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Abstract
In this paper, a new kind of conformable fractional derivative on arbitrary time scales
is introduced. The basic conformable derivative rules are proved. We introduce a new
definition of exponential functions, and their potential uses in the definition of
conformable integrations are explored. Linear first-order conformable differential
equations with constant coefficients are investigated, as well as the conformable
analogue of Gronwall’s inequality.
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1 Introduction
A new definition (Definition 1.1) of conformable derivative was introduced and explored
in [1]. The basic principle of this new definition is the use of proportional-derivative (PD)
controller in control theory where u and time t with two tuning parameters have the al-
gorithm

u(t) = κpE(t) + κd
d
dt

E(t),

where κp and κd are the proportional gain and derivative gain, respectively, and E is the er-
ror between the state variable and the process variable. As a result, the following definition
was introduced.

Definition 1.1 ([1]) Let α ∈ [0, 1], and let the functions κ0,κ1 : [0, 1] × R → R
+
0 (where

R
+
0 = [0,∞)) be continuous such that

lim
α→0+

κ0(α, t) = 0, lim
α→0+

κ1(α, t) = 1,

lim
α→1–

κ0(α, t) = 1, lim
α→1–

κ1(α, t) = 0, (1)

κ0(α, t) �= 0, α ∈ (0, 1], κ1(α, t) �= 0, α ∈ [0, 1).

Then the following differential operator Dα , defined via

Dαf (t) = κ1(α, t)f (t) + κ0(α, t)f ′(t), (2)

is conformable provided the function f is differentiable at t and f ′ := d
dt f .
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For example, one could choose κ1 ≡ (1 – α)ωα and κ0 ≡ αω1–α for any ω ∈ (0,∞), or
κ1 ≡ (1 – α)|t|α and κ0 ≡ α|t|1–α for any R \ {0}, so that

Dαf (t) = (1 – α)|t|αf (t) + α|t|1–αf ′(t).

The new definition provided in Definition 1.1 satisfies some of the agreed properties
of fractional derivatives such as D0f (t) = f (t) and D1f (t) = d

dt f (t). It is best to consider
the conformable derivative in its own right, independent of existing fractional derivative
theory.

Definition 1.2 ([1]) Let α ∈ [0, 1]. A differential operator Dα is conformable if and only if
D0 is an identity operator and D1 is the classical differential operator.

In [1], the authors also explored results including basic conformable derivative and inte-
gral rules, conformable exponential functions, Taylor’s theorem, reduction of order, vari-
ation of parameters, complete characterization of solutions for constant coefficient and
Cauchy–Euler type conformable equations, Cauchy functions, variation of constants, a
self-adjoint equation, and Sturm–Liouville problems.

In time scales settings, several definitions of conformable fractional derivatives have
been introduced. Interestingly, in [2], a conformable fractional derivative operator Tα ,
where α ∈ (0, 1], is defined via

∣
∣
[

f
(

σ (t)
)

– f (s)
]

t1–α – Tα(f )(t)
[

σ (t) – s
]∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣; (3)

and in [3], we have

∣
∣
[

f
(

σ (t)
)

– f (s)
]

– Tα

(

f �
)

(t)
[

σ (t)α – sα
]∣
∣ ≤ ε

∣
∣σ (t)α – sα

∣
∣. (4)

In both definitions, it is obvious that T0(f ) �= f , and it is not conformable according to Def-
inition 1.2. There are several follow-up papers using at least one of the above conformable
definitions, including [3–9]. The authors in [1] have also mentioned the possible extension
of conformation derivatives on time scales (see [1], Remark 1.5) via

Dαf (t) = κ1(α, t)f (t) + κ0(α, t)f �(t).

With this in mind, in Sect. 2, we introduce and explore a generalization of conformable
�- derivative of order α where 0 ≤ α ≤ 1 on an arbitrary time scale T which includes Def-
inition 1.1 as a particular case when T = R. Fundamental results, e.g., the product rule and
the quotient rule, are presented. In Sect. 3, we introduce the conformable �-exponential
functions. We derive some important properties of the conformable �-exponential func-
tions that are required in the following sections. In Sect. 4, we introduce and explore a
version of conformable �-integral defined via the conformable exponential function. We
also derive analogues of derivative of integral and integration by parts. Section 5 is con-
cerned with conformable linear dynamic equations and dynamic inequalities. A variation
of constants formula and an analogue of Gronwall’s inequality are presented.
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2 Conformable delta derivative
In this section we introduce the generalized conformable derivative on arbitrary time
scales T which also includes Definition 1.1. The readers interested in the theory of time
scales are referred to the books [10, 11] and articles [12–14]. Here we only provide the
necessary concepts of the time scales required for this study.

A time scale T is a nonempty, closed subset of R equipped with topology induced from
the standard topology on R. For t ∈ T, the forward and backward jump operators σ ,ρ :
T → T are respectively defined via

σ (t) := inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

In this definition we put inf∅ = supT and sup∅ = infT. If σ (t) > t, we say that t is right-
scattered, while if ρ(t) < t, we say that t is left-scattered. If ρ(t) < t < σ (t), then t is isolated.
On the other hand, if t < supT and σ (t) = t, then t is called right-dense, and if t > infT and
ρ(t) = t, then t is called left-dense. If ρ(t) = t = σ (t), then t is dense.

The graininess function μ : T → [0,∞) is defined by

μ(t) := σ (t) – t.

We also need the set Tκ which is derived from the time scale T. If T has a left-scattered
maximum m, then T

κ = T – {m}. Otherwise, Tκ = T.

Definition 2.1 ([10]) A function f : T → R is called rd-continuous provided it is con-
tinuous at right-dense points in T and its left-side limits exist (finite) at left-dense points
in T.

The set of rd-continuous functions f : T→R will be denoted by Crd(T).

Definition 2.2 ([10]) Assume that f : T → R is a function, and let t ∈ T
κ . Let f �(t) be a

real number (provided it exists) with the property that for any ε > 0, there exists a neigh-
borhood U of t such that

∣
∣
[

f
(

σ (t)
)

– f (s)
]

– f �(t)
[

σ (t) – s
]∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣ ∀s ∈ U .

We call f �(t) the �-derivative of f at t.

It follows that if f : T→R is continuous at t and t is right-scattered, then

f �(t) =
f (σ (t)) – f (t)

μ(t)
. (5)

If t is right-dense, then

f �(t) = lim
s→t

f (t) – f (s)
t – s

. (6)

Theorem 2.3 ([10]) Assume that f , g : T →R are differentiable at t ∈ T
κ . Then

(i) (f + g)�(t) = f �(t) + g�(t).
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(ii) For any constant k, (kf )�(t) = kf �(t).
(iii) (Product rule) (fg)�(t) = f �(t)g(t) + f σ (t)g�(t).
(iv) If f (t)f σ (t) �= 0, then (1/f )� = – f �(t)

f (t)f σ (t) .

(v) If g(t)gσ (t) �= 0, then (f /g)� = f �(t)g(t)–f (t)g�(t)
g(t)gσ (t) .

Theorem 2.4 ([10]) Every rd-continuous function f has an antiderivative F , i.e., F� = f (t).
In particular, if s ∈ T, then F defined by

F(t) :=
∫ t

s
f (τ )�τ ∀t ∈ T

is an antiderivative of f , i.e.,

(∫ t

s
f (τ )�τ

)�

= f (t). (7)

Hence,

∫ σ (t)

t
f (t)�t = μ(t)f (t). (8)

Theorem 2.5 ([10]) Let s ∈ T
κ and assume f : T × T

κ → R is continuous at (t, t), where
t ∈ T

κ with t > s. Then

(∫ t

s
f (t, τ )�τ

)�t

=
∫ t

s
f �(t, τ )�τ + f

(

σ (t), t
)

,

where �t denotes the delta derivative with respect to t.

Now we consider a function f : T → R and define the so-called conformable delta
derivative of f of order α ∈ [0, 1] at a point t ∈ T

κ .

Remark 2.6 The proofs of theorems and lemmas in this section and the following sections
are subject to the left-scattered points on T only. For the left-dense point (i.e. the case
μ(t) = 0), the proofs are given in [1], so we omit them in this paper.

Definition 2.7 (The conformable �-derivative) Assume that f : T → R is a function,
t ∈ T

κ , and κ0, κ1 are continuous and satisfy (1). Let �αf (t), α ∈ [0, 1] be a real number
(provided it exists) with the property that for any ε > 0, there exists a neighborhood U of
t such that

∣
∣κ1(α, t)f (t)

[

σ (t) – s
]

+ κ0(α, t)
[

f
(

σ (t)
)

– f (s)
]

–
(

�αf
)

(t)
[

σ (t) – s
]∣
∣

≤ ε
[

σ (t) – s
]

for all s ∈ U . (9)

We call �αf (t) the conformable �-derivative of f of order α at t.
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Example 2.8 Let α ∈ [0, 1].
(i) Let f : T→R be defined by f (t) = c for all t ∈ T, where c ∈R is constant. Then by

(9) we have

∣
∣cκ1(α, t) –

(

�αf
)

(t)
∣
∣ ≤ ε

⇒ (

�αf
)

(t) = cκ1(α, t), ∀t ∈ T.

(ii) Let f : T→R be defined by f (t) = t for all t ∈ T, then by (9) again we get

∣
∣tκ1(α, t) + κ0(α, t) –

(

�αf
)

(t)
∣
∣ ≤ ε

⇒ �αf (t) = κ0(α, t) + tκ1(α, t), ∀t ∈ T.

The following theorem implicates the useful relationships concerning the conformable
delta derivative. Let us denote the set of all conformable delta differentiable functions by

Φ(T) :=
{

f : T→ R : �αf (t) exists and finite for all t ∈ T
κ
}

.

Theorem 2.9 Let T be a time scale. Assume that f : T → R, and let t ∈ T
κ . The following

properties hold.
(i) If f ∈ Φ(T), then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f ∈ Φ(T) if and only if

f �(t) =
f (σ (t)) – f (t)

σ (t) – t

exists. In this case, we write

�αf (t) = κ0(α, t)f �(t) + κ1(α, t)f (t). (10)

(iii) If t is right-dense, then f ∈ Φ(T) if and only if, the limit

lim
t→s

f (t) – f (s)
t – s

= f ′(t)

exists as a finite number. In this case, we write

�αf (t) = κ0(α, t)f ′(t) + κ1(α, t)f (t). (11)

Proof The proof is similar to Theorem 1.16 in [10]. Thus, we omit them. �

Next, we would like to be able to find the conformable delta derivatives of sum, product,
and quotients of delta differentiable functions in T.

Lemma 2.10 Assume that f , g : T →R are conformable delta-differentiable at t ∈ T
κ and

κ0, κ1 are continuous and satisfy (1). Then
(i) �α[af + bg] = a�α[f ] + b�α[g] for all a, b ∈R;

(ii) �α[fg] = f σ .�α[g] + �α[f ].g – f σ .gκ1(α, ·);
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(iii) �α[1/g] = – �αg
g.gσ + ( 1

g + 1
gσ )k1, provided ggρ �= 0;

(iv) �α[f /g] = �α [f ].gσ –f .�α [g]
g.gσ + f σ

gσ κ1(α, ·), provided ggρ �= 0.

Proof Item (i) can be easily proved using formula (9). For (ii), we use the product rule

[fg]� = f �g + f σ g� = fg� + f �gσ .

From (10), we have

�α[fg] = κ0[fg]� + κ1[fg] = κ0
[

f �g + f σ g�
]

+ κ1[fg]

=
[

κ1f + κ0f �
]

g + f σ
[

κ1g + κ0g�
]

– κ1f σ g

= �α[f ]g + f σ �α[g] – κ1f σ g.

To prove (iii), using the fact �α[1] = κ1(α, t) from Example 2.8(i)

�α[g.1/g] = �α[1] = κ1(α, ·).

Hence, using (ii) above,

�α[g.1/g] = g.�α[1/g] + �α[g].
(

1/gσ
)

– κ1.g/gσ = κ1(α, ·),
g.�α[1/g] = –�α[g]/gσ + κ1.g/gσ + κ1(α, ·),
�α[1/g] = –�α[g]/g.gσ + κ11/gσ + κ1(α, ·)1/g.

The proof of (iv) is easily obtained by using (ii) and (iii) in �α(f .1/g). �

3 Conformable exponential function
Now, we give a new definition for conformable exponential function with respect to the
operator �α in the time scale T. First we make a preliminary definition.

Definition 3.1 Let α ∈ [0, 1] and the functions κ0,κ1 : [0, 1] ×T →R
+
0 be continuous and

satisfy (1). We say that a function p : T→R is α-regressive provided

1 +
p(τ ) – κ1(α, τ )

κ0(α, τ )
μ(τ ) �= 0 for all t ∈ T

κ

holds. The set of all α-regressive and rd-continuous functions in T will be denoted by

Rα = Rα(T).

Next, we introduce the analogue of “circle minus” on Rα .

Definition 3.2 Let p ∈Rα and α ∈ (0, 1]. We define the “conformable circle minus” κ1�α

on Rα via

(κ1�αp)(t) := κ1(α, t) –
p(t)

1 + p(t)–κ1(α,t)
κ0(α,t) μ(t)

for all t ∈ T
κ . (12)
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Remark 3.3 It is clear that for α → 1– we have

(κ1�αp)(t) ≡ (�p)(t) = –
p(t)

1 + p(t)μ(t)
for all t ∈ T

κ ,

as defined in [10].

Lemma 3.4 Let p ∈Rα and α ∈ (0, 1]. Then
(i) κ1�αp ∈Rα ;

(ii) κ1�α(κ1�αp) = p.

Proof (i). It is clear that since p ∈Rα , we have

κ1(α, t) –
p(t)

1 + p(t)–κ1(α,t)
κ0(α,t) μ(t)

∈Rα .

Hence, the claim follows.
(ii) Follows from the definition by substituting p in (12) with κ1�αp. �

The conformable exponential function ẽp(t, s) is defined next.

Definition 3.5 Let α ∈ (0, 1] and p ∈Rα . Let κ0, κ1 be continuous and satisfy (1) with p/κ0

and κ1/κ0 �-integrable on T. Then the conformable exponential function with respect to
the operator �α in T is defined to be

ẽp(t, s) = exp

[∫ t

s

1
μ(τ )

Log

(

1 +
p(τ ) – κ1(α, τ )

κ0(α, τ )
μ(τ )

)

�τ

]

,

ẽ0(t, s) = exp

[∫ t

s

1
μ(τ )

Log

(

1 –
κ1(α, τ )
κ0(α, τ )

μ(τ )
)

�τ

] (13)

for all s, t ∈ T, where Log is the principle logarithm function. For μ(t) = 0, we define

ẽp(t, s) = exp

[∫ t

s

(
p(τ ) – κ1(α, τ )

κ0(α, τ )

)

�τ

]

, ẽ0(t, s) = exp

[

–
∫ t

s

κ1(α, τ )
κ0(α, τ )

�τ

]

(14)

as defined in [1]. Note that the conformable exponential function ẽp(t, s) is consistent with
exponential function ez(t, s) defined in the arbitrary time scales [10], where we can assume
z = p–κ1

κ0
.

Definition 3.6 Let p : T →R and α ∈ (0, 1]. Define the setR+
α of all positively α-regressive

elements of Rα via

R+
α =

{

p ∈Rα : 1 +
p(τ ) – κ1(α, τ )

κ0(α, τ )
μ(τ ) > 0 for all t ∈ T

}

.

Lemma 3.7 Let p ∈R, α ∈ (0, 1] and t0 ∈ T. If p ∈R+
α , then ẽp(t, t0) > 0 for all t ∈ T.



Segi Rahmat Advances in Difference Equations        (2019) 2019:354 Page 8 of 16

Proof Since 1 + p(τ )–κ1(α,τ )
κ0(α,τ ) μ(τ ) > 0, this implies that

1
μ(t)

Log

(

1 +
p(τ ) – κ1(α, τ )

κ0(α, τ )
μ(τ )

)

∈R for all t ∈R
κ .

Hence ẽp(t, t0) > 0 for all t ∈ T, by formula (13). This completes the proof. �

We proceed by collecting some important properties of the conformable exponential
function.

Theorem 3.8 If p ∈R+
α and α ∈ (0, 1], then

(i) ẽp(σ (t), s) = (1 + p(t)–κ1(α,t)
κ0(α,t) μ(t))̃ep(t, s);

(ii) ẽ0(t,s)
ẽp(t,s) = ẽκ1�αp(t, s);

(iii) ẽp(t, s) = 1
ẽp(s,t) ;

(iv) ẽp(t, s)̃ep(s, r) = ẽp(t, r);
(v) ẽ�

p (t, s) = ( p(t)–κ1(α,t)
κ0(α,t) )̃ep(t, s);

(vi) ( 1
ẽp(t,s) )� = –( p(t)–κ1(α,t)

κ0(α,t) ) 1
ẽp(σ (t),s) .

Proof (i) Since ẽp(σ (t), s) = ẽp(t, s) · ẽp(σ (t), t), the result follows from (13).
(ii) Obtained by substituting (κ1�αp) into (13).
(iii) By Eq. (13), it follows that ẽp(t, s) = 1

ẽp(s,t) .
(iv) It is straightforward by definition (13).
(v) By use of delta derivative (5) we get

ẽ�
p (t, s) =

ẽp(σ (t), s) – ẽp(t, s)
μ(t)

=
ẽp(t, s)̃ep(σ (t), t) – ẽp(t, s)

μ(t)

=
ẽp(σ (t), t) – 1

μ(t)
ẽp(t, s)

=
1 + p(t)–κ1(α,t)

κ0(α,t) μ(t) – 1
μ(t)

ẽp(t, s)

=
p(t) – κ1(α, t)

κ0(α, t)
ẽp(t, s).

(vi) a direct consequence of Theorem 2.3(iv). �

Lemma 3.9 For α ∈ (0, 1] and p ∈ Rα . For fixed s ∈ T, the conformable delta exponential
function satisfies

(i) �α [̃ep(·, s)] = p(t)̃ep(·, s),
(ii) �α [̃eκ1�αp(·, s)] = [κ1(α, ·) – p][̃eκ1�αp(·, s)]σ .

Proof (i). By Theorem 3.8(v) we have

�α
[

ẽp(t, s)
]

= κ1(α, t)̃ep(t, s) + κ0(α, t)̃e�
p (t, s),
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�α
[

ẽp(t, s)
]

= κ1(α, t)̃ep(t, s) + κ0(α, t)
p(τ ) – κ1(α, t)

κ0(α, t)
ẽp(t, s)

= κ1(α, t)̃ep(t, s) + p(τ )̃ep(t, s) – κ1(α, t)̃ep(t, s)

= p(t)̃ep(t, s).

(ii) From (i) we have

�α
[

ẽκ1�αp(·, s)
]

= (κ1�αp)(t)̃eκ1�αp(·, s)

=
(

κ1(α, t) –
p(t)

1 + p(t)–κ1(α,t)
κ0(α,t) μ(t)

)

ẽκ1�αp(t, s)

=
[

κ1(α, t) – p(t)
]
( 1 – κ1

κ0
μ(t)

1 + p(t)–κ1
κ0

μ(t)

)
ẽ0(t, s)
ẽp(t, s)

=
[

κ1(α, t) – p(t)
] ẽ0(σ (t), s)

ẽp(σ (t), s)

=
[

κ1(α, t) – p(t)
]

ẽκ1�αp
(

σ (t), s
)

.

Hence, the proof is completed. �

Lemma 3.10 For α ∈ (0, 1] and for the conformable exponential function ẽ0 as defined in
(13), we have

�α

[∫ t

a

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ

]

= f (t). (15)

Proof By (10) and Theorem 2.5, we have

�α

[∫ t

a

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ

]

= κ1(α, t)
∫ t

a

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ + κ0(α, t)
(

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

)�t

= κ1(α, t)
∫ t

a

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ + κ0(α, t)
∫ t

a

f (τ )̃e�t
0 (t,σ (τ ))

κ0(α, τ )
�τ

+ κ0(α, t)
f (t)̃e0(σ (t),σ (t))

κ0(α, t)

= κ1(α, t)
∫ t

a

f (τ )e0(t,σ (τ ))
κ0(α, τ )

�τ – κ1(α, t)
∫ t

a

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ + f (t)

= f (t).

This completes the proof. �

4 Conformable delta integral
In this section, we introduce the conformable delta integral with respect to �α in T. Sev-
eral important results will be proved.
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Definition 4.1 Assume that f ∈ Crd(R) and α ∈ (0, 1], and t0 ∈ T. In light of (14),
Lemma 3.9(i), and Lemma 3.10, we define the conformable antiderivative via

∫

�αf (t)�ατ = f (t) + c̃e0(t, t0), ∀t ∈ T, c ∈R.

Similarly, define the conformable delta integral of f over the time scale interval [a, b]T as

∫ t

a
f (τ )̃e0

(

t,σ (τ )
)

�ατ :=
∫ t

a

f (τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ , �ατ :=
1

κ0(α, τ )
�τ . (16)

To illustrate the conformable delta integral, let us consider the following simple example.

Example 4.2 Let T = Z, κ0(α, t) ≡ αω1–α
0 , κ1 ≡ 0, ω0 ∈ (0,∞), α ∈ (0, 1], and f (t) = at ,

where a �= 1 is a constant. We suppose to evaluate

∫

at�αt.

Since

(
at

a – 1

)�

=
at+1

a – 1
–

at

a – 1
=

at+1 – at

a – 1
= at ,

for κ0(α, t) ≡ αω1–α
0 and κ1 ≡ 0, ω0 ∈ (0,∞) we have

�α

(
at

a – 1

)

= αω1–α
0 at .

Hence, we write

∫

at�αt =
1

αω1–α
0

∫

�α

(
at

a – 1

)

�αt

=
at

(a – 1)αω1–α
0

+ c.

Here we use ẽ0(t, t0) ≡ 1 for t, t0 ∈ Z. It is clear that for α = 1 the result agrees with the
delta integral in the classical sense (see Example 1.72, [10]).

Following from (16) and Lemma 3.10, we have

Lemma 4.3 Let α ∈ (0, 1] and f , g ∈ Crd(R). Let the functions κ0 and κ1 be continuous and
satisfy (1). Then

�α

[∫ t

a
f (τ )̃e0

(

t,σ (τ )
)

�ατ

]

= f (t). (17)

Note that, if α → 1–, we have ẽ0(t,σ (τ )) = 1 and �[
∫ t

a f (τ )�τ ] = f (t) as in (5).
In the following lemma, we give the version of integration by parts with respect to the

operator �α .
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Lemma 4.4 Let f , g ∈ Φ(T). Then
(i)

∫ t
a �α[g(τ )]̃e0(t,σ (τ ))�ατ = [g(τ )̃e0(t,σ (τ ))]t

τ=a.
(ii)

∫ b
a f (t)�α[g(t)]̃e0(b,σ (t))�αt = [f (t)g(t)̃e0(b,σ (t))]b

t=a –
∫ b

a gσ (t){�α[f (t)] –
κ1(α, t)f (t)}̃e0(b,σ (t))�αt.

Proof (i) is a special case of (ii). To prove (ii), we use Lemma 2.10(ii) and the definition of
conformable delta integral (16). �

Now, we give an analogue of Theorem 2.5 with respect to �α .

Lemma 4.5 Let α ∈ (0, 1] and the function f : T2 →R be rd-continuous in its first variable.
Let the functions κ0 and κ1 be continuous and satisfy (1). Then

�α

[∫ t

a
f (t, τ )̃e0

(

t,σ (τ )
)

�ατ

]

=
∫ t

a

[

�α
t f (t, τ ) – κ1(α, t)f (t, τ )

]

ẽ0
(

t,σ (τ )
)

�ατ + f
(

σ (t), t
)

, (18)

or, if ẽ0 is absent,

�α

[∫ t

a
f (t, τ )�ατ

]

=
∫ t

a
�α

t f (t, τ )�ατ + f
(

σ (t), t
)

. (19)

Proof First note that by Theorem 2.5 we have

(∫ t

a
f (t, τ )̃e0

(

t,σ (τ )
)

�ατ

)�t

=
∫ t

a

[f (t, τ )̃e0(t,σ (τ ))]�t

κ0(α, τ )
�τ +

f (σ (t), t)
κ0(α, t)

=
∫ t

a

ẽ0(t,σ (τ ))
κ0(α, τ )

[

f �(t, τ ) –
κ1(α, t)
κ0(α, t)

f
(

σ (t), τ
)
]

�τ +
f (σ (t), t)
κ0(α, t)

.

Hence, it follows from (11) that

�α

[∫ t

a
f (t, τ )̃e0

(

t,σ (τ )
)

�ατ

]

= κ1(α, t)
∫ t

a
f (t, τ )̃e0

(

t,σ (τ )
)

�ατ + κ0(α, t)
(∫ t

a
f (t, τ )̃e0

(

t,σ (τ )
)

�ατ

)�t

= κ1(α, t)
∫ t

a

f (t, τ )̃e0(t,σ (τ ))
κ0(α, τ )

�τ

+ κ0(α, t)
(∫ t

a

ẽ0(t,σ (τ ))
κ0(α, τ )

[

f �(t, τ ) –
κ1(α, t)
κ0(α, t)

f
(

σ (t), τ
)
]

�τ +
f (σ (t), t)
κ0(α, t)

)

=
∫ t

a

ẽ0(t,σ (τ ))
κ0(α, τ )

[

κ1(α, t)f (t, τ ) + κ0(α, t)f �(t, τ ) – κ1(α, t)f
(

σ (t), τ
)]

�τ + f
(

σ (t), t
)

=
∫ t

a

ẽ0(t,σ (τ ))
κ0(α, τ )

[

�α
t f (t, τ ) – κ1(α, t)f

(

σ (t), τ
)]

�τ + f
(

σ (t), t
)
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=
∫ t

a

[

�α
t f (t, τ ) – κ1(α, t)f

(

σ (t), τ
)]

ẽ0
(

t,σ (τ )
)

�ατ + f
(

σ (t), t
)

.

For the second expression (19), if ẽ0(t,σ (τ )) is absent from the integral expression, then

�α

[∫ t

a
f (t, τ )�ατ

]

= �α

[∫ t

a

f (t, τ )
κ0(α, τ )

�τ

]

= κ1(α, t)
∫ t

a

f (t, τ )
κ0(α, τ )

�τ + κ0(α, t)
(∫ t

a

f (t, τ )
κ0(α, τ )

�τ

)�t

= κ1(α, t)
∫ t

a

f (t, τ )
κ0(α, τ )

�τ + κ0(α, t)
[∫ t

a

f �t (t, τ )
κ0(α, τ )

�τ +
f (σ (t), t)
κ0(α, t)

]

= κ1(α, t)
∫ t

a

f (t, τ )
κ0(α, τ )

�τ + κ0(α, t)
∫ t

a

f �t (t, τ )
κ0(α, τ )

�τ + f
(

σ (t), t
)

=
∫ t

a

[

κ1(α, t)f (t, τ ) + κ0(α, t)f �t (t, τ )
]

�ατ + f
(

σ (t), t
)

=
∫ t

a
�α

t f (t, τ )�ατ + f
(

σ (t), t
)

.

This completes the proof. �

5 Conformable dynamic equations
In this section, we consider the conformable linear dynamic equations and inequalities on
arbitrary time scales. Throughout we let α ∈ (0, 1], and κ0, κ1 satisfy (1). To begin with, let

y = ẽp(·, t0)

for some fixed t0 ∈ T. It is clear that y(t0) = ẽp(t0, t0) = 1. Then, by Lemma 3.9(i), we have

�αy(t) = �α ẽp(t, t0) = p(t)̃ep(t, t0) = p(t)y(t).

It follows that

Theorem 5.1 Let p ∈Rα and t0 ∈ T. Then ẽp(·, t0) is a solution of the initial value problem

�αy(t) = p(t)y(t), y(t0) = 1 (20)

on T.

Theorem 5.2 (Variation of constants) Let p ∈Rα , t0 ∈ T, and y0 ∈R. The unique solution
of the initial value problem

�αy = p(t)y + f (t), y(t0) = y0

is given by

y(t) = y0̃ep(t, t0) +
∫ t

t0

ẽp
(

t,σ (τ )
)

f (τ )�ατ , t ∈ T. (21)
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Proof Let y be given in (21). Using Lemma 3.9(i) and Lemma 4.5,

�αy(t) = y0�
α
[

ẽp(t, t0)
]

+ �α

∫ t

t0

ẽp
(

t,σ (τ )
)

f (τ )�ατ

= y0p(t)̃ep(t, t0) +
∫ t

t0

p(t)̃ep
(

t,σ (τ )
)

f (τ )�ατ + ẽp
(

σ (t),σ (t)
)

f (t)

= p(t)
[

y0̃ep(t, t0) +
∫ t

t0

ẽp
(

t,σ (τ )
)

f (τ )�ατ

]

+ f (t)

= p(t)y(t) + f (t),

as desired. �

Theorem 5.3 (Variation of constants) Let p ∈Rα , t0 ∈ T, and y0 ∈R. The unique solution
of the initial value problem

�αy =
[

κ1(α, t) – p(t)
]

yσ + f (t), y(t0) = y0

is given by

y(t) = y0̃eκ1�αp(t, t0) +
∫ t

t0

ẽκ1�αp(t, τ )f (τ )�ατ , t ∈ T. (22)

Proof Using the conformable product rule, we notice that

�α
[

ỹep(·, t0)
]

(t) =
[

�αy(t) –
(

κ1(α, t) – p(t)
)

yσ (t)
]

ẽp(t, t0)

= f (t)̃ep(t, t0).

Multiplying both sides by ẽ0(t,σ (τ )) and integrating them yields via Lemma 4.4(i)

y(τ )̃ep(τ , t0)̃e0
(

t,σ (τ )
)|tτ=t0 =

∫ t

t0

f (τ )̃ep(τ , t0)̃e0
(

t,σ (τ )
)

�ατ ,

y(t) = y(t0)
ẽ0(t,σ (t0))

ẽp(t, t0)̃e0(t,σ (t))
+

∫ t

t0

f (τ )
ẽp(τ , t0)̃e0(t,σ (τ ))
ẽp(t, t0)̃e0(t,σ (t))

�ατ .

Now, by Theorem 3.8 (ii) and (13), we have that

ẽ0(t,σ (t0))
ẽp(t, t0)̃e0(t,σ (t))

= ẽκ1�αp(t, t0) and
ẽp(τ , t0)̃e0(t,σ (τ ))
ẽp(t, t0)̃e0(t,σ (t))

= ẽκ1�αp(t, τ ).

Hence, the assertion follows. �

Now, we consider Gronwall’s inequality on time scales. We start with a comparison the-
orem.

Theorem 5.4 Let y, f ∈ Crd(T) and p ∈R+
α . Then

�αy(t) ≤ p(t)y(t) + f (t) for all t ∈ T
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implies

y(t) ≤ y(t0)̃ep(t, t0) +
∫ t

t0

ẽp
(

t,σ (τ )
)

f (τ )�ατ for all t ∈ T.

Proof We use the conformable product rule, Lemma 2.10(ii), and Lemma 3.9(ii) to calcu-
late

�α
[

ỹeκ1�αp(·, t0)
]

(t)

= �αy(t)̃eκ1�αp
(

σ (t), t0
)

+ y(t)
[

κ1(α, t) – p(t)
]

ẽκ1�αp
(

σ (t), t0
)

– κ1(α, t)y(t)̃eκ1�αp
(

σ (t), t0
)

=
[

�αy(t) – p(t)y(t)
]

ẽκ1�αp
(

σ (t), t0
)

.

Since κ1�αp ∈R+
α , we have ẽκ1�αp > 0 by Lemma 3.7. Multiplying both sides by ẽ0(t,σ (τ ))

and integrating them yields via Lemma 4.4(i)

y(τ )̃eκ1�αp(τ , t0)̃e0
(

t,σ (τ )
)|tτ=t0

=
∫ t

t0

[

�αy(τ ) – p(τ )y(τ )
]

ẽκ1�αp
(

σ (τ ), t0
)

ẽ0
(

t,σ (τ )
)

�ατ ,

y(t)̃eκ1�αp(t, t0)̃e0
(

t,σ (t)
)

– y(t0)̃e0
(

t,σ (t0)
) ≤

∫ t

t0

f (τ )̃eκ1�αp
(

σ (τ ), t0
)

ẽ0
(

t,σ (τ )
)

�ατ ,

y(t) ≤ y(t0)
ẽ0(t,σ (t0))

ẽκ1�αp(t, t0)̃e0(t,σ (t))
+

∫ t

t0

ẽκ1�αp(σ (τ ), t0)̃e0(t,σ (τ ))
ẽκ1�αp(t, t0)̃e0(t,σ (t))

f (τ )�ατ .

Now, by Theorem 3.8 (i) and (ii), we have that

ẽ0(t,σ (t0))
ẽκ1�αp(t, t0)̃e0(t,σ (t))

=
ẽp(t, t0)̃e0(σ (t), t)
ẽ0(t, t0)̃e0(σ (t0), t)

= ẽp(t, t0) and

ẽκ1�αp(σ (τ ), t0)̃e0(t,σ (τ ))
ẽκ1�αp(t, t0)̃e0(t,σ (t))

=
(

1 –
κ1

κ0
μ

)
ẽκ1�αp(σ (τ ), t)

ẽ0(σ (τ ), t)

=
(

1 –
κ1

κ0
μ

)

ẽp
(

t,σ (τ )
) ≤ ẽp

(

t,σ (τ )
)

.

As a result, the assertion follows. �

Theorem 5.5 (Gronwall’s inequality) Let y, f ∈ Crd , p ∈R+
α , p ≥ 0, and t0 ∈ T. Then

y(t) ≤ f (t) +
∫ t

t0

p(τ )y(τ )̃e0
(

t,σ (τ )
)

�ατ for all t ∈ T

implies

y(t) ≤ f (t) +
∫ t

t0

p(τ )f (τ )̃ep
(

t,σ (τ )
)

�ατ for all t ∈ T.
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Proof Define

z(t) =
∫ t

t0

p(τ )y(τ )̃e0
(

t,σ (τ )
)

�ατ ,

then z(t0) = 0, and by Lemma 4.3 we have

�αz(t) = p(t)y(t) ≤ [

f (t) + z(t)
]

p(t) = p(t)z(t) + p(t)f (t).

By Theorem 5.4, we have

z(t) ≤
∫ t

t0

ẽp
(

t,σ (τ )
)

p(τ )f (τ )�ατ .

Hence, the claim follows because y(t) ≤ f (t) + z(t). �

Corollary 5.6 Let y ∈Crd , p ∈R+
α with p ≥ 0, and δ ∈R. Then

y(t) ≤ δ +
∫ t

t0

p(τ )y(τ )̃e0
(

t,σ (τ )
)

�ατ for all t ∈ T

implies

y(t) ≤ δΩp(t, t0) + δ

∫ t

t0

κ1(α, t)̃ep
(

t,σ (τ )
)

�ατ for all t ∈ T,

where

Ωp(t, t0) = 1 + ẽp(t, t0)̃e0
(

t0,σ (t0)
)

– ẽ0
(

t,σ (t)
)

.

Proof Note that

ẽp
(

t,σ (τ )
)

= ẽκ1�αp
(

σ (τ ), t
)

ẽ0(t,σ (τ ). (23)

Hence,

p(t)̃ep
(

t,σ (τ )
)

= κ1(α, t)̃ep
(

t,σ (τ )
)

–
[

κ1(α, t) – p(t)
]

ẽκ1�αp
(

σ (τ ), t
)

ẽ0(t,σ (τ )

= κ1(α, t)̃ep
(

t,σ (τ )
)

– �α
[

ẽκ1�αp(τ , t)
]

ẽ0(t,σ (τ ).

If we let f (t) = δ in Theorem 5.5, then by (23) we have

y(t) ≤ δ

[

1 +
∫ t

t0

p(τ )̃ep
(

t,σ (τ )
)

�ατ

]

= δ

[

1 –
∫ t

t0

�α
[

ẽκ1�αp(τ , t)
]

ẽ0(t,σ (τ )�ατ +
∫ t

t0

κ1(α, t)̃ep
(

t,σ (τ )
)

�ατ

]

= δ

[

1 – ẽκ1�αp(τ , t)̃e0(t,σ (τ )|tτ=t0 +
∫ t

t0

κ1(α, t)̃ep
(

t,σ (τ )
)

�ατ

]
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= δ[1 –
[

ẽ0(t,σ (t) – ẽκ1�αp(t0, t)̃e0
(

t,σ (t0)
)

+
∫ t

t0

κ1(α, t)̃ep
(

t,σ (τ )
)

�ατ

]

= δ
[

1 + ẽp(t, t0)̃e0
(

t0,σ (t0)
)

– ẽ0
(

t,σ (t)
)]

+ δ

∫ t

t0

κ1(α, t)̃ep
(

t,σ (τ )
)

�ατ .

We note that, for all right-dense points t ∈ T, we have

Ωp(t, t0) = 1 + ẽp(t, t0)̃e0(t0, t0) – ẽ0(t, t) = ep(t, t0)

hence it gives the result obtained in [1] (Corollary 6.4). �
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