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Abstract
A Lotka–Volterra predator–prey model incorporating predator cannibalism is
proposed and studied in this paper. The existence and stability of all possible
equilibria of the system are investigated. Our study shows that cannibalism has both
positive and negative effect on the stability of the system, it depends on the dynamic
behaviors of the original system. If the predator species in the system without
cannibalism is extinct, then suitable cannibalism may lead to the coexistence of both
species, in this case, cannibalism stabilizes the system. If the cannibalism rate is large
enough, the prey species maybe driven to extinction, while the predator species are
permanent. If the two species coexist in the stable state in the original system, then
predator cannibalism may lead to the extinction of the prey species. In this case,
cannibalism has an unstable effect. Numeric simulations support our findings.
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following predator–
prey model with cannibalism for predator:

dx
dt

= x(b – αx – my),

dy
dt

= y(–β + c1 + nx) –
cy2

y + d
,

(1.1)

where c1 < c, x and y are the density of the prey and predator at time t, respectively. b and
α denote the intrinsic growth rate and intraspecific competition of the prey, respectively;
β is the death rate of the predator; m denotes the strength of intraspecific interaction be-
tween prey and predator; n is the conversion efficiency of ingested prey into new preda-
tors; cy2/(y+d) denotes the cannibalism of the predator; c1 is the birth rate from the preda-
tor cannibalism. All the coefficients are nonnegative constants.

As was pointed out by Berryman [1], the dynamic relationship between predator and
prey has long been and will continue to be one of the dominant themes in both ecology
and mathematical ecology due to its universal existence and importance. During the last

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2289-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2289-8&domain=pdf
mailto:fdchen@fzu.edu.cn


Deng et al. Advances in Difference Equations        (2019) 2019:359 Page 2 of 17

decade, many scholars investigated the dynamic behaviors of the predator–prey species,
see [2–40] and the references therein.

The traditional two species Lotka–Volterra predator–prey model takes the form

dx
dt

= x(b – αx – my),

dy
dt

= y(–β + nx).
(1.2)

For the dynamic behaviors of (1.2), we summarize it as follows [6, 11].

Theorem A In system (1.2), there are two boundary equilibria O(0, 0), E1( b
α

, 0). O(0, 0) is
a saddle and E1( b

α
, 0) is globally asymptotically stable if β > bn

α
. Assume that β < bn

α
, the

positive equilibrium E2( β

n , bn–αβ

mn ) exists, which is globally asymptotically stable.

In researching the dynamic behaviors of the predator–prey model, some scholars [2,
10–12, 17–20] considered the impact of the functional response for the predator–prey.
For example, Yu [18] studied the global asymptotic stability of a predator–prey model
with modified Leslie–Gower and Holling-type II schemes:

dx
dt

= x
(

r1 – b1x –
a1y

x + k1

)
,

dy
dt

= y
(

r2 –
a2y

x + k2

)
,

(1.3)

where x(t), y(t) stand for the population (the density) of the prey and the predator at time
t, respectively. Yu [18] provided two sets of sufficient conditions on the global asymptotic
stability of a positive equilibrium. After that, Yue [19] considered the dynamics of a mod-
ified Leslie–Gower predator–prey model with Holling-type II schemes and a prey refuge:

ẋ = x
(

r1 – b1x –
a1(1 – m)y

(1 – m)x + k1

)
,

ẏ = y
(

r2 –
a2y

(1 – m)x + k2

)
,

(1.4)

where mx is part of the refuge protecting of the prey, here m ∈ [0, 1). Yue [19] found that
increasing the amount of refuge can ensure the coexistence and attractivity of the two
species more easily.

In recent years, cannibalism as a special phenomenon in nature which often occurs in
plankton [22], fishes [23], spiders [24], and social insect populations [26] attracted the
attention of many scholars. It is a behavior that consumes the same species and helps to
provide food sources. Obviously, cannibalism has a very important effect on the dynamic
behaviors of the populations (see [22–31]).

Gao [25], Kang et al. [26], and Rodriguez-Rodriguez et al. [27] proposed and studied the
single species stage-structure model with cannibalism. Kang et al. [26] and Rodriguez-
Rodriguez et al. [27] thought cannibalism had a great significance for evolution. Zhang et
al. [28] obtained a set of sufficient conditions for the permanence of the nonautonomous
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predator–prey system with periodic attacking rate. Recently, Zhang et al. [29] proposed
the following stage-structure prey–predator model with cannibalism for predator:

ẋ = –x + y + εxy + xz,

ẏ = b1x – σy – βxy,

ż = (b2 – x)z,

(1.5)

where x(t) and y(t) are the densities of the adult predator and juvenile predator at time t,
respectively, z(t) is the density of the prey at time t. The term βxy reflecting the intraspe-
cific interaction denotes the cannibalization rate of adult predators to juvenile ones, the
term εxy is the rate of the adult predators increase due to being better fed through eating
juveniles. Zhang et al. [29] obtained that large cannibalization rate can make the positive
equilibrium globally stable although its stability would change with the increase of the
cannibalism rate.

Generally speaking, scholars [22–29] used the bilinear function βxy to describe the can-
nibalism phenomenon. Only recently did scholars [30, 31] adopted the idea of the func-
tional response of predator–prey model and proposed the nonlinear cannibalism model.

In 2016, Basheer et al. [30] proposed the prey–predator model with prey non-linear
cannibalism as follows:

du
dt

= u(1 + c1 – u) –
uv

u + αv
– c

u2

u + d
,

dv
dt

= δv
(

β –
v
u

)
,

(1.6)

where c1 < c, u and v represent the densities of prey and predator at time t, respectively.
The parameters c1, α, c, d, δ, and β are nonnegative constants. Different from the previous
works [24–29], Basheer et al. [30] used the Holling II type functional response to describe
cannibalism. Here the generic cannibalism term C(u) is added in the prey equation and is
given by

C(u) = c × u × u
u + d

,

where c is the cannibalism rate. This term is obviously more appropriate with the real-
ity of ecology and has a clear gain of energy to the cannibalistic prey. This gain results
in an increase in reproduction in the prey, modeled via adding a c1u term to the prey
equation. Obviously, c1 < c, as it takes depredation of a number of prey by the cannibal to
produce one new offspring. They obtained that prey cannibalism alters the dynamics of
the predator–prey model. System (1.6) is stable with no cannibalism, while it is unstable
with prey cannibalism under the same conditions. After that, Basheer et al. [31] studied
the predator–prey model with cannibalism in both predator and prey population and ob-
tained more detailed results.

As far as system (1.2) is concerned, if the boundary equilibrium point E1 of system (1.2)
is globally asymptotically stable, which means that the predator will eventually become
extinct and the prey will survive, then how does cannibalism affect the dynamic behaviors
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of the system? If the positive equilibrium point E2 of system (1.2) is globally asymptoti-
cally stable, then how does cannibalism affect the dynamic behaviors of the system? This
motivated us to propose and study system (1.1).

The paper is arranged as follows. In the next section, we investigate the existence and
local stability of the equilibria of system (1.1). In Sect. 3, we discuss the global stability of
the equilibria. Numeric simulations are presented in Sect. 4 to show the feasibility of the
main results. We end this paper with a brief discussion.

2 Existence and local stability of equilibria
In this paper, let (x(t), y(t)) be a solution of system (1.1) which satisfies the initial value
x(0) > 0, y(0) > 0, and we are only interested in the dynamics of system (1.1) in the first
quadrant

R+
0 × R+

0 =
{

(x, y) ∈ R2|x ≥ 0, y ≥ 0
}

.

2.1 The existence of equilibria
The equilibria of system (1.1) are determined by the system

x(b – αx – my) = 0,

y(–β + c1 + nx) –
cy2

y + d
= 0.

(2.1)

The system always admits the boundary equilibria E0(0, 0), E1(b/α, 0), while for other pos-
sible boundary equilibria and positive equilibria, we need to consider the following cases:

(i) If x = 0, y �= 0, we may have the other boundary equilibrium E2(0, y1), where y1 is the
root of the following equation:

(–β + c1) –
cy

y + d
= 0. (2.2)

After simplifying calculation, we can get y = d(c1–β)
β+c–c1

. The boundary equilibrium E2(0,
d(c1–β)
β+c–c1

) exists if c1 > β .
(ii) If x �= 0, y �= 0, the interior equilibrium E∗(x∗, y∗) is determined by the equations as

follows:

b – αx – my = 0,

–β + c1 + nx –
cy

y + d
= 0.

(2.3)

From the first equation of (2.3), we have y = b–αx
m . Substituting y into the second equation

of (2.3), we can get the equation as follows:

Ax2 – Bx + C = 0, (2.4)
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where A = αn, B = α(β + c – c1) + bn + dmn, C = b(β + c – c1) + dm(β – c1). Obviously, A > 0,
B > 0. Let � denote the discriminant of Eq. (2.4) and express it as follows:

� = B2 – 4AC

=
(
α(β + c – c1) – bn – dmn

)2 + 4αcdmn > 0. (2.5)

From y = b–αx
m > 0, we have

0 < x <
b
α

. (2.6)

Now, we will discuss the root of Eq. (2.4) under the assumption that inequality (2.6) holds.
(a) If C ≤ 0, Eq. (2.4) has the unique positive root x1 = B+

√
B2–4AC
2A ≥ B

A > b
α

. Obviously, x1

does not satisfy the condition of (2.6).
(b) If C > 0, we have β > c1 or β ≤ c1 < β + bc

b+dm . Then Eq. (2.4) has two positive roots
x2,3 = B±√

B2–4AC
2A .

Defining the function f (x) = Ax2 – Bx + C, we have

f
(

b
α

)
= A ·

(
b
α

)2

+ B · b
α

+ C

=
dm
α

[
α(β – c1) – bn

]
. (2.7)

(1) If β ≤ c1 < β + bc
b+dm , we have f ( b

α
) < 0, then system (1.1) has a positive equilibrium

E3(x∗
2, y∗

2), where x∗
2 = B–

√
B2–4AC
2A , y∗

2 = b–αx∗
2

m .
(2) If β > c1, we cannot determine the size of f ( b

α
). So we will discuss the following:

If f ( b
α

) < 0, we have

β – c1 <
bn
α

, (2.8)

it is similar to case (1).
If f ( b

α
) ≥ 0, we have

β – c1 ≥ bn
α

. (2.9)

Consider x3 ≤ b
α

, after simplifying calculation, we have

β – c1 + c +
dmn
α

+
√

�

α
≤ bn

α
. (2.10)

Obviously, it contradicts with (2.9). So system (1.1) has no positive equilibrium.
Summarizing the above discussion, we obtain the following theorem.

Theorem 2.1 For all positive parameters, there are two boundary equilibria E0(0, 0),
E1( b

α
, 0). The boundary equilibrium E2(0, d(c1–β)

β+c–c1
) exists if c1 > β . In system (1.1), for the

positive equilibrium, we have:
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(i) If 0 < β – c1 < bn
α

, then system (1.1) has the unique positive equilibrium E∗(x∗
2, y∗

2),
where x∗

2 = B–
√

B2–4AC
2A , y∗

2 = b–αx∗
2

m .
(ii) If β ≤ c1 < β + bc

b+dm , then system (1.1) has the unique positive equilibrium E∗(x∗
2, y∗

2),
where x∗

2 = B–
√

B2–4AC
2A , y∗

2 = b–αx∗
2

m .

2.2 The local stability of equilibria
Theorem 2.2 In system (1.1), for the boundary equilibrium E0(0, 0), we have

(1) If c1 < β , then E0(0, 0) is a saddle;
(2) If c1 = β , then E0(0, 0) is a saddle node;
(3) If c1 > β , then E0(0, 0) is an unstable node.

Proof The Jacobian matrix of system (1.1) is calculated as follows:

J(x, y) =

(
–2αx – my + b –mx

ny nx – β + c1 – 2cy
y+d + cy2

(y+d)2

)
. (2.11)

Then the Jacobian matrix of system (1.1) about the equilibrium E0(0, 0) is

J
(
E0(0, 0)

)
=

(
b 0
0 –β + c1

)
. (2.12)

The eigenvalues of J(E0) are λ1 = b > 0, λ2 = c1 – β . Hence, if λ2 = c1 – β < 0, i.e., β > c1,
then E0(0, 0) is a saddle. If λ2 = c1 – β > 0, i.e., β < c1, then we have

[
Tr J(E0)

]2 – 4 Det J(E0) = (b + β – c1)2 ≥ 0,

so E0(0, 0) is an unstable node. If λ2 = c1 – β = 0, namely β = c1, the eigenvalues are now
given by λ1 = b > 0, λ2 = 0. Then Theorem 7.1 in Chap. 2 in [32] is used to determine the
stability of the equilibrium E0. Let dτ = bdt, where τ is a new time variable, which makes
the system into the following form:

dx
dτ

= x –
m
b

xy –
α

b
x2,

dy
dτ

=
n
b

xy –
c

bd
y2 +

c
bd2 y3 + Q1(x, y),

(2.13)

where Q1(x, y) is a power series in (x, y) with terms xiyj satisfying i + j ≥ 4.
By the implicit function theorem, there is a unique function x = φ(y) in the first quadrant

such that φ(0) = 0 near the origin. From dx
dτ

= 0, we get the implicit function x = 0, then

dy
dτ

= –
c

bd
y2 +

c
bd2 y3 + Q1(x, y).

According to Theorem 7.1 in Chap. 2 in [32], we have m = 2, am = c
bd > 0, so E0(0, 0) is a

saddle node.
The proof of Theorem 2.2 is finished. �
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Theorem 2.3 In system (1.1), for the boundary equilibrium E1( b
α

, 0), we have:
(1) If c1 ≥ β , then E1( b

α
, 0) is a saddle;

(2) If c1 < β , then:
(i) If β – c1 < bn

α
, then E1( b

α
, 0) is a saddle;

(ii) If β – c1 > bn
α

, then E1( b
α

, 0) is a stable node;
(iii) If β – c1 = bn

α
, then E1( b

α
, 0) is a saddle node.

Proof The Jacobian matrix of system (1.1) about the equilibrium E1( b
α

, 0) is given by

J
(

E1

(
b
α

, 0
))

=

(
–b bm

α

0 bn
α

– (β – c1)

)
. (2.14)

The eigenvalues of J(E1) are λ1 = –b < 0, λ2 = bn
α

– (β – c1).
If β – c1 ≤ 0, i.e., c1 ≥ β , then λ2 = bn

α
– (β – c1) > 0, so E1( b

α
, 0) is a saddle.

If c1 < β , we have λ2 > 0, if bn
α

> β – c1, then E1( b
α

, 0) is a saddle.
If c1 < β and bn

α
< β – c1, then λ2 < 0, we have

[
Tr J(E1)

]2 – 4 Det J(E1) =
(

–b –
bn – α(β – c1)

α

)2

≥ 0,

so E1( b
α

, 0) is a stable node.
If c1 < β and bn

α
= β – c1, then λ2 = 0, the eigenvalues are now given by λ1 = –b < 0, λ2 = 0.

Then Theorem 7.1 in Chap. 2 in [32] is used to determine the stability of the equilibrium
E1. Now we transform the equilibrium E1 to the origin by translation (X, Y ) = (x – b

α
, y)

at first, and then expand in power series up to the forth order around the origin, which
makes the system into the following form:

dX
dt

= –bX –
bm
α

Y – αX2 – mXY ,

dY
dt

= nXY –
cY 2

d
+

cY 3

d
–

cY 4

d
+ Q2(X, Y ),

(2.15)

where Q2(X, Y ) is a power series in (X, Y ) with terms XiY j satisfying i + j ≥ 5.
Let x = –bX – bm

α
Y , y = Y , dτ = –bdt, where τ is a new time variable, then we have

dx
dτ

= x –
m
α

(
mn
α

+
c
d

)
y2 –

α

b2 x2

–
m
b

(
1 +

n
α

)
xy +

mc
αd2 y3 + P1(x, y),

dy
dτ

=
(

mn
bα

+
c

bd

)
y2 +

n
b2 xy –

c
bd2 y3 + Q3(x, y),

(2.16)

where P1(x, y) and Q3(x, y) are the power series in (x, y) with terms xiyj satisfying i + j ≥ 4.
By the implicit function theorem, there is a unique function x = φ(y) in the first quadrant

such that φ(0) = 0 near the origin. From dx
dτ

= 0, we could obtain the implicit function
x = m

α
( mn

α
+ c

d )y2 + P2(x, y), then

dy
dτ

=
(

mn
bα

+
c

bd

)
y2 + Q4(x, y),
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where P2(x, y) and Q4(x, y) are the power series in (x, y) with terms xiyj satisfying
i + j ≥ 3.

According to Theorem 7.1 in Chap. 2 in [32], we have m = 2, am = mn
bα

+ c
bd > 0, so E1( b

α
, 0)

is a saddle node.
The proof of Theorem 2.3 is finished. �

Theorem 2.4 In system (1.1), when the boundary equilibrium E2(0, d(c1–β)
β+c–c1

) exists, we have
(1) If β < c1 < β + b(β+c)+βdm

b+dm , then E2(0, d(c1–β)
β+c–c1

) is a saddle;
(2) If c1 > β + b(β+c)+βdm

b+dm , then E2(0, d(c1–β)
β+c–c1

) is a stable node;
(3) If c1 = β + b(β+c)+βdm

b+dm , then E2(0, d(c1–β)
β+c–c1

) is a saddle node.

Proof The Jacobian matrix of system (1.1) about the equilibrium E2(0, d(c1–β)
β+c–c1

) is

J
(

E2

(
0,

d(c1 – β)
β + c – c1

))
=

(
C

c+β–c1
0

ny2 – cdy2
(y2+d)2

)
. (2.17)

The eigenvalues of J(E2) are λ1 = C
c+β–c1

, λ2 = – cdy2
(y+d)2 < 0.

If C > 0, i.e., β < c1 < β + b(β+c)+βdm
b+dm , we have λ1 = C

c+β–c1
> 0, so E2(0, d(c1–β)

β+c–c1
) is a saddle.

If c1 > β + b(β+c)+βdm
b+dm , then we have

[
Tr J(E2)

]2 – 4 Det J(E2) ≥ 0,

so E2(0, d(c1–β)
β+c–c1

) is a stable node.
If c1 = β + b(β+c)+βdm

b+dm , then E2(0, d(c1–β)
β+c–c1

) is a saddle node. The proof is similar to Theo-
rem 2.3, we omitted it.

The proof of Theorem 2.4 is finished. �

Theorem 2.5 In system (1.1), when the equilibrium E∗(x∗, y∗) exists, it is locally asymptot-
ically stable.

Proof The Jacobian matrix of system (1.1) about the equilibrium E∗(x∗, y∗) is

J
(
E∗(x∗, y∗)) =

(
–αx∗ –mx∗

ny∗ – cdy∗
(y∗+d)2

)
. (2.18)

Then we have

Det J
(
E∗) =

cdαx∗y∗

(y∗ + d)2 + mnx∗y∗ > 0,

and

Tr J
(
E∗) = –αx∗ –

cdy∗

(y∗ + d)2 < 0.

So E∗(x∗, y∗) is locally asymptotically stable.
The proof of Theorem 2.5 is finished. �
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3 Global stability of equilibria
In this section we consider the global asymptotic stability of the equilibria.

Theorem 3.1 Assume that

β – c1 >
bn
α

(3.1)

holds, then E1( b
α

, 0) is globally asymptotically stable.

Proof We will prove Theorem 3.1 by constructing some suitable Lyapunov function.
Let us define a Lyapunov function

V1(x, y) =
n
m

(
x – x – x ln

x
x

)
+ y, (3.2)

where x = b
α

. Then the time derivative of V1 along the trajectories of (1.1) is

D+V1(t) =
n
m

(x – x)
ẋ
x

+ y(–β + c1 + nx) –
cy2

y + d

= –
αn
m

(x – x)2 – ny(x – x) + y(–β + c1 + nx) –
cy2

y + d

< –
αn
m

(x – x)2 – ny(x – x) + y
(

–
bn
α

+ nx
)

–
cy2

y + d

= –
αn
m

(x – x)2 –
cy2

y + d

< 0.

Thus, V1(x, y) satisfies Lyapunov asymptotic stability theorem, and the boundary equilib-
rium E1( b

α
, 0) of system (1.1) is globally asymptotically stable.

The proof of Theorem 3.1 is finished. �

Theorem 3.2 Assume that

c1 > β +
b(β + c) + βdm

b + dm
(3.3)

holds, then E2(0, d(c1–β)
β+c–c1

) is globally asymptotically stable.

Proof We will prove Theorem 3.2 by constructing some suitable Lyapunov function.
Let us define a Lyapunov function

V2(x, y) = x +
m
n

(
y – y – y ln

y
y

)
, (3.4)

where y = d(c1–β)
β+c–c1

. Then the time derivative of V2 along the trajectories of (1.1) is

D+V2(t) = x(b – αx – my) + mx(y – y) –
m
n

(
cy

y + d
–

cy
y + d

)
(y – y)
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= –αx2 + (b – my)x + mx(y – y) –
cdm(y – y)2

n(y + d)(y + d)

< –αx2 –
cdm(y – y)2

(y + d)(y + d)

< 0.

Thus, V2(x, y) satisfies Lyapunov asymptotic stability theorem, and the boundary equilib-
rium E2(0, d(c1–β)

β+c–c1
) of system (1.1) is globally asymptotically stable.

The proof of Theorem 3.2 is finished. �

Theorem 3.3 When the equilibrium E3(x∗, y∗) exists, it is globally asymptotically stable.

Proof We will prove Theorem 3.3 by constructing some suitable Lyapunov functions.
Let us define a Lyapunov function

V3(x, y) =
(

x – x∗ – x∗ ln
x
x∗

)
+

m
n

(
y – y∗ – y∗ ln

y
y∗

)
. (3.5)

Then the time derivative of V3 along the trajectories of (1.1) is

D+V3(t) =
[
–α

(
x – x∗) – m

(
y – y∗)](x – x∗)

+
m
n

[
n
(
x – x∗) –

(
cy

y + d
–

cy∗

y∗ + d

)](
y – y∗)

= –α
(
x – x∗)2 –

cdm(y – y∗)2

n(y + d)(y∗ + d)

< 0.

Thus, V3(x, y) satisfies Lyapunov asymptotic stability theorem, and the positive equi-
librium E3(x∗, y∗) of system (1.1) is globally asymptotically stable when the equilibrium
E3(x∗, y∗) exists.

The proof of Theorem 3.3 is finished. �

4 Numerical simulations
In this section we consider the dynamics of systems (1.1) and (1.2) under different param-
eters.

Let b = 5, α = 3, m = 0.6, β = 2.5, n = 1.2, then system (1.2) is given by

dx
dt

= x(5 – 3x – 0.6y),

dy
dt

= y(–2.5 + 1.2x).
(4.1)

We have bn
α

= 2 < β = 2.5. From Theorem A, system (4.1) has two boundary equilibria
O(0, 0), E1(1.67, 0), and E0(0, 0) is a saddle, E1(1.67, 0) is globally asymptotically stable (see
Fig. 1).
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Figure 1 Dynamic behaviors of system (4.1)

Figure 2 Dynamic behaviors of system (4.2) if c1 = 0.4

Now we consider some cannibalism parameters on the basis of (4.1). Let c = 8, d = 15,
then system (1.1) is given by

dx
dt

= x(5 – 3x – 0.6y),

dy
dt

= y(–2.5 + c1 + 1.2x) –
8y2

y + 15
.

(4.2)

We consider c1 as variable. System (4.2) always has two boundary equilibria E0(0, 0),
E1(1.67, 0) from Theorem 2.1. If c1 = 0.4, from Sect. 2.2, we have E0(0, 0) is a saddle and
E1(1.67, 0) is a stable node (see Fig. 2). If c1 = 2, the positive equilibrium E∗(1.26, 2.11)
exists, which is globally asymptotically stable. E0(0, 0) and E1(1.67, 0) are saddle (see
Fig. 3). If c1 = 2.5, system (4.2) has a globally asymptotically stable positive equilibrium
E∗(1.1, 2.97), E0(0, 0) is a saddle node, E1(1.67, 0) is a saddle (see Fig. 4). If c1 = 5, system
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Figure 3 Dynamic behaviors of system (4.2) if c1 = 2

Figure 4 Dynamic behaviors of system (4.2) if c1 = 2.5

(4.2) has a boundary equilibrium E2(0, 6.9), which is a saddle. Then E0(0, 0) is an unstable
node, E1(1.67, 0) is a saddle, E∗(0.163, 7.63) is globally asymptotically stable (see Fig. 5). If
c1 = 7.86, the positive equilibria of system (4.2) will disappear, and the boundary equilib-
rium E1(0, 30.4) is globally asymptotically stable. E0(0, 0) is an unstable node, E1(1.67, 0) is
a saddle (see Fig. 6).

Now let us consider system (1.2), which has a unique positive equilibrium, let b = 5,
α = 3, m = 0.6, β = 2.5, n = 1.8, then system (1.2) is

dx
dt

= x(5 – 3x – 0.6y),

dy
dt

= y(–2.5 + 1.8x).
(4.3)
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Figure 5 Dynamic behaviors of system (4.2) if c1 = 5

Figure 6 Dynamic behaviors of system (4.2) if c1 = 7.86

We have bn
α

= 3 > β = 2.5. From Theorem A, system (4.3) has two boundary equilibria
O(0, 0), E1(1.67, 0) and a unique positive equilibrium E2(1.39, 1.36), and E0(0, 0) is a saddle,
E1(1.67, 0) is unstable, and E2(1.39, 1.36) is globally asymptotically stable (see Fig. 7).

We consider the predator cannibalism based on system (4.3). Let c = 8, d = 15, then we
have

dx
dt

= x(5 – 3x – 0.6y),

dy
dt

= y(–2.5 + c1 + 1.8x) –
8y2

y + 15
.

(4.4)

System (4.4) always has two boundary equilibria E0(0, 0), E1(1.67, 0) from Theorem 2.1. If
c1 = 2, the positive equilibrium E∗(1.05, 3.12) exists, which is globally asymptotically sta-
ble. E0(0, 0) and E1(1.67, 0) are saddle (see Fig. 8). If c1 = 5, system (4.4) has a boundary
equilibrium E2(0, 6.87), which is a saddle. Then E0(0, 0) is an unstable node, E1(1.67, 0) is
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Figure 7 Dynamic behaviors of system (4.3)

Figure 8 Dynamic behaviors of system (4.4) if c1 = 2

a saddle, E∗(0.139, 7.84) is globally asymptotically stable (see Fig. 9). If c1 = 7.86, the posi-
tive equilibrium will disappear for system (4.4), and the boundary equilibrium E1(0, 30.6)
is globally asymptotically stable. E0(0, 0) is an unstable node, E1(1.67, 0) is a saddle (see
Fig. 10).

5 Conclusion
Based on the traditional Lotka–Volterra predator–prey model, we propose and study a
predator–prey model with predator cannibalism in this paper. We have investigated the
local and global stability of the possible equilibria of the model. Meanwhile, we can find
some interesting phenomenon about the dynamic behaviors of system (1.1). If system (1.2)
(no cannibalism, i.e., c = 0 and c1 = 0) has a boundary equilibrium E1( b

α
, 0), which is glob-

ally asymptotically stable (see Fig. 1), a suitable cannibalism rate ((β < c1 < β + b(β+c)+βdm
b+dm ))

leads to system (1.1) admitting a unique positive equilibrium, and it is globally asymp-
totically stable (see Fig. 3, Fig. 4, and Fig. 5). That is to say, cannibalism within a certain
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Figure 9 Dynamic behaviors of system (4.4) if c1 = 5

Figure 10 Dynamic behaviors of system (4.4) if c1 = 7.86

range can make the two species persistent. So in this case, cannibalism in a certain range
has a positive effect for the coexistence of the prey and the predator. With the increase
of c1, the positive equilibrium will disappear and the boundary equilibrium E2(0, d(c1–β)

c+β–c1
)

will appear (see Fig. 6). That is to say, without other sources of food, predator populations
can still survive on cannibalism. For example, salamanders only depend on cannibalism
to survive in summer.

If system (1.2) has a positive equilibrium E2( β

n , bm–αβ

mn ), which is globally asymptotically
stable (see Fig. 7), with the increase of c1, the population density of prey decreases while
that of predator increases (see Fig. 8 and Fig. 9). When c1 is large enough, prey populations
will be driven to extinction. That is to say, predator cannibalism will make prey extinct (see
Fig. 10). Predator cannibalism also changes the type of the equilibria (see Fig. 1, Fig. 5, and
Fig. 6; Fig. 7, Fig. 9, and Fig. 10).

That is, by introducing the predator cannibalism, the dynamic behaviors of the system
become complicated.
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