact solution more than the acquired numerical
solution using Legendre wavelet method for α = 0.75 in [11]. From Table 3 and Table 4,
we can see that our approach is more efficient and useful.

Example 2 Let us consider the following time-fractional KBK equation:

∂αu(x, t)
∂tα

+ u(x, t)
∂u(x, t)

∂x
– α1

∂2u(x, t)
∂x2 + α2

∂3u(x, t)
∂x3 + α3

∂4u(x, t)
∂x4 = f (x, t)

in which f (x, t) = tα sin(x)
Γ (1+α) + t4α cos(x) sin(x)

(Γ (1+2α))2 + α1
t2α sin(x)
Γ (1+2α) – α2

t2α cos(x)
Γ (1+2α) + α3

t2α sin(x)
Γ (1+2α) and α1 = α2 =

α3 = 1. Initial and boundary conditions are given as

u(x, 0) = 0



Secer and Ozdemir Advances in Difference Equations        (2019) 2019:386 Page 15 of 19

Table 1 Comparison of maximum absolute errors acquired using the GWGM for β = 1/2,α = 1 of
Example 1 with given initial and boundary conditions

|uexactsol(xi , ti) – u(xi , ti)|
x t = 0.1 t = 0.2 t = 0.3

0.1 8.44023426375259e–5 1.25085242156167e–6 7.98318705742124e–5
0.2 1.01453889005130e–5 1.01368508112973e–5 1.51016496490672e–5
0.3 4.82189427856213e–5 2.13020499826438e–7 4.75138226363261e–5
0.4 8.94551794209612e–5 2.35787185129607e–5 2.85239083874927e–5
0.5 1.11850972005547e–4 5.43889862270885e–5 2.64569730974301e–5
0.6 1.13234212539333e–4 8.35293426424792e–5 9.78798118184132e–5
0.7 9.09947270223226e–5 1.00559107759210e–4 1.62253077775489e–4
0.8 4.21103654545561e–5 9.33896615772280e–5 1.92377410968662e–4
0.9 3.68228101639981e–5 4.84052640965463e–5 1.57617371397915e–4
1.0 1.49556505833364e–4 4.94009246828318e–5 2.42076090632183e–5

Table 2 Comparison of maximum absolute errors acquired using the GWGM for β = 3/2,α = 1 of
Example 1 with given initial and boundary conditions

|uexactsol(xi , ti) – u(xi , ti)|
x t = 0.1 t = 0.2 t = 0.3

0.1 1.16323454320191e–6 2.14990877132823e–5 5.87312912886107e–5
0.2 4.37862738458718e–6 1.79419881498818e–6 1.17538622877236e–5
0.3 1.18903522953583e–5 3.01675389158262e–6 2.68520048517379e–5
0.4 2.01364671892027e–5 1.28895024835568e–5 2.31760359661881e–6
0.5 2.74046230660501e–5 3.90751903103677e–5 6.03438430572881e–5
0.6 3.15227119258325e–5 6.68518695888243e–5 1.27677703530248e–4
0.7 2.98805597686801e–5 8.57788603190225e–5 1.80827655015550e–4
0.8 1.94560165945315e–5 8.37675425009263e–5 1.92594337513209e–4
0.9 3.15485559659271e–6 4.72021761344938e–5 1.32342311023180e–4
1.0 4.17037628047444e–5 3.89240787802368e–5 3.36937744545157e–5

Table 3 Comparison of L∞ errors of Example 1, for α = 1 and various values of x

Legendre Wavelet
Method in [11]

Gegenbauer wavelet
Galerkin Method
(β = 1/2)

Gegenbauer wavelet
Galerkin Method
(β = 3/2)

x L∞ L∞ L∞
0.1 2.50855e-3 5.89485917379340e–4 7.27313861244472e–4
0.2 2.64995e-3 1.89108963468243e–4 1.87503238244180e–4
0.3 2.83828e-3 3.46946817421312e–4 4.43686707221280e–4
0.4 3.09695e-3 1.02188765043587e–4 1.64783845686911e–4
0.5 3.44474e-3 6.57771755357084e–4 4.77970446358944e–4
0.6 3.89591e-3 1.43188248208831e–3 1.26736536891631e–3
0.7 4.46022e-3 2.05373983571433e–3 1.94238352198511e–3
0.8 5.14289e-3 2.22112881623499e–3 2.20080990556537e–3
0.9 5.94439e-3 1.59365562365044e–3 1.70225071965713e–3
1.0 6.86019e-3 2.03850342039347e–4 7.15353642604666e–5

and

⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = 0, u(1, t) = t2α sin(1)
Γ (1+2α) ,

ux(0, t) = t2α

Γ (1+2α) ,

uxx(0, t) = 0.

The exact solution for this problem is u(x, t) = t2α sin(x)
Γ (1+2α) , as given in [11].
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Table 4 Comparison of L∞ errors of Example 1, for various values of x

Legendre wavelet
method in [11]
(α = 0.75)

Gegenbauer wavelet
Galerkin method
(β = 1/2,α = 0.75)

Gegenbauer wavelet
Galerkin method
(β = 1/2,α = 0.90)

x L∞ L∞ L∞
0.1 9.57606e -2 8.55547702219717e–3 4.51445591132160e–3
0.2 5.85324e -2 6.79113832036982e–3 3.11622146809487e–3
0.3 3.19023e -2 6.02803684752118e–3 2.54162812421266e–3
0.4 4.06402e -2 6.08029490365147e–3 2.64328797967528e–3
0.5 3.80953e -2 6.69028888876044e–3 3.21692323448264e–3
0.6 6.76929e -2 7.53122370284809e–3 4.00340828863466e–3
0.7 1.00724e -1 8.21039734591478e–3 4.69135794213144e–3
0.8 1.36832e -1 8.27312581796025e–3 4.92023909497280e–3
0.9 1.75597e -1 7.20728461898440e–3 4.28397314715895e–3
1.0 2.16518e -1 4.44842734898737e–3 2.33499309868973e–3

Table 5 Comparison of maximum absolute errors acquired using the GWGM for β = 1/2,α = 1 of
Example 2 with given initial and boundary conditions

|uexactsol(xi , ti) – u(xi , ti)|
x t = 0.1 t = 0.2 t = 0.3

0.1 1.64448492039189e–5 3.40779317786841e–6 2.25988426999788e–5
0.2 1.87731045064128e–5 5.97358504202715e–5 1.30555104564375e–4
0.3 1.15879083329642e–5 6.95840221958677e–5 1.60605435236950e–4
0.4 2.72228116434108e–7 4.54907671489490e–5 1.11098743317741e–4
0.5 1.21163098417837e–5 6.22006127947924e–6 2.42539738067593e–5
0.6 1.94477268430655e–5 3.02416554125058e–5 5.94593532960083e–5
0.7 1.80091811202948e–5 4.68651779270031e–5 1.01725577990534e–4
0.8 3.82522667346499e–6 2.77487462640481e–5 6.67656902768529e–5
0.9 2.67580094974375e–5 4.17231595763699e–5 7.83051898450571e–5
1.0 7.70363213923580e–5 1.74733689594274e–4 3.63149182375185e–4

Table 6 Comparison of maximum absolute errors acquired using the GWGM for β = 3/2,α = 1 of
Example 2 with given initial and boundary conditions

|uexactsol(xi , ti) – u(xi , ti)|
x t = 0.1 t = 0.2 t = 0.3

0.1 1.28974727966296e–5 6.37221034017464e–5 1.45775835758149e–4
0.2 1.54800573070029e–6 1.51839809731857e–5 3.60282480863332e–5
0.3 4.24271959892299e–6 4.04513303115025e–5 9.57015464695572e–5
0.4 2.51800080738364e–8 3.14339896132342e–5 7.67906533915459e–5
0.5 6.41361804184018e–6 6.89593487840021e–6 2.15145138523082e–5
0.6 1.05770645508711e–5 1.51763938930714e–5 2.96573521481984e–5
0.7 8.20786151897344e–6 1.77537917011340e–5 3.84092846099499e–5
0.8 4.66943705380385e–6 1.50655014542027e–5 3.10377264670508e–5
0.9 3.17087041675577e–5 9.78970055729930e–5 2.11568561082842e–4
1.0 7.62057338221985e–5 2.43923870655135e–4 5.32845339237378e–4

Table 5 and Table 6 display the absolute errors between the exact solution and the ap-
proximate solutions acquired using the GWGM for β = 1/2, β = 3/2 and α = 1. Table 6
shows L∞ errors obtained using GWGM for β = 1/2, β = 3/2,α = 1 and the Legendre
wavelet method used in [11] at different points of x and t. In addition, the graphics of
the exact and approximate solutions for different values of β and α = 1 are given in Fig. 2
and Fig. 3. From Tables 5 and 6, we can see that the numerical solutions acquired us-
ing the GWGM for β = 1/2 and β = 3/2 are in good agreement with the exact solution.
From Table 8, we can see that the numerical solution acquired by using the GWGM for
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Figure 2 (c) Graph of the exact solution of Example 2; (d) numerical simulation of Example 2 according to
β = 1/2,α = 1

Figure 3 (e) Graph of the exact solution of Example 2; (f) Numerical simulation of Example 2 according to
β = 3/2,α = 1

Table 7 Comparison of L∞ errors of Example 2, for α = 1 and various values of t

t L∞([11]) L∞(β = 1/2) L∞(β = 3/2)

0.1 7.69510e -5 7.70363213923580e–5 7.62057338221985e–5
0.2 2.80724e -4 1.74733689594274e–4 2.43923870655135e–4
0.3 1.03017e -3 3.63149182375185e–4 5.32845339237378e–4
0.4 2.54254e -3 6.42282783735154e–4 9.42970123568948e–4
0.5 5.29182e -3 1.01213453367412e–3 1.47429826364986e–3
0.6 9.52067e -3 1.47270445219214e–3 2.12682977948012e–3

β = 1/2,α = 0.99 is in good agreement with the exact solution more than the acquired nu-
merical solution using the GWGM for β = 1/2,α = 0.75 and α = 0.90. From Tables 7 and
8, we can see that our approach is more efficient and useful.

9 Discussion
In this study, we practically applied the Gegenbauer Wavelet Galerkin Method to solve
the time-fractional KdV-Burgers-Kuramoto equation. The presented scheme was tested
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Table 8 Comparison of L∞ errors of Example 2, for various values of t

GWGM (β = 1/2,α = 0.75) GWGM (β = 1/2,α = 0.90) GWGM (β = 1/2,α = 0.99)

t L∞ L∞ L∞
0.1 7.24471139239957e–4 1.99671106131723e–4 1.05542090770287e–4
0.2 4.26274825350849e–3 1.84704591787542e–3 3.35256122078600e–4
0.3 4.32284738233142e–3 2.05646098656650e–3 5.17822307414012e–4
0.4 2.97005943570883e–3 1.63679948920502e–3 7.24804001776561e–4
0.5 1.39800816364066e–3 1.11218254579090e–3 1.00580544516622e–3
0.6 2.63152937160835e–3 1.34650167472200e–3 1.39887271758302e–3
0.7 3.29568243108563e–3 1.78213515345529e–3 1.93487350902691e–3
0.8 2.80002304150284e–3 2.35086234923315e–3 2.63977471949789e–3
0.9 6.26107542091237e–3 4.53192197160868e–3 3.53598204899608e–3
1.0 1.24007652216164e–2 7.91696238793160e–3 4.64319539752128e–3

on two test problems to demonstrate the accuracy and efficiency of the presented method,
and the obtained numerical results were then compared with the exact solutions. These
comparisons reveal that the presented method is efficient and practically suited to find
the approximate solution of the time-fractional KdV-Burgers-Kuramoto equation. So, the
presented method is an alternative way to obtain the numerical solutions of the time-
fractional KdV-Burgers-Kuramoto equation. Moreover, the computer implementation of
the presented method is simple and straightforward. It is seen that the presented method
is computationally fast and provide accurate results. All of the above numerical computa-
tions were calculated using Maple software. The presented method is very well suited to
solve boundary value problems because the boundary conditions are used automatically
during solution procedure. As the next step, the presented scheme can be used to find the
approximation solution of a partial differential equation which has different nonlinearity,
systems of partial differential equations and fractional partial differential equations.
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