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1 Introduction

Studies on dynamics of prey—predator models give better understanding of the relations
between two species, and provide management for sustainable development. One of the
important models is the Leslie—Gower prey—predator model [21, 22] given by

& =rx(l - %) - yp),

(1.1)
.)') = ’”2)’(1 - %%

where x(¢) and y(¢) are densities of prey and predator at time ¢, respectively. The prey grows
with intrinsic growth rate r; and carrying capacity K in the absence of predation. Func-
tional response function p(x) describes the feeding rate of prey consumption by predators.
The predator, according to the numerical response of Leslie—Gower type [18, 19], grows
with intrinsic growth rate r, and carrying capacity bx proportional to the population of
prey, where b is a measure of the food quality of prey for conversion into predator births.
Moreover, 11, 1y, K, and b are all positive constants.

Dynamics of system (1.1) has been studied extensively when the functional response
p(x) is of Holling types. Hsu and Huang [10] investigated the global stability of system
(1.1) with p(x) being Holling types I, II, and III. Moreover, they [11, 12] studied the limit

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13662-019-2290-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2290-2&domain=pdf
http://orcid.org/0000-0002-5259-0466
mailto:sujuanmath@163.com

Su Advances in Difference Equations (2019) 2019:363 Page 2 of 14

cycles and Hopf bifurcation of this system when p(x) is type II. Huang, Ruan, and Song [15]
studied the local bifurcations of system (1.1) when p(x) is Holling type III. Li and Xiao [20]
and Huang et al. [16] investigated the bifurcations of this system with p(x) being Holling
type IV.

Harvesting is commonly practiced in fishery, forestry, and wildlife management. It is
very important to harvest biological resources with maximum sustainable yield while
maintaining the survival of all interacting population. Recently, much attention has been
paid to the dynamics of prey—predator model with harvesting (see, e.g., [1-3, 7, 13, 14, 24,
25]). When p(x) = ax, i.e., Holling type I, Zhu and Lan in [27] studied system (1.1) with
constant harvest /1 on prey, i.e.,

x=rx(l-g)—axy—h, 12)

y=ry(l—i),

where a > 0 is a constant and / > 0. By the rescaling x — x/K, y — ay/r; and t — rit asin
[27], system (1.2) reads

x=x(1-x)—xy—¢g,

(1.3)
j=y06-2),

where 8 = ry/(abK), 8 = ry/r1,and € = h/(r1K). It was proved in [8, 27] that system (1.3) may
undergo a saddle-node bifurcation and a Bogdanov—Takens bifurcation with codimen-
sion 2. Moreover, Hopf bifurcations of this system were also studied in [27, Theorem 4.3]
when the first Lyapunov number does not vanish. However, there is no further discussion
about the identification of weak focus or center when the first Lyapunov number vanishes.
In this paper, we continue the identification of weak focus or center in system (1.3). By
Lyapunov numbers, we prove that the equilibrium of center type in this system is a weak
focus with order up to 3 and can be exactly. The main difficulty comes from the computa-
tion of zeros of Lyapunov numbers restricted to subsets of biological sense. Such problem
is solved by resultant [17], pseudo-division [23], and realroot isolation [6]. Moreover, pa-
rameter conditions of each order are given. Simulation of two limit cycles arisen from a

degenerate Hopf bifurcation is employed to illustrate our results.

2 Condition of center type
For the biological sense, we discuss system (1.3) in the region (0, +00) x [0, +00) as in [8,
27]. The following lemma gives the number of equilibria of system (1.3).

Lemma 2.1 ([27, Theorem 3.1]) Let B, 8, and ¢ > 0.
(i) Ife> i, then system (1.3) has no equilibrium.
(i) Ife= %, then system (1.3) has only one equilibrium (%,0).
(iii) If ﬁ <e< i, then system (1.3) has exactly two equilibria (x1,0) and (x;,0), where
x1=3(1-+/1-4¢) and x, = 1(1 + V1 - 4e).
(iv) Ife= AL((SL;}%), then system (1.3) has three equilibria (x1,0), (x2,0), and (z(%ﬂ), 2(++/5))
(v) Ife< AL(SL;ﬁ)’ then system (1.3) has four equilibria (x1,0), (x2,0), (x3,¥3), and (x4, ya),

B 4pde 4)43 e+p Ky = Bt~/ —4Pe—4p e +p ,and y; = LTI 3,4.

2(8+8 2(8+B) B’

where x3 =
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Table 1 Properties of (x4, y4)

Parameter conditions Properties
O</3<% O<8<%—f3 0<e<e stable node or focus
£=¢ center type
g1<e< ﬁ unstable node or focus
0<B<3 5>1-8B 0<e < gmg stable node or focus
LER >0 0<e< % stable node or focus

The dynamics of all equilibria above was discussed in [27, Theorem 3.3, 3.4, 3.5 ]. It

shows that only the equilibrium (x4, y4) can be of center type for certain parameter values.

Let
Y §-25(8+8)\°
i (o)) Y

Then the following lemma gives the qualitative properties of (x4, y4).

Lemma 2.2 ([27, Theorem 3.4]) Dynamics of (x4, ya) are given in Table 1.

For convenience, let

1 1
A= {(ﬁ,8,8)6R3:0<,3<§,0<8<§—,B,8:£1}.

Then, for (B8,6,¢) € A, (¥4,y4) = (BU=D) '51-9)y " 41 { the Jacobian matrix of system (1.3) at

2B+3  2B+8
this point is given by
5 B0
J(xa,94) = | 52 6%
F -8
So J(x4,y4) has a pair of imaginary eigenvalues ié 1_22 é’f ga)_ Moreover, by Theorem 4.3

in [27], the subcritical and supercritical Hopf bifurcations were discussed when the first
Lyapunov number does not vanish. However, there is no further discussion when the Lya-

punov number vanishes.

3 Identification of weak focus

In this section, we complete the identification of weak focus for (x4,4) for all (8,4, ¢) € A.

Theorem 3.1 Let (8,5,¢) € A. Then (x4,ys) = (52%;?, 52(;:‘?) is a weak focus of order at

most 3.

To make the preparation, we compute the first three Lyapunov numbers of this sys-

tem. By the translation x — x — x4, y — ¥ — y4 and Taylor expansions, system (1.3) be-
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comes

x= 5x+ 2(;;)/ x% — xy,

j=Cx-sy+ ﬁff la? - By + G2 4 ‘S;gfff +f))2 X% 2R +f))2 2
+ Eﬁf:;?ﬁx + DRI DOy 1 Gy LRI (3.1)
- Ry ey + S - Sy + ey
BRI RO ey G150 O3, 1),

With the change of variables [9, Sect. 2.1]

u_o_c el V2B +38 . B(1-3)
2 C 2J/1-28-25 28\/(2ﬁ+8)(1—2ﬁ—28)y

and time rescaling t — § 1’22 g’i ;6) t, system (3.1) can be written as

2(B8 + 8%+ p)

5 2(2B+9)
B5(5—1) 25 1+2ﬂu

ICEY)

U=-v+

uv,

. 2(4B28 + 9B8% +58% —4B5 - 58> — B+ 8)(2B +8) ,
vV=u+
B8 —1)2(28 — 1 +2p)

_2(2B +8)(58 -3 +4p) . 2028 + 3)2
po-vp /i G-

251428
8(28 +8)°,/~ B, A2B+8)°

(28 +8)*(28-1+2B) ,
B8 - 1)3

B(5— 1) p-1p "
826 + 8225~ 1+2p) , 16@B+O' /=25 gopisyr ,, (B2
B3(8 - 1)* B3(8 - 1)* B3 - 1)
1628 + 825 —1+2p) . 320+ =" 160p+sp
B3 1) T ey YT ey Y
32026+ 85 (25— 1+2p) , 642B+9)° I . 322B+8)° ,,
55— 1) pe-1s T pe-e
6428 +8)°(25 —1+28) , 128Q2B+8)\[-"558  caop sy
B —1y ' ps-1y T pss—1y
O(|u,v|8).

In the polar coordinate u = rcos@ and v = rsin8, system (3.2) takes the form

d
d_; = Ry(0)r? + R3(0)7 + Ry(0)r* + R5(0)r° + Re(0)r® + Ry (0)r + O(rs), (3.3)
where each R;, i=2,3,...,7, is a polynomial of sin# and cos 8, and its coefficients are de-
termined by the coefficients of system (3.2). Then we consider solutions of system (3.3) in

Page 4 of 14
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the formal series

r(®,r0) = Y _ri(0)rf (3.4)

i=1

with the initial condition
V(O, VO) =70, (35)

where rg > 0 is sufficiently small. Substituting (3.4) into (3.3) and comparing the coeffi-
cients, we have

7‘2(9) = Rz, 7'3(6) = Rg + 2R2f2, 7‘4(9) = R4 + 3R3}"2 + R2 (F% + 27’3),

75(0) = Rs + 4Ryry + 3R3 (r% + 7’3) + 2Ry (ror3 + 1y),

76(0) = R + 5R57 + (6r§ + 4r3)R4 + (rg + 61913 + 3;"4)R3

(3.6)
+ (2rara + 13 + 215) Ry,
r7(9) = R7 + 67’2R6 + (107‘% + 51’3)R5 + (47’; + 127‘2}"3 + 47‘4)R4
+ (3}”%7"3 + 61’21’4 + 31"§ + 3}”5)R3 + (27’2}’5 + 27’31’4 + 27’6)R2.
Initial condition (3.5) is equivalent to
r(0) =1, r2(0) =r3(0) =---=0. (3.7)
By (3.6) and (3.7), we compute the first three Lyapunov numbers [9, 26] and obtain
1 2 8 ,8
e L oy BB
2 2ﬂ282(1 _ 6)2 / l—ZZfEIfr;B)
1 28 +8)*£(B,8
Ly := er(Zn) =— (28 +8)'1o(B,9) TN (3.8)
144084/34(1 - 5)6(1 - 2(8 + ‘3))31/ T2B+s
1 28 +8)°f:(B,8
L3::—}’7(2T[):_ ('B+ )_fg(,B ) ,
2 290,304p555(1 - 8)10(1 - 2(8 + 8))°,/ L2
where

fi==8"+ B8+ (28> - 6B)8> + (-4B> + B)s - 287,

fo = 44,032878* + 159,744°8° + 213,1608°8° + 113,1348*57 — 73118%5®
—38,8918%8° — 18,873881° — 29795 — 88,0647 8> — 498,6888°5*
—1,046,4328°8° — 1,105,86658° — 647,821 8387 — 193,5798%8% — 12,70288°
+ 3114810 — 44,0328752 + 37,8885°8% + 511,5288°5* + 938,2825%5°
+815,517838° + 363,446 8287 + 55,85088% — 1758° + 25,6008°52 — 85,0248°83
—318,3828%5% — 407,6618°8° — 258,846828° — 47,73088” — 6285° — 32,7688°5

Page 5 of 14
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—57,2248% 8% — 77748%8% + 60,035838* + 93,521828° + 18,575558° — 2087
+9472858 + 305082 8* + 5937838 — 24,775828* — 525288 — 78168° — 6042%5

—12,177838% + 13325283 + 50088* — 16828* + 841833,

and f; is given in the Appendix.

Let V(&1,&,...,&,) be the set of common zeros of &, i=1,2,...,n, and denote
1 1
D= {(ﬂ,8)eR2:O<ﬂ< E’O<8< E_ﬂ}'

Then we have the following lemma which is useful in the proof of Theorem 3.1.
Lemma 3.1 V(fi,f2,f3) N D =0.
Proof To simplify the set V(fi,f2,f3), we calculate the resultants [17] by Maple and obtain

r12 = res(fi, f2,8) = 849,346,560,0008'%(28 + 1)1°R,
r13 := res(fi, f3,8) = 110,075,314,176 81°(28 + 1) R,

ro3 := res(ria, 113, B) = 0,

where

R =328%+968% — 3548 + 3,

R, = 104,783,189,114,880,0008'2 + 137,477,299,942,195,2008
- 4,012,954,143,001,436,16081° + 22,669,901,410,243,203,0728°
— 28,794,164,697,367,780,864% — 1,137,630,004,464,368,357,888 87
+1,201,272,894,249,597,010,176 8° + 2,920,602,692,653,681,087,7765°
+1,883,711,731,319,280,895,3248% + 507,067,392,712,426,159,422 8>
+59,630,504,525,663,789,80282 — 2,192,824,040,861,997,7953

+17,501,360,748,480,000.
Let lcoeff(§,x) be the leading coefficient of & with respect to x. Then
lcoeff(f;,8) = -1 #0, Icoeff(r12, B) = 1,781,208,836,997,120,000 0.

Applying Theorem 1 in [4], we have the decomposition

Si:forf30 125 113, IcoefE (1, B)
V )2, =V 25 ,]. ff ,8 UV
(fi.far f3) (fl 2, /3, lcoeft(fy )) ( lcoeft(f;, 8)

v Jioforf3 71257135 723
lcoeft(f;, 8), Icoeft(r12, B) )
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where V/( flljji”m) denotes the set of common zeros of &;s (i = 1,2,...,xn) at which ;s

(i=1,2,...,m) do not vanish. It follows that

V(fi.fo.3) = Vi, fo. 3 112, 713) = VL, f3, Ri, Ra).
Note the resultant

res(R1, Rz, B) = co #0,
where

¢ = 5,966,262,075,746,365,907,228,887,461,619,703,253,674,326,002,113,602,564,041,246,673,889,434,463,423,692,800.

So
V(R1,Rq) =0.
Thus
V(fi,fu 3) ND = V(fi, fo. f3, R1, Ro) N D = 4.
This completes the proof. O

Proof of Theorem 3.1 Since (8,8) € D, it follows from (3.8) that the zeros of L; are deter-
mined by those of f;, i = 1,2, 3, respectively. By Lemma 3.1, we see that

V(Li,L3,L3) ND = .
Thus, (x4,74) is a weak focus of order up to 3 when (8,6, ¢) € A. 0

In what follows, we find the parameter conditions of each order; moreover, we prove
that (x4, y4) is a stable weak focus when it is order 3. To make the preparation, let

P {(,3,5) eRy,:R1=0,8€l},8 :_Xl(ﬂ)},

x2(B)

where

[ 4560287 142,509
1= [536,870,912' 16,777,216}
x1:=2B(10248° + 11,648B° + 637,44087 + 2,535,296 ° — 3,034,496 8°
-252,024B* + 64,6728° + 34608 + 76 — 1), (39)
X2 := 512081 + 51,7128° + 192,0008% + 1,575,936 87 + 6,133,120°

—1,954,6568° — 699,5688* — 44,256 8% — 246082 — 92 + 1.
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It suffices to prove that P # @ is well defined. By the Maple command “realroot(j,, 1/106)”
to isolate the real roots of x,, we get two consecutive intervals

1,002,639 8,021,111 4,597,919 143,685
16,777,216° 134,217,728 | 536,870,912’ 16,777,216 |’

Itis easy to check that I; C (O, %). Thus x»(B) #0forall 8 € I, and P is well defined.

Moreover, using the Maple command “realroot(R;,1/10°)", we get only three intervals:

43,210,753 _ 21,099 ._ 117,973,673 8,986,837 .
[- 988,505 — 0% ], i,and I := | 5.585,508 ° 4’1%304]. Thus, P # @ is well defined.

Theorem 3.2 Let (B,5,¢) € A. Then
(i) (xa,ya) isorder 1if (B,8,¢) € A1 :={(B,5,¢) € A:fi(B,8) #0};
(il) (a,ya) is order 2 if (B,8,¢) € Ay :={(B,8,¢) € A:fi(B,5) =0,(8,8) ¢ P};
(iii) (xa,ya) is a stable weak focus with order 3 if (B,68,¢) € Az := A\ (A1 U Ay).

The following lemma is useful in the proof of Theorem 3.2.
Lemma 3.2 V(fi,o,)ND="P.
Proof By Lemma 2 in [4], we have the decomposition

V(fi.f2) =V (i z,lcoeff(fl,(s)) U V( Sufor12 )

lcoeft(f1, 5)

=V(fi,forr12).
Thus
V(fi,fo) N D =V(f,fo,ri2) N D = V(fi, o, R1) N D.

From the argument just above Theorem 3.2, we see that the positive zeros of R are just

17,973,673 8,986,837
8,388,608 7 4,194,304

in the intervals I; and I,. Since I = | ]1c (%, +00), it can be inferred that

V(fl, 2,}"12) ND= {(,3,6) ERQ Z,B Gll,Rl =O,f1 =f2 =0} ND.

Then we further reduce the right-hand side by pseudo-division [17]. To find the de-
pendence of § on 8, we employ the Maple command “prem(§, n,x)” to get the pseudo-
reminder of ¢ divided by 1 and obtain

w3 := prem(wi, wa, B) = 25,480,396,800,0008"°(28 + 1)¢* () (x2(8)8 + x1(B)),
where
wy = prem(f,f1, B), wy = prem(f}, wy, 8) (3.10)

and the expressions are given in the Appendix, and

@ =23048° — 20488° — 49,0248* + 105,886 8> — 54,5532 + 6716 — 122.
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Since f; = f, = 0, we can deduce that w; = wy = w3 = 0. Moreover, similar to the proof of
x2(B) #0 for all B € I; (just below (3.9)), one can easily get that ¢(8) #0 for all 8 € I;.
Thus, from w3 = 0 it follows that

_Xl(ﬁ)

OB

Similar to the proof of x»(8) # 0 for all 8 € I;, we can obtain that the derivative (— ﬁggg ) >0

for all 8 € I;. So the function — gzg; is strictly increasing in /7, and it can easily be checked
that
011<- KB 01218 pen.
x2(B)
Therefore,
V(fl) Z)HDZV(}(I’ ZyRI)ﬂD:P. D

Proof of Theorem 3.2 (i) It is easy to see that A; # #. In fact, a simple computation yields
that at (8,6) = (0.1,0.1), &; =0.12 and f] = —0.0198 < 0. So (0.1,0.1,0.12) € A; and A; # .
Therefore, (x4, y4) is a weak focus with order 1 if (8,¢,8) € A;.

(ii) (x4,ys) is a weak focus of order 2 if (8,¢,8) € {(8,¢,8) € A: fi =0,f; # 0}. By
Lemma 3.2, Ay = {(8,8,¢) € A:fi =0,f2 #0}. Moreover, it suffices to prove that A, # (.
In fact, by setting 8 = 0.012, one can compute fi|s-003 = —0.0000103068 and f] |5-0.033 =
0.000010142955. Thus, there is a certain 8, € (0.03,0.033) such that

£(0.012,8,) = 0.

On the other hand, applying the Maple command “realroot(., 1/10%)” to the polynomial

5,787,933 2,893,967 ] d [ 765,987
134,217,728’ 67,108,864 8,388,608’

£2(0.012,5), we obtain the first two positive intervals

6,127,897 1 5,787,933~
767‘10&864]. Since T35 755~ 0.04312346131, we see that

/(0.012,8) #0, 8 € (0.03,0.033).

By (2.1), one has ¢, := &1 (¢,5)=(0.012,5,)- Therefore, (0.012,5,,¢,) € A, and hence A, # .
(iii) (x4, y4) is a weak focus of order 3 if (8,¢,8) € {(8,¢,8) € A :fi =0,f2 = 0}. By Theo-
rem 3.1 and Lemma 3.2, we see that

As={(B,6,8) € A:(B,e) € P,e=e1}.
Then we claim that

f»(B,8) >0, (B,8)eP. (3.11)

x1(8)
x2(B)

In fact, substituting § = — into f3, we have

JAT) :=fs(ﬂ,—X1(ﬁ )).

x2(B)



Su Advances in Difference Equations (2019) 2019:363 Page 10 of 14

With a Maple command, we can easily compute the derivative

V1(ﬂ)
Vz(,B)’

fi(B) =

where v; and v, are polynomials with order 201 and 190, respectively. We omit the
concrete expressions of the two functions. Moreover, by the Maple command

“realroot(v1(8)va(B), 1/10°)’, we have two consecutive intervals

1,112,351 4,449,405 4,582,613 2,291,307
134,217,728 536,870,912 |’ 536,870,912 268,435,456 |

It is easy to check that

[ 4560287 142,509 4,449,405 4,582,613
' 71 536,870,912 16,777,216 536,870,912’ 536,870,912 /°

Hence, fs/ (B) #0 forall B € I and fg is continuous and strictly monotone in ;. Since

142,509

~ ( 4,560,287
16,777,216

(22227 ) 2 0.001805786293, £
536,870,912

) ~ 0.001806068008,

it can be deduced thatfg(ﬁ) >0 for 8 € [; and (3.11) holds. Therefore, (x4,y4) is a stable
weak focus of order 3 when (8,8, ¢) € Az. O

By the classical Hopf bifurcation theorem [5], there are at most three limit cycles bifur-

cated from a Hopf bifurcation in this system.

4 Simulation and conclusions

To display two limit cycles in this system, we set (8,8,¢) = (0.0085,0.112,0.00997691).
Then (x4,ys4) = (0.05851163234,0.7709768027). In Fig. 1(a) and Fig. 2(a), we plot orbits
from P;(0.05855,y4) and P,(0.05856,y4), respectively. However, from those two figures,
one can hardly see whether the orbits spiral outward or inward. Thus, in Fig. 1(b) and
Fig. 2(b), we zoom in the orbits near P; and P;, respectively. It shows that the orbit from P;
spirals outward, while the orbit from P, spirals inward, as ¢ — +00. Thus, there is a stable
limit cycle in the annual regions bounded by the two orbits from P; and P,. In Fig. 3, the
orbit from P3(0.087,y4) spirals outward. So there is an unstable limit cycle between the
orbits from P, and Ps.

In this paper, we identify a weak focus of order up to 3 for system (1.3). In [27], Zhu
and Lan investigated the saddle-node bifurcation and Hopf bifurcation of codimension
1 in this system. In [8], Gong and Huang studied Bogdanov—-Takens bifurcation at the
cusp of codimension 2 in this system. Our study supplements the qualitative properties of
equilibria in this system, shows that there are at most three limit cycles bifurcated from a
Hopf bifurcation. The results in [8, 27] and this paper reveal that the codimension of local

bifurcations in system (1.3) is at most 3.
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Figure 1 Orbit from Py spirals outward
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Figure 2 Orbit from P, spirals inward

Figure 3 Orbit from P spirals outward 0.9
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Appendix
f3in (3.8) is given by
f5 = 96,731,136 8"25° + 721,649,664 87 + 2,794,354,6888°5% + 5,410,942,2088°5°
-1,560,727,360885'° — 34,792,929,17687 5! — 88,326,105,1065°52
—120,969,984,3918°813 — 103,238,957,1978*5* — 56,414,336,562835"°

- 19,214,245,3688251° — 3,715,638,83185'7 — 311,347,8818'8
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—193,462,272828° — 1,515,257,856 818 — 5,302,849,536 81057

- 5,687,015,4248° 5% + 34,784,497,4088%8° + 183,262,825,22487 §1°
+428,364,184,4328°51 + 596,890,067,7428°5'2 + 530,640,116,8248*513
+303,520,979,0885351 + 108,038,736,288 825> + 21,746,905,79485°
+1,887,281,4248' — 96,731,136 8128* — 329,711,6168118° — 357,365,76081°5°
—7,943,540,7368°87 — 76,738,029,696 885 — 327,868,403,096875°
—790,827,616,6888°81° — 1,180,047,690,2048°5* — 1,127,224,701,2358*512
— 689,017,098,05283813 — 259,999,332,192828* — 55,014,678,76588°
—4,977,345,76281° — 65,470,464 815* — 1,497,653,24881°8°
—1,938,664,448°8° + 39,046,967,0408%87 + 244,518,144,84087 §°
+710,636,624,7208°8° + 1,214,492,149,2308°51° + 1,294,446,982,792 84511
+865,905,700,612838'2 + 351,842,676,0048%813 + 790,68,647,72448*
+7,504,928,6885'° + 28,016,64081 8% + 1,160,488,96085*
+6,104,721,9208°58° + 1,348,262,0168%8° — 82,124,328,3048757

— 343,639,174,4988°5% — 718,676,593,1998°5° — 887,593,367,2668%5°

— 665,765,134,5448381! — 295,896,637,096825'% — 71,325,295,21785"3
—7,140,536,2138* + 237,187,07281°83 — 734,119,936 8°5* — 3,071,971,584,8%5°
+13,284,843,2808758° + 95,475,893,6008°87 + 256,301,099,1968°5°
+379,247,745,4568*8° + 326,564,669,496835'° + 161,106,471,0608%51!
+42,020,446,45088"% + 4,451,967,1045'% — 226,289,6648°5% — 752,545,792 %53
+142,250,7528%8* — 556,322,736 878° — 15,433,168,944°8°

- 55,876,146,5768°87 — 102,248,964,5188*8% — 103,412,295,132838°

- 57,273,221,94425° — 16,256,443,19585* — 1,820,911,2805*2
+383,757,3128%8% + 590,915,8408%8% — 25,879,728875* + 1,235,251,6168°8°
+7,222,295,1488°8° + 17,288,566,128 8457 + 21,099,650,3448>5°
+13,099,102,924828° + 4,031,542,872 88 + 471,592,8728* — 163,747,5848°5
- 613,492,0328%5% — 654,952,44087 8% — 431,442,486 8°5* — 529,750,1018°5°
-1,697,582,5938%8° — 2,779,581,51858387 — 1,863,751,104%88

- 602,714,576 88° — 70,272,6645'° + 106,369,536 85 + 218,433,51287 52
+246,572,5928°583 + 61,714,598 8°8* — 10,586,8248*8° + 222,984,680835°
+153,830,9408287 + 47,504,424858% + 4,596,4808° — 20,280,9608°%

— 44,424,632 8 — 93,660,3208°5% — 77,282,1648°5% + 17,502,537 8*5*
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- 8,688,65658°5° — 6,098,760828° — 1,410,24888" — 5,197,976 — 1,721,3288°5

+13,698,34282 8% — 831,5448%8% + 21,924835* + 1,250,858 8° — 625,4298°5.
wi and w; in (3.10) are given by

wi = 4808%(2304875% + 23044°5° — 4608875 — 81928°5> — 20488°5> — 230447
—2048p°5 — 51,0728°8% — 49,0248%5 — 1024° + 86,2728 + 224,196 5>
+105,886538% + 43,9048° — 121,0968%5 — 220,2988352 — 54,553825>
—58,3088* + 49,394835 + 58,488825% + 671685> + 16,6148> — 8265825
- 338188% — 1228> - 856> + 40885 + 185> + 28 - §),

wy = —230,4008%(5128™18° + 2,948,0968'15 + 2,949,376 4'°5” + 1,179,136 8!
+24,999,9368°5 + 25,775,3608°8% + 10,795,776 8 + 65,688,3208°8
+72,043,1368%52 + 30,435,072° + 87,579,9048%5 + 104,710,944,87 52
+38,775,424% + 55,586,6247 5 + 84,918,0968°8% + 40,341,02487
+31,649,0568°5 + 48,360,0648°52 + 15,650,9608° + 2,267,7128°5
+15,585,1528%5% + 7,090,9128° + 64,8328%5 + 3,417,3845%5>
+1,218,4648* — 366,024835 + 405,0965252 + 150,6208° — 62,822825

+21,88488% + 73548 — 379388 + 2025 + 36 — 185).
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