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Abstract
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1 Introduction
In this paper, we consider the following boundary value problem of fractional differential
equations with a p-Laplacian operator:

Dγ
(
φp

(
Dαu(t)

))
= f

(
t, u(t)

)
, 0 < t < 1, (1.1)

u(0) = Dαu(0) = 0, Dβu(1) = aDβu(ξ ), Dαu(1) = bDαu(η), (1.2)

where α,β ,γ ∈ R; 1 < α, γ ≤ 2; β > 0 and 1 + β ≤ α; ξ ,η ∈ (0, 1); a, b ∈ [0, +∞); 1 –
aξα–β–1 > 0; 1 – bp–1ηγ –1 > 0 and φp(s) = |s|p–2s, p > 1, φq = (φp)–1, 1

p + 1
q = 1, Dα is the

Riemann–Liouville differentiation and f ∈ C([0, 1] × [0, +∞), [0, +∞)).
Fractional differential equations arise in many engineering and scientific disciplines as

the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, etc. Fractional
differential equations also serve as an excellent tool for the description of hereditary prop-
erties of various materials and processes. In consequence, fractional differential equations
have been of great interest. For details, see fractional two-point boundary value problems
[29, 31, 32, 35, 57, 64], fractional boundary value problems at resonance [5, 8, 67, 69, 71],
fractional multi-point problems with nonresonance [5, 8, 44, 48, 58, 61, 68], fractional
initial value problems [6, 7, 34], fractional impulsive problems [48, 72], fractional integral
boundary value problems [14, 40, 46, 62], fractional p-Laplace problems [15, 18, 20–22, 28,
36, 39, 45, 47, 49, 50, 52, 60, 65, 66, 70], fractional problems with lower and upper solution

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2280-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2280-4&domain=pdf
http://orcid.org/0000-0002-5131-9252
mailto:zhanbingbai@163.com


Tian et al. Advances in Difference Equations        (2019) 2019:349 Page 2 of 14

[7, 39, 51, 59], fractional control problems, [41, 43, 53–56], fractional soliton problems
[19, 24, 26, 42], fractional singular problems [17, 27, 30, 37, 38, 63].

On the other hand, the differential equations with p-Laplacian operator arise in the
modeling of different physical and natural phenomena, non-Newtonian mechanics, non-
linear elasticity and glaciology, population biology, nonlinear flow laws, and system of
Monge–Kantorovich partial differential equations. There are a very large number of pa-
pers devoted to the existence of solutions of the p-Laplacian operator [15, 18, 20–22, 28,
36, 39, 45, 47, 49, 50, 52, 60, 65, 66]. The approaches are mainly topological, fixed-point
and continuation theorems, degree and fixed-point index theory.

In this paper, we study the existence of positive solutions for boundary value problem
(1.1), by applying a monotone iterative method, some existence results of positive solu-
tions are obtained. In the light of the above and to the best o four knowledge, this is the
first study which discuss fractional p-Laplacian with lower and upper solution method.
Taking into account that sometimes the corresponding research about the Riesz fractional
derivative is interesting, see [16, 25], in the future work, we will focus our concentration
on the Riesz derivative. Also, the reader can find some new methods for approximate solu-
tions of fractional integro-differential equations involving the Caputo–Fabrizio derivative
or extended fractional Caputo–Fabrizio derivative [1–4, 9–13, 23, 33]. The approximation
solutions are interesting and need more concentration.

The organization of this paper is as follows. In Sect. 2, we present some necessary def-
initions from fractional calculus theory. In Sect. 3, we prove the main results about the
existence of positive solution of the boundary value problem (1.1). In Sect. 4, we will give
an example to illustrate our main results.

2 Preliminaries
In this section, we present some necessary definitions from fractional calculus theory.

Definition 2.1 ([32]) The Riemann–Liouville fractional integral of a function x : (0,
+∞) →R of order α > 0 is given by

Iαx(t) =
1

Γ (α)

∫ t

0
(t – s)α–1x(s) ds,

provided the right side is pointwise defined on (0,∞).

Definition 2.2 ([32]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function x : (0, +∞) →R is given by

Dαx(t) =
1

Γ (n – α)

(
d
dt

)n ∫ t

0

x(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided the right side is
pointwise defined on (0,∞).

Lemma 2.1 ([32])
(1) If x ∈ L(0, 1), ρ > σ > 0, then

Dσ Iρx(t) = Iρ–σ x(t), Dσ Iσ x(t) = x(t).
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(2) If ρ > 0, λ > 0, then

Dρtλ–1 =
Γ (λ)

Γ (λ – ρ)
tλ–ρ–1.

Lemma 2.2 ([32]) Assume that x ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order
α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

IαDαx(t) = x(t) + c1tα–1 + c2tα–2 + · · · + cN tα–N , ci ∈R, i = 1, 2, . . . , N ,

where N is the smallest integer greater than or equal to α.

3 Main results
In this section, we consider the existence of positive solution for problem (1.1).

Lemma 3.1 If h ∈ C[0, 1], α ∈ (1, 2], β > 0 and 1 + β ≤ α, ξ ∈ (0, 1), a ∈ [0, +∞), A :=
aξα–β–1, then the boundary value problem

Dαu(t) + h(t) = 0, 0 < t < 1, (3.1)

u(0) = 0, Dβu(1) = aDβu(ξ ), (3.2)

has an unique solution

u(t) =
∫ 1

0
G(t, s)h(s) ds, (3.3)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tα–1(1–s)α–β–1–(1–A )(t–s)α–1–atα–1(ξ–s)α–β–1

Γ (α)(1–A ) ,

0 ≤ s ≤ t ≤ 1, s ≤ ξ ,
tα–1(1–s)α–β–1–(1–A )(t–s)α–1

Γ (α)(1–A ) , 0 < ξ ≤ s ≤ t ≤ 1,
tα–1(1–s)α–β–1–atα–1(ξ–s)α–β–1

Γ (α)(1–A ) , 0 ≤ t ≤ s ≤ ξ < 1,
tα–1(1–s)α–β–1

Γ (α)(1–A ) , 0 ≤ t ≤ s ≤ 1, ξ ≤ s.

(3.4)

Proof By applying Lemma 2.2, we can reduce Eq. (3.1) to an equivalent integral equation

u(t) = –Iαh(t) + c1tα–1 + c2tα–2, (3.5)

for some c1, c2 ∈ R. Note that u(0) = 0, we have c2 = 0. Consequently the general solution
of Eq. (3.1) is

u(t) = –Iαh(t) + c1tα–1. (3.6)

By (3.6) and Lemma 2.1, we have

Dβu(t) = –Dβ Iαh(t) + c1Dβ tα–1 = –Iα–βh(t) + c1
Γ (α)

Γ (α – β)
tα–β–1.
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So,

Dβu(1) = –
∫ 1

0

(1 – s)α–β–1

Γ (α – β)
h(s) ds + c1

Γ (α)
Γ (α – β)

, (3.7)

Dβu(ξ ) = –
∫ ξ

0

(ξ – s)α–β–1

Γ (α – β)
h(s) ds + c1

Γ (α)
Γ (α – β)

ξα–β–1. (3.8)

By Dβu(1) = aDβu(ξ ), combining with (3.7) and (3.8), we obtain

c1 =
1

Γ (α)(1 – A )

{∫ 1

0
(1 – s)α–β–1h(s) ds – a

∫ ξ

0
(ξ – s)α–β–1h(s) ds

}
.

So, the unique solution of the problem (3.1), (3.2) is

u(t) = –
∫ t

0

(t – s)α–1

Γ (α)
h(s) ds +

tα–1

Γ (α)(1 – A )

{∫ 1

0
(1 – s)α–β–1h(s) ds

– a
∫ ξ

0
(ξ – s)α–β–1h(s) ds

}

=
∫ 1

0
G(t, s)h(s) ds.

The proof is completed. �

Lemma 3.2 If h ∈ C[0, 1], φp(s) = |s|p–2s, p > 1, φq = (φp)–1, 1
p + 1

q = 1, α,β ,γ ∈ R, 1 < α,
γ ≤ 2, β > 0 and 1 + β ≤ α, 0 < ξ , η < 1, a, b ∈ [0, +∞), B =: bp–1ηγ –1, then the problem

Dγ
(
φp

(
Dαu(t)

))
= h(t), 0 < t < 1, (3.9)

u(0) = Dαu(0) = 0, Dβu(1) = aDαu(ξ ), Dαu(1) = bDαu(η), (3.10)

has an unique solution

u(t) =
∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )h(τ ) dτ

)
ds,

where

H(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[t(1–s)]γ –1–bp–1[t(η–s)]γ –1–(1–B)(t–s)γ –1

(1–B)Γ (γ ) , 0 ≤ s ≤ t ≤ 1, s ≤ η;
[t(1–s)]γ –1–(1–B)(t–s)γ –1

(1–B)Γ (γ ) , 0 < η ≤ s ≤ t ≤ 1;
[t(1–s)]γ –1–bp–1[t(η–s)]γ –1

(1–B)Γ (γ ) , 0 ≤ t ≤ s ≤ η < 1;
[t(1–s)]γ –1

(1–B)Γ (γ ) , 0 ≤ t ≤ s ≤ 1,η ≤ s.

(3.11)

G(t, s) is defined by (3.4).

Proof From Eq. (3.9), and Lemma 2.2, we have

φp
(
Dαu(t)

)
= Iγ h(t) + d1tγ –1 + d2tγ –2, (3.12)
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for some d1, d2 ∈R. Note that Dβu(0) = 0, we have d2 = 0, then

φp
(
Dαu(t)

)
=

1
Γ (γ )

∫ t

0
(t – τ )γ –1h(τ ) dτ + d1tγ –1. (3.13)

So,

φp
(
Dαu(1)

)
=

1
Γ (γ )

∫ 1

0
(1 – τ )γ –1h(τ ) dτ + d1, (3.14)

φp
(
Dαu(η)

)
=

1
Γ (γ )

∫ η

0
(η – τ )γ –1h(τ ) dτ + d1η

γ –1. (3.15)

By Dαu(1) = bDαu(η), combining with (3.14) and (3.15), we have

d1 = –
∫ 1

0

(1 – τ )γ –1

Γ (γ )(1 – B)
h(τ ) dτ +

∫ η

0

bp–1(η – τ )γ –1

Γ (γ )(1 – B)
h(τ ) dτ .

So, the unique solution of problem (3.1), (3.2) is

φp
(
Dαu(t)

)
=

∫ t

0

(t – τ )γ –1

Γ (γ )
h(τ ) dτ –

∫ 1

0

tγ –1(1 – τ )γ –1

Γ (γ )(1 – B)
h(τ ) dτ

+
∫ η

0

bp–1tγ –1(η – τ )γ –1

Γ (γ )(1 – B)
h(τ ) dτ

= –
∫ 1

0
H(t, τ )h(τ ) dτ .

Therefore,

Dαu(t) + φq

(∫ 1

0
H(t, τ )h(τ ) dτ

)
= 0.

Combining with the boundary conditions u(0) = 0, Dβu(1) = aDαu(ξ ), by Lemma 3.1, we
obtain the unique solution of problem (3.9), (3.10)

u(t) =
∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )h(τ ) dτ

)
ds.

The proof is completed. �

Lemma 3.3 Suppose 1 – A > 0, 1 – B > 0. The functions G(t, s) and H(t, s) have the fol-
lowing properties:

(1) G(t, s), H(t, s) ∈ C([0, 1] × [0, 1]) and G(t, s) > 0, H(t, s) > 0 for t, s ∈ (0, 1);
(2) there exist functions ω,ω1 ∈ C((0, 1), (0, +∞)) such that

ω(s) ≥ max
0≤t≤1

G(t, s), ω1(s) ≥ max
0≤t≤1

H(t, s),
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where

g(t, s) =
tα–1(1 – s)α–β–1 – (t – s)α–1

Γ (α)
,

g1(t, s) =
[t(1 – s)]γ –1 – (t – s)γ –1

Γ (γ )
,

ω(s) = g(s, s) +
A (1 – s)α–β–1

Γ (α)(1 – A )
, ω1(s) = g1(s, s) +

B(1 – s)γ –1

Γ (γ )(1 – B)
, s ∈ (0, 1).

Proof It is obvious that g(t, s) > 0, g1(t, s) > 0 for s, t ∈ (0, 1). We note that g(t, s), g1(t, s) are
decreasing with respect to t for s ≤ t and increasing with respect to t for t ≤ s. Hence,

max
0≤t≤1

g(t, s) = g(s, s) =
sα–1(1 – s)α–β–1

Γ (α)
, s ∈ (0, 1);

max
0≤t≤1

g1(t, s) = g1(s, s) =
sγ –1(1 – s)γ –1

Γ (γ )
, s ∈ (0, 1).

We first prove the statement (1). From the definitions of G(t, s) and H(t, s), it is clear that
G(t, s), H(t, s) ∈ C([0, 1] × [0, 1]).

For 0 < s ≤ t < 1, s ≤ ξ , we have

G(t, s) =
tα–1(1 – s)α–β–1 – (1 – A )(t – s)α–1 – atα–1(ξ – s)α–β–1

Γ (α)(1 – A )

=
1

Γ (α)

(
1 +

A

1 – A

)
tα–1(1 – s)α–β–1 –

(t – s)α–1

Γ (α)

–
atα–1(ξ – s)α–β–1

Γ (α)(1 – A )

=
tα–1(1 – s)α–β–1 – (t – s)α–1

Γ (α)

+
atα–1[ξα–β–1(1 – s)α–β–1 – (ξ – s)α–1]

Γ (α)(1 – A )

≥ g(t, s) +
atα–1

Γ (α)(1 – A )
g(ξ , s)

> 0.

By using an analogous argument, we have G(t, s) > 0 for 0 < ξ ≤ s ≤ t < 1 or 0 < t ≤ s ≤ ξ < 1
or 0 < t ≤ s < 1, ξ ≤ s.

Hence, G(t, s) > 0 for t, s ∈ (0, 1).
For 0 < s ≤ t < 1, s ≤ η, we have

H(t, s) =
[t(1 – s)]γ –1 – bp–1[t(η – s)]γ –1 – (1 – B)(t – s)γ –1

Γ (γ )(1 – B)

=
(

1 +
B

1 – B

)
[t(1 – s)]γ –1

Γ (γ )
–

(t – s)γ –1

Γ (γ )
–

bp–1[t(η – s)]γ –1

Γ (γ )(1 – B)



Tian et al. Advances in Difference Equations        (2019) 2019:349 Page 7 of 14

=
[t(1 – s)]γ –1 – (t – s)γ –1

Γ (γ )
+

bp–1tγ –1[ηγ –1(1 – s)γ –1 – (η – s)γ –1]
Γ (γ )(1 – B)

= g1(t, s) +
bp–1tγ –1

1 – B
g1(η, s)

> 0.

Similarly, H(t, s) > 0 for 0 < η ≤ s ≤ t < 1 or 0 < t ≤ s ≤ η < 1 or 0 < t ≤ s < 1, η ≤ s.
Hence, H(t, s) > 0 for t, s ∈ (0, 1).
Now follows the proof of the statement (2).
For 0 ≤ s ≤ t ≤ 1, s ≤ ξ , one has

max
0≤t≤1

G(t, s)

= max
0≤t≤1

(
g(t, s) +

atα–1[ξα–β–1(1 – s)α–β–1 – (ξ – s)α–1]
Γ (α)(1 – A )

)

≤ g(s, s) +
A (1 – s)α–β–1

Γ (α)(1 – A )
= ω(s).

For 0 < ξ ≤ s ≤ t ≤ 1, one has

max
0≤t≤1

G(t, s)

= max
0≤t≤1

tα–1(1 – s)α–β–1 – (1 – A )(t – s)α–1

Γ (α)(1 – A )

= max
0≤t≤1

(
1

Γ (α)

(
1 +

A

1 – A

)
tα–1(1 – s)α–β–1 –

(t – s)α–1

Γ (α)

)

≤ g(s, s) +
A (1 – s)α–β–1

Γ (α)(1 – A )
= ω(s).

For 0 ≤ t ≤ s ≤ ξ < 1,

max
0≤t≤1

G(t, s)

= max
0≤t≤1

tα–1(1 – s)α–β–1 – atα–1(ξ – s)α–β–1

Γ (α)(1 – A )

= max
0≤t≤1

(
tα–1(1 – s)α–β–1

Γ (α)
+

atα–1[(ξ – ξ s)α–β–1 – (ξ – s)α–1]
Γ (α)(1 – A )

)

≤ g(s, s) +
A (1 – s)α–β–1

Γ (α)(1 – A )
= ω(s).

For 0 ≤ t ≤ s ≤ 1, ξ ≤ s,

max
0≤t≤1

G(t, s) = max
0≤t≤1

tα–1(1 – s)α–β–1

Γ (α)(1 – A )

= max
0≤t≤1

(
1

Γ (α)

(
1 +

A

1 – A

)
tα–1(1 – s)α–β–1

)

≤ g(s, s) +
A (1 – s)α–β–1

Γ (α)(1 – A )
= ω(s).
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So,

max
0≤t≤1

G(t, s) ≤ ω(s), s ∈ (0, 1).

For 0 ≤ s ≤ t ≤ 1, s ≤ η, one has

max
0≤t≤1

H(t, s) ≤ max
0≤t≤1

(
g1(t, s) +

bp–1tγ –1

1 – B
g1(η, s)

)

≤ g1(s, s) +
B(1 – s)γ –1

Γ (γ )(1 – B)
= ω1(s).

For 0 < η ≤ s ≤ t ≤ 1, one has

max
0≤t≤1

H(t, s)

= max
0≤t≤1

[t(1 – s)]γ –1 – (1 – B)(t – s)γ –1

Γ (γ )(1 – B)

= max
0≤t≤1

(
g1(t, s) +

Btγ –1(1 – s)γ –1

Γ (γ )(1 – B)

)

≤ g1(s, s) +
B(1 – s)γ –1

Γ (γ )(1 – B)
= ω1(s).

For 0 ≤ t ≤ s ≤ η < 1,

max
0≤t≤1

H(t, s) = max
0≤t≤1

[t(1 – s)]γ –1 – bp–1[t(η – s)]γ –1

Γ (γ )(1 – B)

= max
0≤t≤1

(
[t(1 – s)]γ –1

Γ (γ )
+

bγ –1tγ –1

1 – B
g1(η, s)

)

≤ g1(s, s) +
B(1 – s)γ –1

Γ (γ )(1 – B)
= ω1(s).

For 0 ≤ t ≤ s ≤ 1, η ≤ s,

max
0≤t≤1

H(t, s) = max
0≤t≤1

[t(1 – s)]γ –1

Γ (γ )(1 – B)

= max
0≤t≤1

(
[t(1 – s)]γ –1

Γ (γ )
+

B[t(1 – s)]γ –1

Γ (γ )(1 – B)

)

≤ g1(s, s) +
B(1 – s)γ –1

Γ (γ )(1 – B)
= ω1(s).

So,

max
0≤t≤1

H(t, s) ≤ ω1(s), s ∈ (0, 1).

It is obvious that ω(s),ω1(s) ∈ C((0, 1), (0, +∞)). The proof is completed. �

Let E = C[0, 1] be a Banach space with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|. Define
the cone P ⊂ E by P = {u ∈ E | u(t) ≥ 0, 0 ≤ t ≤ 1}.
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Lemma 3.4 Let T : P → E be the operator defined by

(Tu)(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
H(s, τ )f

(
τ , u(τ )

)
dτ

)
ds.

Then T : P → P is completely continuous.

Proof The operator T : P → P is continuous in view of nonnegative and continuity
of G(t, s), H(t, s) and f (t, u). Furthermore it is easy see by the Arzela–Ascoli theorem
and Lebesgue dominated convergence theorem that T : P → P is completely continu-
ous. �

For convenience, we introduce the following notation:

L =
[∫ 1

0
ω(s)φq

(∫ s

0
ω1(τ ) dτ

)
ds

]–1

.

Theorem 3.1 Assume there exists a constant λ > 0 such that
(C1) f (t, x1) ≤ f (t, x2) for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ λ;
(C2) max0≤t≤1 f (t,λ) ≤ φp(λL);
(C3) f (t, 0) 
= 0 for 0 ≤ t ≤ 1.
Then problem (1.1), (1.2) has two positive solution u∗ and v∗, such that

0 < ‖u∗‖ ≤ λ and limn→∞ Tnu0 = u∗, where u0(t) = λ,
0 < ‖v∗‖ ≤ λ and limn→∞ Tnv0 = v∗, where v0(t) = 0.

Proof Define Pλ = {u ∈ P | ‖u‖ ≤ λ}. In what follows, we first prove TPλ ⊆ Pλ.
Let u ∈ Pλ, then 0 ≤ u(t) ≤ ‖u‖ ≤ λ. By assumption (C1) and (C2), we have

0 ≤ f
(
t, u(t)

) ≤ f (t,λ) ≤ φp(λL).

For any u ∈ Pλ, by Lemma 3.4, we know that Tu ∈ P, and as a result

‖Tu‖ = max
0≤t≤1

∫ 1

0
G(t, s)φq

(∫ s

0
H(s, τ )f

(
τ , u(τ )

)
dτ

)
ds

≤
∫ 1

0
ω(s)φq

(∫ s

0
φp(λL)ω1(τ ) dτ

)
ds

= λL
∫ 1

0
ω(s)φq

(∫ s

0
ω1(τ ) dτ

)
ds

= λ.

Hence Tu ∈ Pλ. Thus, we get TPλ ⊆ Pλ.
Let u0(t) = λ, 0 ≤ t ≤ 1, then ‖u0‖ = λ and u0 ∈ Pλ. Let u1(t) = Tu0(t), then u1 ∈ Pλ.

Define

un+1 = Tun = Tn+1u0, n = 0, 1, 2, . . . .

Since TPλ ⊆ Pλ, one has un ∈ Pλ (n = 0, 1, 2, . . .). From Lemma 3.3, T is compact; we as-
sert that {un}∞n=1 has a convergent subsequence {unk }∞k=1 and there exists u∗ ∈ Pλ such that
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unk → u∗. From the definition of T and (C1), for any t ∈ [0, 1], we have

u1(t) = (Tu0)(t)

=
∫ 1

0
G(t, s)φq

(∫ s

0
H(s, τ )f

(
τ , u0(τ )

)
dτ

)
ds

≤
∫ 1

0
ω(s)φq

(∫ s

0
φp(λL)ω1(τ ) dτ

)
ds

= λL
∫ 1

0
ω(s)φq

(∫ s

0
ω1(τ ) dτ

)
ds

= λ

= u0(t).

So,

u2(t) = Tu1(t) ≤ Tu0(t) = u1(t), 0 ≤ t ≤ 1.

Hence, by the induction we have

un+1 ≤ un, 0 ≤ t ≤ 1, n = 0, 1, 2, . . . .

Thus, there exists u∗ ∈ Pλ such that un → u∗. Applying the continuity of T and un+1 = Tun,
we get Tu∗ = u∗.

Let v0 = 0, 0 ≤ t ≤ 1, then v0 ∈ Pλ. Let v1 = Tv0, then v1 ∈ Pλ. Define

vn+1 = Tvn = Tn+1v0, n = 0, 1, 2, . . . .

Since T : Pλ → Pλ, we have vn ⊆ Pλ, n = 0, 1, 2, . . . . Since T is completely continuous, we
assert that {vn}∞n=1 is a sequentially compact set.

Since v1(t) = Tv0(t) = (T0)(t) ≥ 0, 0 ≤ t ≤ 1, one has

v2(t) = Tv1(t) ≥ (T0)(t) = v1(t), 0 ≤ t ≤ 1.

Hence, by the induction we have

vn+1 ≥ vn, 0 ≤ t ≤ 1, n = 0, 1, 2, . . . .

Thus, there exists v∗ ∈ Pλ such that vn → v∗. Applying the continuity of T and vn+1 = Tvn,
we get Tv∗ = v∗.

It is well known that each fixed point of operator T in P is a solution of problem (1.1).
Furthermore, if f (t, 0) 
= 0, 0 ≤ t ≤ 1, then the zero function is not the solution of problem
(1.1). Hence, we have ‖u∗‖ > 0, ‖v∗‖ > 0. Then u∗ and v∗ are two positive solutions of
problem (1.1). The proof is completed. �

By applying Theorem 3.1, we can get the following corollary.
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Corollary 3.1 Assume (C3) holds, and the following conditions hold:
(C4) f (t, x1) ≤ f (t, x2) for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2;
(C5) limx→∞ max0≤t≤1

f (t,x)
xp–1 ≤ φp(L) (particularly limx→∞ max0≤t≤1

f (t,x)
xp–1 = 0).

Then problem (1.1) have two positive solutions u∗ and v∗.

4 Example
Let p = 3

2 , α = 4
3 , γ = 3

2 , β = 1
4 , ξ = 1

3 , η = 1
4 , a = b = 1

2 . We consider the following boundary
value problem:

⎧
⎨

⎩
D 3

2 (φ 3
2

(D 4
3 x(t))) = f (t, x(t)), 0 < t < 1,

x(0) = D 4
3 x(0) = 0, D 1

4 x(1) = 1
2 D 1

4 x( 1
3 ), D 4

3 x(1) = 1
2 D 4

3 x( 1
4 ),

(4.1)

where

f (t, x) =
1

24
(
1 + xet + x

3
2
)
.

It is obvious that

1 – aξα–β–1 = 1 –
1
2

(
1
3

) 1
12

> 0, 1 – bp–1ηγ –1 = 1 –
1

2 3
2

> 0.

By computation, we can obtain L ≈ 0.2318. We choose λ = 5. So, f (t, x) satisfies
(1) f (t, x1) ≤ f (t, x2) for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ 5;
(2) max0≤t≤1 f (t,λ) = f (1, 5) ≈ 25.7703

24 ≈ 1.0738 < φ 3
2

(λL) ≈ 1.0766;
(3) f (t, 0) = 1

24 
= 0 for 0 ≤ t ≤ 1.
Then applying Theorem 3.1, problem (4.1) has two positive solutions u∗ and v∗ such

that
0 < ‖u∗‖ ≤ 5 and limn→∞ Tnu0 = u∗, where u0(t) = 5,
0 < ‖v∗‖ ≤ 5 and limn→∞ Tnv0 = v∗, where v0(t) = 0.
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