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Abstract
In this paper, a class of 4th-order neutral delay differential equations with
continuously distributed delay is studied. We establish a new oscillation criterion
using the Riccati transformation. An example illustrating the results is also given.
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1 Introduction
In this work, we consider a 4th-order neutral differential equation with a continuously
distributed delay of the form

[
r(t)

([
x(t) + p(t)x

(
τ (t)

)]′′′)α]′ +
∫ b

a
q(t, ξ )f

(
x
(
g(t, ξ )

))
dξ = 0. (1)

We assume that the following conditions hold:
(H1) α is a quotient of odd positive integers;
(H2) p, q, τ , g ∈ C([t0,∞), R), r(t), and q(t, ξ ) are positive, 0 ≤ p(t) ≤ p < 1, r(t) ∈

C1([t0, +∞)), r′(t) ≥ 0, τ (t) ≤ t, g(t, ξ ) ≤ t, limt→∞ τ (t) = ∞, limt→∞ g(t, ξ ) =
∞, q(t, ξ ) is not zero on any half line [tλ,∞) × [a, b], tλ ≥ t0, for t ≥ t0, ξ ∈ [a, b],
g(t, ξ ) is nondecreasing with respect to ξ .

(H3) There exists a constant k > 0 such that f (u)/uγ ≥ k for u �= 0.
We define the corresponding function z(t) of a solution x(t) of (1) by z(t) = x(t) +

p(t)x(τ (t)), we mean a non-trivial real function x(t) ∈ C([tx,∞)), tx ≥ t0, satisfying (1) on
[tx,∞) and, moreover, having the properties: z(t), z′(t), z′′(t) and r(t)[z′′′(t)]α are continu-
ously differentiable for all t ∈ [tx,∞). We consider only those solutions x(t) of (1) which
satisfy sup{|x(t)| : t ≥ T} > 0 for any T ≥ tx. A solution of (1) is called oscillatory if it has
arbitrary large zeros, otherwise it is called nonoscillatory.

The oscillations of higher- and fourth-order differential equations have been studied
by several authors, and several techniques have been proposed for obtaining oscillatory
criteria for higher- and fourth-order differential equations. For treatments on this subject,
we refer the reader to the texts [2, 5, 16–18, 21] and the articles [1, 3–15, 19–26]. In what
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follows, we review some results that have provided the background and motivation for the
present work.

Cesarano and Bazighifan [8], Moaaz et al. [21], and Zhang et al. [26] studied the oscil-
lation of the fourth-order nonlinear differential equation with a continuously distributed
delay

[
r(t)

(
x′′′(t)

)α]′ +
∫ b

a
q(t, ξ )f

(
x
(
g(t, ξ )

))
dξ = 0. (2)

Li et al. [19] studied the oscillatory behavior of the fourth-order nonlinear differential
equation

[
r(t)z(t)

](4) + q(t)x
(
τ (t)

)
= 0. (3)

Parhi and Tripathy [23] have considered the fourth-order neutral differential equations of
the form

[
r(t)

(
y(t) + p(t)y(t – τ )

)′′]′′ + q(t)G
(
y(t – σ )

)
= 0 (4)

and

[
r(t)

(
y(t) + p(t)y(t – τ )

)′′]′′ + q(t)G
(
y(t – σ )

)
= f (t) (5)

and established the oscillation and asymptotic behavior of the above equations under the
conditions

∫ ∞

t0

1
r 1

α (t)
dṫ < ∞ (6)

and
∫ ∞

t0

1
r 1

α (t)
dt = ∞, (7)

respectively.
Our aim in the present paper is to use the Riccati method to establish new conditions

for the oscillation of all solutions of (1) under condition (7).
The proof of our main results is essentially based on the following lemmas.

Lemma 1.1 Let β ≥ 1 be a ratio of two numbers, where U and V are constants. Then

Uy – Vy
β+1
β ≤ ββ

(β + 1)β+1
Uβ+1

V β
, V > 0. (8)

Lemma 1.2 If the function z satisfies z(i) > 0, i = 0, 1, . . . , n, and z(n+1) < 0, then

z(t)
tn/n!

≥ z′(t)
tn–1/(n – 1)!

. (9)
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Lemma 1.3 Let h ∈ Cn([t0,∞), (0,∞)). Assume that h(n)(t) is of a fixed sign and not iden-
tically zero on [t0,∞) and that there exists t1 ≥ t0 such that h(n–1)(t)h(n)(t) ≤ 0 for all t ≥ t1.
If limt→∞ h(t) �= 0, then for every λ ∈ (0, 1) there exists tλ ≥ t0 such that

h(t) ≥ λ

(n – 1)!
tn–1∣∣h(n–1)(t)

∣
∣ for all t ≥ tλ. (10)

2 Main results
In this section, we shall establish some oscillation criteria for equation (1).

For convenience, we denote

η(t) =
∫ ∞

t0

r–1/α(s) ds,

ρ ′
+(t) := max

{
0,ρ ′(t)

}
,

ϑ ′
+(t) := max

{
0,ϑ ′(t)

}
,

Q(t) =
∫ b

a
q(t, ξ ) dξ

and

Q∗(υ) =
∫ ∞

υ

kQ(s)(1 – p)α
(
g(s, a)/s

)3α ds. (11)

Theorem 2.1 Assume that (7) holds. If there exist positive functions ρ,ϑ ∈ C([t0,∞)) such
that

∫ ∞

t0

(
Ψ (s) –

2α

(α + 1)α+1
r(s)(ρ ′(s))α+1

μαs2αρα(s)

)
ds = ∞ (12)

for some μ ∈ (0, 1), where

Ψ (t) = kρ(t)Q(t)(1 – p)α
(
g(t, a)/t

)3α , (13)

and either
∫ ∞

t0

kQ(s)(1 – p)α
(
g(s, a)/s

)α ds = ∞ (14)

or
∫ ∞

t0

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ = ∞, (15)

or

∫ ∞

t0

[
ϑ(t)

∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ –

ϑ ′2
+ (t)

4ϑ(t)

]
dt = ∞, (16)

then all solutions of (1) are oscillatory.
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Proof Let x be a nonoscillatory solution of equation (1) defined in the interval [t0,∞).
Without loss of generality, we can assume that x(t) is eventually positive. It follows from
(1) that there are two possible cases for t ≥ t1, where t1 ≥ t0 is sufficiently large:

(C1) z′(t) > 0, z′′(t) > 0, z′′′(t) > 0,
(
r(t)

(
z′′′(t)

)α)
< 0,

(C2) z′(t) > 0, z′′(t) < 0, z′′′(t) > 0,
(
r(t)

(
z′′′(t)

)α)
< 0.

Assume that Case (C1) holds. Since τ (t) ≤ t and z′(t) > 0, we get

z(t) = x(t) + p(t)x
(
τ (t)

)
,

x(t) = z(t) – p(t)x
(
τ (t)

)

≥ z(t) – p(t)z
(
τ (t)

)

=
(
1 – p(t)

)
z(t).

From equation (1), we see that

(
r(t)

(
z′′′(t)

)α)′ = –
∫ b

a
q(t, ξ )f

(
x
(
g(t, ξ )

))
dξ (17)

so that

(
r(t)

(
z′′′(t)

)α)′ = –
∫ b

a
kq(t, ξ )xα

(
g(t, ξ )

)
dξ

≤ –
∫ b

a
kq(t, ξ )

(
1 – p

(
g(t, ξ )

))αzα
(
g(t, ξ )

)
dξ .

Since g(t, ξ ) is nondecreasing with respect to ξ and z′(t) > 0, we have

z
(
g(t, a)

) ≤ z
(
g(t, ξ )

) ≤ z
(
g(t, b)

)
. (18)

Thus

(
r(t)

(
z′′′(t)

)α)′ ≤ –(1 – p)α
∫ b

a
kq(t, ξ )zα

(
g(t, ξ )

)
dξ (19)

≤ –k(1 – p)αzα
(
g(t, a)

)∫ b

a
q(t, ξ ) dξ (20)

= –kQ(t)(1 – p)αzα
(
g(t, a)

)
. (21)

Now, we define a generalized Riccati substitution by

ω(t) := ρ(t)
r(t)(z′′′(t))α

zα(t)
. (22)

Then ω(t) > 0. Differentiating and using (19), we obtain

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) – kρ(t)Q(t)(1 – p)α
zα(g(t, a))

zα(t)
(23)

– αρ(t)
r(t)(z′′′(t))α

zα+1(t)
z′(t). (24)
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From Lemma 1.2, we have that z(t) ≥ t
3 z′(t), and hence

z(g(t, a))
z(t)

≥ g3(t, a)
t3 . (25)

Since r′(t) > 0 and (r(t)(z′′′(t))α)′ ≤ 0, we get z(4)(t) < 0. It follows from Lemma 1.3 that

z′(t) ≥ μ

2
t2z′′′(t) (26)

for all μ ∈ (0, 1) and every sufficiently large t. Thus, by (24), (25), and (26), we get

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) – kρ(t)Q(t)(1 – p)α
(

g(t, a)
t

)3α

– αμ
t2

2r1/α(t)ρ1/α(t)
ω

α+1
α (t).

Using Lemma 1.1 with U = ρ′(t)
ρ(t) , V = αμt2

2r1/α (t)ρ1/α (t) and y = ω, we get

ω′(t) ≤ –Ψ (t) +
2α

(α + 1)α+1
r(t)(ρ ′(t))α+1

μαt2αρα(t)
. (27)

This implies that

∫ t

t1

(
Ψ (s) – r(s)

(
ρ ′(s)/α + 1

)α+1
(

2
μs2ρ(s)

)α)
ds ≤ ω(t1) (28)

for some μ ∈ (0, 1) which contradicts (12).
Assume that Case (C2) holds. Integrating (1) from t1 to t, we obtain

–r(t1)
(
z′′′(t1)

)α ≤ –
∫ t

t1

kQ(t)xα
(
g(s, ξ )

)
ds. (29)

From z′(t) > 0, x(t) ≥ (1 – p(t))z(t) and g(s, ξ ) ≤ t, it follows that

∫ t

t1

kQ(s)(1 – p)αzα
(
g(s, a)

)
ds ≤ r(t1)

(
z′′′(t1)

)α . (30)

From (25), we get

∫ t

t1

kQ(s)(1 – p)α
(
g(s, a)/s

)3α ds ≤ r(t1)
(

z′′′(t1)
z(t1)

)α

, (31)

which contradicts (12). Integrating (1) from t to ∞, we obtain

–r(t)
(
z′′′(t)

)α ≤ –
∫ ∞

t
kQ(t)xα

(
g(s, ξ )

)
ds. (32)

By virtue of z′(t) > 0, x(t) ≥ (1 – p(t))z(t), g(s, ξ ) ≤ t, and (25), we obtain

–
(
z′′′(t)

)
+

z(t)
r(t)1\α

[∫ ∞

t
kQ(s)(1 – p)α

(
g(s, a)/s

)3α ds
]1/α

≤ 0. (33)
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Integrating (33) from t1 to t, we get

∫ t

t1

1
r1/α(υ)

(∫ ∞

υ

kQ(s)(1 – p)α
(
g(s, a)/s

)3α ds
)1/α

dυ ≤ –
z′′(t1)
z(t1)

. (34)

This yields

∫ t

t1

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ ≤ –

z′′(t1)
z(t1)

, (35)

which contradicts (15). Integrating (33) from t to ∞, we get

∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ ≤ –

z′′(t)
z(t)

, (36)

so that

z′′(t) + z(t)
∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ ≤ 0. (37)

Now, we define the Riccati substitution

ψ(t) := ϑ(t)
z′(t)
z(t)

, (38)

then ψ(t) > 0 for t ≥ t1 and

ψ ′(t) := ϑ ′(t)
z′(t)
z(t)

+ ϑ(t)
z′′(t)z(t) – (z′(t))2

z2(t)
. (39)

From (37) and (38), it follows that

ψ ′(t) ≤ –ϑ(t)
∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ +

(ϑ ′(t))+

ϑ(t)
ψ(t) –

1
ϑ(t)

ψ2(t). (40)

Hence, we have

ψ ′(t) ≤ –ϑ(t)
∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ +

((ϑ ′(t))+)2

4ϑ(t)
. (41)

Integrating (41) from t1 to s, we get

∫ s

t1

(
ϑ(t)

∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ +

((ϑ ′(t))+)2

4ϑ(t)

)
dt ≤ ψ(t1) (42)

for all large s, which contradicts (16).
The proof of the theorem is complete. �

Let ρ(t) = t3 and ϑ(t) = t. As a consequence of Theorem 2.1, we obtain the following
oscillation criterion.
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Corollary Assume that (7) holds and for some constant λ0 ∈ (0, 1)

∫ ∞

t0

(
Ψ ∗(t) –

(
3

α + 1

)α+1( 2
λ0

)α

t2–3αr(t)
)

ds = ∞, (43)

where

Ψ ∗(t) = kt3Q(t)(1 – p)α
(
g(t, a)/t

)3α . (44)

If either (14) or (15) is satisfied, or

∫ ∞

t0

[
t
∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ –

1
4t

]
dt = ∞, (45)

then all solutions of (1) are oscillatory.

3 Example
In this section, we give the following example to illustrate our main results.

Example Consider the differential equation

([
x(t) +

1
2

x
(

t
3

)]′′′)′
+

∫ 1

0

(
ν/t4)ξx

(
t – ξ

2

)
dξ = 0, (46)

where ν > 0 is a constant. Let

α = 1, r(t) = 1, p(t) =
1
2

, τ (t) =
t
3

,

g(t, a) =
t
2

, q(t, ξ ) =
(
ν/t4)ξ , f (x) = x,

(47)

we get

η(s) =
∫ ∞

t0

ds = ∞,

Q(t) =
∫ 1

0
q(t, ξ ) dξ =

ν

2t4

Q∗(t) =
∫ ∞

t0

kQ(s)(1 – p)α
(
g(s, a)/s

)3α ds

=
∫ ∞

t0

ν

32s4 ds =
ν

96t3 .

If we now set k = 1, then

∫ ∞

t0

(
kt3Q(t)(1 – p)α

(
g(t, a)/t

)3α –
(

3
α + 1

)α+1( 2
λ0

)α

t2–3αr(t)
)

ds (48)

=
(

ν

32
–

9
2λ0

)∫ ∞

t0

1
t

dt = ∞, if ν >
144
λ0

for some constant λ0 ∈ (0, 1), (49)
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and
∫ ∞

t0

[
t
∫ ∞

t

(
Q∗(υ)

) 1
α r

–1
α (υ) dυ –

1
4t

]
dt

=
∫ ∞

t0

[
t
∫ ∞

t

ν

96t3 dt –
1
4t

]
dt

=
∫ ∞

t0

[
t

ν

192t2 –
1
4t

]
dt

=
(

ν

192
–

1
4

)∫ ∞

t0

1
t

dt

= ∞, if ν > 48.

Thus, by Corollary, every solution of equation (46) is oscillatory.

4 Conclusion
The results of this paper are presented in a form which is essentially new and of high
degree of generality. In this paper, using a Riccati transformation technique, we offer some
new sufficient conditions which ensure that any solution of Eq. (1) oscillates under the
condition

∫ ∞
t0

1
r

1
α (t)

dt = ∞. Further, we can consider the case of z(t) = x(t) – p(t)x(τ (t)),

and we can try to get some oscillation criteria of Eq. (1) in the future work.

Acknowledgements
The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the
manuscript and beneficial comments.

Funding
The authors received no direct funding for this work.

Competing interests
The authors declare that there are no competing interests between them.

Authors’ contributions
The authors declare that they have read and approved the final manuscript.

Author details
1Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education
(ASPETE), Athens, Greece. 2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt.
3Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout, Yemen.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 January 2019 Accepted: 1 August 2019

References
1. Agarwal, R., Grace, S., Manojlovic, J.: Oscillation criteria for certain fourth order nonlinear functional differential

equations. Math. Comput. Model. 44, 163–187 (2006)
2. Agarwal, R., Grace, S., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer

Academic, Dordrecht (2000)
3. Agarwal, R., Grace, S., O’Regan, D.: Oscillation criteria for certain nth order differential equations with deviating

arguments. J. Math. Anal. Appl. 262, 601–622 (2001)
4. Baculikova, B., Dzurina, J., Graef, J.R.: On the oscillation of higher-order delay differential equations. Math. Slovaca 187,

387–400 (2012)
5. Bazighifan, O.: Oscillatory behavior of higher-order delay differential equations. Gen. Lett. Math. 2, 105–110 (2017)
6. Bazighifan, O., Cesarano, C.: Some new oscillation criteria for second-order neutral differential equations with delayed

arguments. Mathematics 7, 1–8 (2019)
7. Bazighifan, O., Elabbasy, E.M., Moaaz, O.: Oscillation of higher-order differential equations with distributed delay. J.

Inequal. Appl. 2019, 55 (2019)



Chatzarakis et al. Advances in Difference Equations        (2019) 2019:336 Page 9 of 9

8. Cesarano, C., Bazighifan, O.: Oscillation of fourth-order functional differential equations with distributed delay. Axioms
7, 1–9 (2019)

9. Cesarano, C., Bazighifan, O.: Qualitative behavior of solutions of second order differential equations. Symmetry 11,
1–8 (2019)

10. Cesarano, C., Pinelas, S., Al-Showaikh, F., Bazighifan, O.: Asymptotic properties of solutions of fourth-order delay
differential equations. Symmetry 11, 1–10 (2019)

11. Elabbasy, E.M., Hassan, T.S., Moaaz, O.: Oscillation behavior of second order nonlinear neutral differential equations
with deviating arguments. Opuscula Mathematica 32, 719–730 (2012)

12. Grace, S., Graef, J., Tunc, E.: Oscillatory behavior of a third order neutral dynamic equations with distributed delays.
Electron. J. Qual. Theory Differ. Equ. 2016, 14 (2016)

13. Grace, S., Graef, J., Tunc, E.: Oscillatory behavior of second order damped neutral differential equations with
distributed deviating arguments. Miskolc Math. Notes 18, 759–769 (2017)

14. Grace, S., Lalli, B.: Oscillation theorems for nth order nonlinear differential equations with deviating arguments. Proc.
Am. Math. Soc. 90, 65–70 (1984)

15. Graef, J., Tunc, E.: Oscillation of fourth-order nonlinear dynamic equations on time scales. Panam. Math. J. 25, 16–34
(2015)

16. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)
17. Kiguradze, I., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.

Kluwer Academic, Drodrcht (1993)
18. Ladde, G., Lakshmikantham, V., Zhang, B.: Oscillation Theory of Differential Equations with Deviating Arguments.

Dekker, New York (1987)
19. Li, T., Baculikova, B., Dzurina, J., Zhang, C.: Oscillation of fourth order neutral differential equations with p-Laplacian

like operators. Bound. Value Probl. 2014, 56 (2014)
20. Moaaz, O., Chalishajar, D., Bazighifan, O.: Some qualitative behavior of solutions of general class difference equations.

Mathematics 7, 1–12 (2019)
21. Moaaz, O., Elabbasy, E.M., Bazighifan, O.: On the asymptotic behavior of fourth-order functional differential equations.

Adv. Differ. Equ. 2017, 261 (2017)
22. Moaaz, O., Elabbasy, E.M., Muhib, A.: Oscillation criteria for even-order neutral differential equations with distributed

deviating arguments. Adv. Differ. Equ. 2019, 297 (2019)
23. Parhi, N., Tripathy, A.: On oscillatory fourth order linear neutral differential equations-I. Math. Slovaca 54, 389–410

(2004)
24. Philos, C.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive

delay. Arch. Math. (Basel) 36, 168–178 (1981)
25. Tunc, E., Graef, J.: Oscillation results for second order neutral dynamic equations with distributed deviating

arguments. Dyn. Syst. Appl. 3, 289–303 (2014)
26. Zhang, C., Li, T., Saker, S.: Oscillation of fourth-order delay differential equations. J. Math. Sci. 201, 296–308 (2014)


	An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay
	Abstract
	MSC
	Keywords

	Introduction
	Main results
	Example
	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


