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Abstract
This paper studies a stochastic predator–prey model for integrated pest
management. It shows that the system has a positive solution that exists globally. The
long time behavior of the system is investigated, and a condition for the pest to go
extinct is given. Then the numerical simulations are carried out to illustrate our
theoretical results and facilitate their interpretation.
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1 Introduction
As an important area of research, pest control has generated an increasing interest in re-
cent years [1–12]. Pest control is a complex issue in real applications, where a key objective
is to reduce harm caused by pests to plants, animals, and humans. Traditional method for
pest control is the seasonal or state-dependent spraying of chemical pesticide, which can
reduce the pest population considerably. In fact, nowadays in most cropping systems, in-
secticides are still the principal means of controlling pests once the economic threshold
has been reached [7, 8, 11, 12]. Chemical spraying is useful and sometimes could be the
only feasible method in preventing economic loss. However, it may create both human
and environmental risks by applying broad-spectrum pesticides.

A better and effective strategy for controlling pest and preventing pest damage is to
combine different methods, which is known as Integrated Pest Management (IPM) [4–6,
8–10]. The goal of IPM is to manage pest damage by the most economical means and
with the least possible hazard to the environment. To achieve such a goal, one needs to
have sufficient information on the pest and its control methods. One of the environmen-
tally friendly pest control methods is to reduce the pest population by its natural enemies,
which is often an important component of an IPM strategy. In this approach, human be-
ings play an active role by increasing the number of natural enemies at critical times. It is
usually through mass releases of the natural enemies in a field or greenhouse. However,
other pest control methods could be used at the same time when there are not enough
natural enemies to decrease pest populations.

On the other hand, in the real world, the growth of species often suffers from distur-
bances due to some natural and man-made factors such as drought, flooding, harvesting,
fire, earthquake, and so on. Such disturbances often occur in a relatively short time in-
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terval and cause sharp changes in the population which are often modeled as impulses at
some sequence of discrete times.

Inspired by the above discussion, we shall propose, in this paper, a stochastic predator–
prey IPM model. Initially, we shall show that our model has a positive solution, and then
investigate the long time behavior of the system. We shall establish some sufficient con-
ditions for the pest to go extinct. Moreover, we shall give some numerical examples and
carry out computer simulations to illustrate our theoretical results and their biological
implications.

2 The stochastic IPM model
In [8], the authors first take into account the simplest case where in each impulsive period
T there is a pesticide application, so the killing efficiency rate function can be formulated
by the exponentially decaying piecewise periodic function. Further, in each impulsive pe-
riod T , Q (Q ≥ 0) is the constant number of natural enemies added to the population dur-
ing each impulsive event. These assumptions result in the following pest-natural enemy
model:

⎧
⎪⎨

⎪⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – βx(t)y(t),
dy(t)

dt = λβx(t)y(t) – ηy(t),

}

t �= nT ,

y(nT+) = y(nT) + Q, t = nT ,
(2.1)

where x(t) and y(t) are the population density of the pest and the natural enemy at time t,
respectively, r represents the intrinsic growth rate, K is the carrying capacity parameter,
β denotes the attack rate of the predator, λ represents conversion efficiency, and η is the
predator mortality rate. The same model (2.1) without any residual effects of the pesti-
cides on the pest (i.e., only an instantaneous killing efficiency was considered) has been
investigated, see [5] for details.

When considering the interference of external factors, model (2.1) is not applicable. In
order to describe these phenomena more accurately, some authors considered the stabil-
ity of Stochastic Differential Equations (SDE) [13–24]. When a pesticide kills a pest in-
stantly, impulsive differential equations (hybrid dynamical systems) can provide a natural
description of pulse-like actions. Based on the above discussion, we establish the stochas-
tic predator–prey impulsive pest management model

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = [rx(t)(1 – x(t)
K ) – βx(t)y(t)] dt + α1x(t) dB1(t),

dy(t) = λβx(t)y(t) dt – ηy(t) dt + α2y(t) dB2(t),

}

t �= nT ,

x(t+) = (1 – pn)x(t),
y(t+) = (1 + qn)y(t),

}

t = nT ,
(2.2)

where α1 and α2 are the coefficients of the effects of environmental stochastic perturba-
tions on the pest and the natural enemy, Bi(t), i = 1, 2, is the standard Brownian motion,
0 ≤ pn < 1 is the proportion by which the pest density is reduced by killing the number of
pests at time t = nT , and qn denotes the proportion of natural enemies released at time
nT .

3 Dynamic behavior of the model
In this section, we will state and prove our main results.
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Theorem 3.1 For any given initial value (x0, y0) ∈ R2
+, model (2.2) has a unique solution

(x(t), y(t)) defined for all t ∈ [0,∞).

Proof Consider the following SDE without impulse:
⎧
⎪⎪⎨

⎪⎪⎩

dx1(t) = [rx1(t)[1 –
∏

0<nT<t(1 – pn) x1(t)
K ] – β

∏
0<nT<t(1 + qn)y1(t)] dt

+ α1x1(t) dB1(t),

dy1(t) = λβ
∏

0<nT<t(1 – pn)x1(t)y1(t) dt – ηy1(t) dt + α2y1(t) dB2(t),

(3.1)

with the initial value (x10, y10) = (x0, y0). According to the classical theory of SDE without
impulse, Eq. (3.1) has a unique global positive solution.

Let
⎧
⎨

⎩

x(t) =
∏

0<nT<t(1 – pn)x1(t),

y(t) =
∏

0<nT<t(1 + qn)y1(t),

with the initial value (x10, y10) = (x0, y0). In fact, x(t) and y(t) are continuous on each inter-
val t ∈ (nT , (n + 1)T], here n ∈Z+ = {0, 1, 2, . . .}.

For x(t), we have

dx(t) = d
[ ∏

0<nT<t

(1 – pn)x1(t)
]

=
∏

0<nT<t

(1 – pn) dx1(t)

=
∏

0<nT<t

(1 – pn)
(

rx1(t)
[

1 –
∏

0<nT<t

(1 – pn)
x1(t)

K

]

– β
∏

0<nT<t

(1 + qn)y1(t)
)

dt +
∏

0<nT<t

(1 – pn)α1x1(t) dB1(t)

=
(

rx(t)
[

1 –
x(t)
K

]

– βx(t)y(t)
)

dt + α1x(t) dB1(t)

for each n ∈N and t �= nT . Meanwhile,

x
(
nT+)

= lim
t→nT+

x(t) = lim
t→nT+

∏

0<iT<t

(1 – pi)x1(t)

= lim
t→nT+

∏

0<iT≤nT

(1 – pi)x1
(
nT+)

= (1 – pn)
∏

0<iT<nT

(1 – pi)x1(nT)

= (1 – pn)x(nT)

for each n ∈N . Besides

x
(
nT–)

= lim
t→nT–

x(t) = lim
t→nT–

∏

0<iT<t

(1 – pi)x1(t)

= lim
t→nT+

∏

0<iT<nT

(1 – pi)x1
(
nT–)

=
∏

0<iT<nT

(1 – pi)x1(nT) = (1 – pn)x(nT).
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Similarly, for y(t), we can get that

dy(t) = d
[ ∏

0<nT<t

(1 + qn)y1(t)
]

=
∏

0<nT<t

(1 + qn) dy1(t)

= λβ
∏

0<nT<t

(1 – pn)
∏

0<nT<t

(1 + qn)y1(t)x1(t) dt

– d
∏

0<nT<t

(1 + qn)y1(t) dt + α2
∏

0<nT<t

(1 + qn)y1(t) dB2(t)

= λβx(t)y(t) dt – ηy(t) dt + α2y(t) dB2(t)

for each n ∈N and t �= nT , and

y
(
nT+)

= lim
t→nT+

y(t) = lim
t→nT+

∏

0<iT<t

(1 + qi)y1(t)

= lim
t→nT+

∏

0<iT≤nT

(1 + qi)y1
(
nT+)

= (1 + qn)
∏

0<iT<nT

(1 + qi)y1(nT)

= (1 + qn)y(nT)

for each n ∈N . Moreover,

y
(
nT–)

= lim
t→nT–

y(t) = lim
t→nT–

∏

0<iT<t

(1 + qi)y1(t)

= lim
t→nT+

∏

0<iT<nT

(1 + qi)y1
(
nT–)

=
∏

0<iT<nT

(1 + qi)y1(nT) = (1 + qn)y(nT)

for each n ∈N . This completes the proof. �

The above theorem proves that there exists a positive solution of model (2.2). Then we
give some numerical simulations to illustrate the above conclusions, see Fig. 1. In Fig. 1(i)
we fix α1 = α2 = 0, the time sequence diagram and phase diagram corresponding to model
(2.2) are drawn. That is, the time sequence diagram and phase diagram of the deterministic
system corresponding to model (2.2). In Fig. 1(ii) we fix α1 = α2 = 0.05. In Fig. 1(iii) we
fix α1 = α2 = 0.1. In Fig. 1(iv) we fix α1 = α2 = 0.3, the time sequence diagram and phase
diagram corresponding to model (2.2) are drawn. From Fig. 1(ii), (iii) we know that the
smaller the outside interference is, the more obvious the phenomenon is. In Fig. 1(iv), α1

and α2 over value. Chaos may occur in the system, and the pulse phenomenon is covered.
So impulses cannot be produced clearly in Fig. 1(iv).

Theorem 3.2 For any initial value (x0, y0) ∈ R2
+, there exist functions e(t), E(t), g(t), and

G(t), such that the positive solution of model (2.2) satisfies the following inequalities:

e(t) ≤ x(t) ≤ E(t), g(t) ≤ y(t) ≤ G(t), t ≥ 0, a.s. (3.2)
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Figure 1 Time series graphs and phase diagrams for model (2.2): The parameter values are fixed as follows:
initial value (x0, y0) = (5, 3), r = 3, K = 12, β = 0.3, λ = 0.5, η = 0.4

Proof Since the solution of model (2.2) is positive, we have

dx(t) ≤
(

rx(t)
[

1 –
x(t)
K

])

dt + α1x(t) dB1(t).

We construct the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

dE(t) = (rE(t)[1 – E(t)
K ]) dt + α1E(t) dB1(t), t �= nT ,

E(t+) = (1 – pn)E(t), t = nT ,

E(0) = x0.

(3.3)

Obviously, model (2.2) has a global continuous positive solution with x0 as the initial
value

x(t) =
∏

0<nT<t(1 – pn) exp[
∫ t

0 (r – 0.5α2
1) ds + α1

∫ t
0 dB(s)]

1
x0

+
∫ t

0
∏

0<nT<s(1 – pn) r
K exp[

∫ s
0 (r – 0.5α2

1) dτ + α1
∫ s

0 dB(τ )] ds
.
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According to the comparison theorem for stochastic equations, we get

x(t) ≤ E(t), t ∈ [
0, t∗), a.s.

Besides, the following inequalities can be obtained from the second equations of model
(2.2):

dy(t) = λβx(t)y(t) dt – ηy(t) dt + α2y(t) dB2(t) ≥ –ηy(t) dt + α2y(t) dB2(t).

Obviously,

g(t) =
∏

0<nT<t(1 + qn) exp [– α2
2

2 t + α2B2(t)]
1
y0

+ η
∫ t

0
∏

0<nT<t(1 + qn) exp [– α2
2

2 s + α2B2(s)] ds

is a solution of the equation

⎧
⎪⎪⎨

⎪⎪⎩

dg(t) = –ηy(t) dt + α2y(t) dB2(t), t �= nT ,

g(t+) = (1 + qn)g(t), t = nT ,

g(0) = y0

(3.4)

and y(t) ≥ g(t), t ∈ [0, t∗), a.s. From the second equations of model (2.2), we have

dy(t) ≤ λβE(t)y(t) dt – ηy(t) dt + α2y(t) dB2(t).

Similarly, we get that

y(t) ≤ G(t), t ∈ [
0, t∗), a.s.

Here,

G(t) =
∏

0<nT<t(1 + q(nT)) exp [– α2
2

2 t + α2B2(t)]
1
y0

+ λβ
∫ t

0
∏

0<nT<t(1 + q(nT)) exp [– α2
2

2 s + α2B2(s)]E(s) ds
.

It follows from the first equations of model (2.2) that

dx(t) ≥
[

rx(t)
(

1 –
x(t)
K

)

– h(t)x(t) – βx(t)E(t)
]

dt + α1x(t) dB1(t).

According to the comparison theorem for stochastic equations, we get

x(t) ≥ e(t)

=
∏

0<nT<t(1 – p(t)) exp[(r – α2
1

2 )t – β
∫ t

0 (G(s) + h(s)) ds + α1B1(t)]
1

x0
+ r

K
∫ t

0
∏

0<nT<t(1 – p(t)) exp [(r – α2
1

2 )s – β
∫ s

0 (G(τ ) + h(τ )) dτ + α1B1(s)] ds

for t ∈ [0, t∗), a.s.
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In other words,

e(t) ≤ x(t) ≤ E(t), g(t) ≤ y(t) ≤ G(t), t ∈ [
0, t∗), a.s.

We conclude that e(t), E(t), g(t), and G(t) all exist for t ≥ 0 and satisfy the following in-
equalities:

e(t) ≤ x(t) ≤ E(t), g(t) ≤ y(t) ≤ G(t), t ≥ 0, a.s. �

Theorem 3.3 If limt→∞
∑

0<nT<t ln(1–pn)
t < 0.5α2

2 – r, then the pests of model (2.2) tend to
extinction according to probability 1.

Proof We make the following transformation:

x(t) =
∏

0<nT<t

(1 – pn)φ(t).

For the first equations of model (2.2), by using Itô’s formula, we have

d lnφ(t) =
dφ(t)
φ(t)

–
(dφ(t))2

2φ2(t)

≤
[

r – 0.5α2
1 –

∏
0<nT<t(1 – pn)φ(t)

K

]

dt + α1 dB(t)

=
[

r – 0.5α2
1 –

x(t)
K

]

dt + α1 dB(t). (3.5)

Integrating both sides from 0 to t for Eq. (3.5),

lnφ(t) = ln x0 +
∫ t

0

[

r – 0.5α2
1 –

x(s)
K

]

ds + M1(t), (3.6)

where M1(t) is a local martingale

M1(t) = α1

∫ t

0
dB(s),

whose quadratic variation is

〈
M1(t), M1(t)

〉
= α2

1t.

Using the strong law of large numbers for local martingales, we have

lim
t→∞ M1(t)/t = 0.

On the other hand, it follows from (3.6) that

∑

0<nT<t

ln(1 – pn) + lnφ(t) – ln x0 =
∑

0<nT<t

ln(1 – pn) +
∫ t

0

[

r – 0.5α2
1 –

x(s)
K

]

ds + M1(t).
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Figure 2 Pest population of model (2.2): The parameter values are fixed as follows: x0 = 50, r = 0.3, α1 = 0.6,
K = 12

In other words, we have that

ln x(t) – ln x0 =
∑

0<nT<t

ln(1 – pn) +
∫ t

0

[

r – 0.5α2
1 –

x(s)
K

]

ds + M1(t).

Therefore

ln x(t) – ln x0 ≤
∑

0<nT<t

ln(1 – pn) +
∫ t

0

[
r – 0.5α2

1
]

ds + M1(t).

Based on the hypothesis,

lim
t→∞ x(t) = 0. �

In view of Theorem 3.3, we can get that the pest goes to extinction, as Fig. 2.

4 Conclusion
Noting that IPM is a long-term management strategy that uses a combination of biological,
cultural, and chemical tactics to reduce pests to tolerable levels, control tactics must be
taken once a critical density of pests (Economic Threshold, ET) is observed in the field so
that the Economic Injury Level (EIL) is not exceeded. On the other hand, we only consider
the impact of pesticides. So model (2.2) can be rewritten into the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = [rx(t)(1 – x(t)
K ) – βx(t)y(t)] dt + α1x(t) dB1(t),

dy(t) = λβx(t)y(t) dt – ηy(t) dt + α2y(t) dB2(t),

}

x < ET ,

x(t+) = (1 – p(t))x(t),
y(t+) = (1 + q(t))y(t),

}

x = ET .
(4.1)

We have selected some parameters to simulate the time series and phase diagrams of
model (4.1) pests and natural enemies. As shown in Fig. 3, we take different external in-
terference intensity. The numerical results show that the greater the external interference
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Figure 3 The change trend of solutions of model (4.1): The parameter values are fixed as follows: initial value
(x0, y0) = (3, 1), r = 3, K = 12, β = 0.3, λ = 0.5, η = 0.4, ET = 3

intensity is, the more complex the pest control is. Our results provide some theoretical
basis and application value for the comprehensive pest management.

Obviously, these results indicate that the models proposed in this paper can help us to
understand pest-natural enemy interactions, to design appropriate control strategies, and
to make management decisions on insect pest control. We would like to mention here that
an interesting but challenging problem associated with the studies of system (2.2) should
be how to optimize the number of periodically released natural enemy and the dosage
of spraying pesticides to reduce pests to tolerable levels with little economical cost and
minimal effect on environmental stochastic perturbations. We leave this for future work.
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