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Abstract
This paper studies the transient slip flow and heat transfer of a fluid driven by the
oscillatory pressure gradient in a microchannel of elliptic cross section. The boundary
value problem for the thermal-slip flow is formulated based on the assumption that
the fluid flow is fully developed. The semi-analytical solutions of velocity and
temperature fields are then determined by the Ritz method. These solutions include
some existing known examples as special cases. The effects of the slip length and the
ratio of minor to major axis of the elliptic cross section on the velocity and
temperature distribution in the microchannel are investigated.

Keywords: Slip flow; Heat transfer; Oscillatory pressure gradient; Microchannel;
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1 Introduction
Owing to rapid growth in developments of micro-fluidic devices used for various indus-
trial applications such as biofluidic systems using in precision medicine, micro-electric-
mechanical system (MEMS), perpetual motion machine, semi-conductor manufacturing
equipment, microscale heat exchangers and so on. As micro-fluidic device has charac-
teristic length between 1 μm and 1 mm, the flow behaviour in the microchannel has a
non-continuum effect. In the literature, a number of experimental and/or mathematical
investigations deal with slip flow and/or heat transfer through microchannels, but the mi-
croflow phenomenon is not well understood due to contradictions related to drag effect
and transition from laminar to turbulent flow. Due to the difficulty in experiments in this
area, continuing effort to resolve these problems mathematically is important. Slip flow
phenomenon in microducts has traditionally been studied analytically and numerically
[7–9, 13, 17–20]. The governing equations of the slip flow in microducts include the clas-
sical Navier–Stokes equations. Based on the assumption of incompressible Newtonian
fluid with constant properties, negligible body forces and hydrodynamically fully devel-
oped steady state flow, the Navier–Stokes equations reduce to the Poisson equation

(
∂2u
∂x2 +

∂2u
∂y2

)
= f (1)
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subject to Navier’s slip boundary condition

u = –β
∂u
∂n

, (2)

or the second-order slip boundary condition

u = –βvλ
∂u
∂n

+ –βvλ
2 ∂2u
∂n2 , (3)

where β is the slip parameter, βv = 2–σv
σv

depending on the tangential momentum accom-
modation coefficient (σv), λ denotes the molecular mean flow path and n is unit outward
normal vector to the boundary.

Wang [18] analysed the slip flow in super-elliptic ducts governed by the Poisson equa-
tion (1) with f = –1 subject to Navier’s slip condition. The Ritz method was applied for the
solution of the problem. The results indicate that the average velocity increases and the
friction factor-Reynolds number product decreases as the slip parameter increases with
parameters being fixed. Duan and Muzychka [9] and Das and Tahmouresi [8] described
the gaseous slip flow in elliptic microchannel using equation (1) with f = 1

μ

∂p
∂z under the

first-order slip boundary condition. The method of separation of variables [9] and integral
transforms incorporating the Aftken transformation [8] were applied to obtain analyti-
cal solutions in elliptic cylinder coordinates. The computed results of friction factor and
Reynolds number product were reported. Maurer et al. [13] proposed a second-order slip
law in microchannels for helium and nitrogen. An experimental model of gas flow in a
shallow microchannel with rectangular cross section was used to study the second-order
effects. The experimental results were compared with theoretical expectations. The up-
per limit of the slip flow regime in terms of the averaged Knudsen number is predicted for
two gases. As various problems in micro-fluidic devices involve slip flow with a relation-
ship between temperature and volumetric flow rate [5, 10], understanding the relationship
between fluid flow and temperature is important in most micro-fluidic systems. Various
projects [2, 3, 11, 12, 15, 16, 21] have been carried out to study the steady slip-flow heat
transfer process in microchannels using the classical Navier–Stokes equations and the en-
ergy equation. Under the assumption of the fully developed slip-flow heat transfer, the
governing equations reduce to

μ

(
∂2u
∂x2 +

∂2u
∂y2

)
=

∂p
∂z

(4)

and

k
(

∂2T
∂x2 +

∂2T
∂y2

)
= F . (5)

Yu and Ameel [21] studied analytically the slip flow and heat transfer of gas in rectangular
microchannels with velocity slip and temperature jump conditions at the gas-surface in-
terface. A modified generalised integral transform method was applied for the solution of
the problem. Spiga and Vocale [15] described the slip flow with constant heat flux (q) in
elliptic microchannels with cross section area (A) by the Poisson equation (1) and energy
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equations (4) in which the force term is defined by F = q
A

u
ū . To the best of authors’ knowl-

edge, little work has been done to study the unsteady slip flow and heat transfer driven by
oscillating pressure gradient in microchannels of elliptic cross section.

This paper is to study transient oscillating pressure-driven slip flow and heat transfer in
elliptic microchannels. The model is subject to the Navier slip and convective heat flow
conditions at the boundary. Constant heat flux is assumed in the microchannel. Semi-
analytical solutions of velocity and temperature fields will be obtained by the Ritz method.

2 Governing equations
This paper concerns a thermal fluid flow inside an elliptical tube with the uniform external
temperature. The classical Navier–Stokes and energy equations are

μ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
– ρ

∂u
∂t

=
∂p
∂z

, (6)

k
(

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
– ρcp

(
∂T
∂t

+ u
∂T
∂z

)
= qp (7)

subject to the initial condition T = T0 at x = y = z = t = 0 and the boundary conditions on
the tube wall

u + β
∂u
∂n

= 0, h∞(T – T∞) – k
∂T
∂n

= 0, (8)

where u and T represent respectively the flow speed and temperature of fluid, μ,ρ, k and
cp denote respectively viscosity, density, thermal conductivity and specific heat of the fluid,
h∞ represents the convective heat transfer coefficient, T∞ is the tube outer temperature
which is assumed to be uniform and qp is heat flux.

In this study, we assume no swirling flow but the effect of pressure variation on heat flux
[4] is considered

∂u
∂z

= 0, qp =
q
p̄

(
∂p
∂t

+ u
∂p
∂z

)
, (9)

where q and p̄ are respectively a heat flux parameter and the average pressure.
We also assume that the flow of fluid along the elliptical tube with uniform shape is

driven by the oscillating pressure gradient with frequency ω at time t, i.e.

∂p
∂z

= p0eiωt . (10)

Thus, equations (6) and (7), by using equations (9) and (10), become

μ

(
∂2u
∂x2 +

∂2u
∂y2

)
– ρ

∂u
∂t

= p0eiωt , (11)

k
(

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
– ρcp

(
∂T
∂t

+ u
∂T
∂z

)
=

q
p̄

(iωz + u)p0eiωt . (12)

We now find the velocity and temperature fields in the form of

u = v(x, y)eiωt , T = h(x, y)
(
T∞ + (T0 – T∞)e– αz

ū –λt), (13)
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where ū is average velocity, α = 4h∞
ρcpDh

and λ =
√

h∞A
cp

in which A is the area of cross section
and Dh is a hydraulic diameter determined by [14]

Dh =
4ab(64 – 16E2)

(a + b)(64 – 3E4)
for E =

a – b
a + b

. (14)

We now obtain, from equation (13) and denoting γ = ρcp
k , the boundary value problem

(BVP):

(
∂2v
∂x2 +

∂2v
∂y2

)
–

iωρ

μ
v –

p0

μ
= 0, (15)

(
∂2h
∂x2 +

∂2h
∂y2

)
– g(x, y, z, t)h – f (x, y, z, t) = 0 (16)

with

g(x, y, z, t) =
(γ λ + γα u

ū + ( α
ū )2)(T∞ – T0)e–( α

ū z+λt)

T∞ + (T0 – T∞)e–( α
ū z+λt) ,

f (x, y, z, t) =
q

kp̄

(
(iωz + u)p0eiωt

T∞ + (T0 – T∞)e–( α
ū z+λt)

)

subject to the boundary conditions

v + β
∂v
∂n

= 0, h∞h + k
∂h
∂n

=
h∞T∞

T∞ + (T0 – T∞)e–( α
ū z+λt) , (17)

which can be solved in elliptical coordinates (see details in our paper [7]).
Here, we solve the above BVP in rectangular coordinates by considering the quadratic

minimisation problem to find w ∈ K ⊂ H1(Ω) where H1(Ω) is a Hilbert space such that

min J =
1
2

a(w, w) – F , (18)

where a(w, w) is a bilinear form and F is a linear form and the vector space K is convex.
Our BVP (15)–(17) is thus equivalent to the following system of equations:

Iv =
1
β

∫
∂Ω

v2 ds +
∫

Ω

(
∂v
∂x

)2

+
(

∂v
∂y

)2

+
iωρv2

μ
+ 2p0v dΩ = 0, (19)

Ih =
h∞
k

∫
∂Ω

h2 –
T∞h

T∞ + (T0 – T∞)e–( α
ū z+λt) ds

+
∫

Ω

(
∂h
∂x

)2

+
(

∂h
∂y

)2

+ g(x, y, z, t)h2 + 2f (x, y, z, t)h dΩ = 0. (20)

For an instant time t = tn and a fixed z = zn value, we have fn = f (x, y, zn, tn) and gn =
g(x, y, zn, tn) and obtain the solutions v(x, y) and h(x, y) of the above system (19)–(20) by
using the Ritz method.

Let v(x, y) and h(x, y) be defined by

v = v(x, y) =
N∑

i=1

ciφi(x, y), h = h(x, y) = 1 +
N∑

i=1

diϕi(x, y), (21)
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φi =
{

1, x2, y2, x4, x2y2, y4, x6, x2y4, x4y2, y6, . . .
}

,

ϕi =
{

xy, x2, y2, x4, x2y2, y4, x6, x2y4, x4y2, y6, . . .
}

.

Substituting equation (21)1 into equation (19) and setting ∂IV
∂ci

= 0 (i = 1, . . . , N), after some
derivation, we obtain the following linear system of equations:

N∑
j=1

cj(Kij + Bij) = Ci, i = 1, . . . , N , (22)

with

Kij =
∫

Ω

φixφjx + φiyφjy +
iωρ

μ
φiφj dΩ ,

Bij =
1
β

∫
∂Ω

φiφj ds, Ci =
2p0

μ

∫
Ω

φi dΩ .

By solving system (22) for unknowns cj, and then using equation (6)1, the velocity can
be obtained by

u(x, y, t) = �
(

eiωt
N∑

j=1

cjφj(x, y)

)
. (23)

We now consider the temperature field. We substitute equation (21)2 into equation (20)
and set ∂Ih

∂di
= 0 (i = 1, . . . , N). Then we obtain the linear system of equations

N∑
j=1

dj
(
Aij + B′

ij
)

= Di, i = 1, . . . , N , (24)

with

Aij =
∫

Ω

ϕixϕjx + ϕiyϕjy + gnϕiϕj dΩ , B′
ij =

h∞
k

∫
∂Ω

ϕiϕj ds,

Di =
h∞
k

(
T∞

T∞ + (T0 – T∞)e–( α
ū zn+λtn)

)∫
∂Ω

ϕi ds + 2
∫

Ω

fnϕi dΩ .
(25)

By solving system (24) for unknowns dj and using equation (21)2, the temperature T can
be determined by

T =

(
1 + �

N∑
j=1

djϕj(x, y)

)(
T∞ + (T0 – T∞)e–( α

ū zn+λtn)). (26)

3 Numerical example
In this study, we assume that the elliptic microchannel is a small artery surrounded by
body tissue which allows the maximum temperature of 42°C, and the temperature in the
middle of the artery at the initial state t = 0 s is set to the body temperature of 37°C. To
study the slip flow and heat transfer in a microchannel of elliptic cross section with semi-
major axis of length a and semi-minor axis of length b, we use the model parameters as
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Table 1 Model parameters. Fluid properties at 37°C [1, 6]

Blood Tissue

density ρ [g/cm3] 1.05 1
dynamic viscosity μ [poise] 0.04
thermal conductivity k [(cal/(s · cm · ◦C)] 1.43× 10–3 1.47× 10–3

specific heat capacity cp [cal/(g · ◦C)] 0.86 0.67
initial temperature T0 [◦C] 37 42
heat transfer coefficient h∞ [cal/(s · cm2 · ◦C)] 5.49× 10–5 6.45× 10–5

heat flux parameter q [W/cm2)] 0.1
average pressure p [mmHg] 100

Figure 1 Oscillating pressure gradient

shown in Table 1. For the slip flow control, we set the pressure gradient as dp/dz = –5ieiωt

for ω = 1.55. Figure 1 shows variations of the pressure profile over time.
The velocity and temperature are computed using the first 10-term approximations of

the series in equations (22) and (24), respectively. To demonstrate the oscillatory pressure-
driven flow under the wall-slip condition, we plot the axial velocity in the microchannel
with aspect ratio of 3/4 (a = 0.1 cm, b = 0.075 cm) and slip length of 0.05 at the first full
wave cycle. Figure 2 shows the U-shaped curves of the axial velocities along the major and
minor axes. It is noted from Fig. 2(a) that the velocity decreases as t increases when dp/dz >
0, while it increases as t increases when dp/dz < 0. In addition, when dp/dz approaches
zero at t = 2 s on the left and t = 4 s on the right, the velocity pattern is similar but the fluid
moves in the opposite direction.

To analyse the effect of oscillating flow under the slip condition on the temperature, we
use an aspect ratio of 3/4 (a = 0.1 cm, b = 0.075 cm) and a slip length of 0.05 to plot the
temperature and its contour at t = 121 s when dp/dz > 0, and at t = 123 s when dp/dz < 0
in the 30th full wave cycle as shown in Fig. 3. It indicates that the oscillating flow gives a
significant change in the pattern of temperature distribution on the elliptic cross section.

To investigate the effect of slip length on the temperature distribution, we consider the
problem in the elliptic microchannel with an aspect ratio of 3/4 (a = 0.1 cm, b = 0.075 cm).
The temperature and its contour are plotted at t = 123 s when dp/dz < 0 in the 30th full
wave cycle. Figure 4 shows the effect of slip length on temperature distribution. It illus-
trates that the higher the slip length is, the lower the temperature will be in the channel.
The slip-length values of 0.05, 0.1 and 0.5 give the maximum temperature of 40.025, 39.30
and 38.95°C, respectively.
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Figure 2 Oscillating flow of fluid. Axial velocity in the 1st full wave cycle for a = 0.1 cm, b = 0.075 cm and slip
length of 0.01

Figure 3 Temperature distribution. Temperature distribution on the cross section z = 1 cm in a full wave
cycle at time t = 121 s when dp

dz > 0, and at t = 123 s when dp
dz < 0 for semi-axes lengths of a = 0.1 cm,

b = 0.075 cm and slip length of 0.05

The effect of aspect ratio b/a on the temperature distribution is also analysed by set-
ting a constant slip length of 0.1 and choosing three values of the aspect ratio b/a = 3/4,
1/2 and 1/3 for a fixed value of a = 0.1 cm. The temperature and its contour at t = 123 s
when dp/dz < 0 in the 30th full wave cycle are presented in Fig. 5. The results indicate that
the aspect ratio of the elliptic microchannel has an effect on the temperature distribu-
tion. The aspect ratios of 3/4, 1/2 and 1/3 give the maximum temperature of 39.30, 39.55
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Figure 4 Temperature distribution. Temperature distribution on the cross section z = 5 cm in a full wave
cycle at time t = 123 s obtained from the model with various slip lengths of 0.05, 0.1, 0.5 and semi-axes
lengths of a = 0.1 cm and b = 0.075 cm

Figure 5 Temperature distribution. Temperature distribution on the cross section z = 5 cm in a full wave
cycle at time t = 123 s obtained from the model with three aspect ratios of b/a = 3/4, 1/2 and 1/3 for slip
length of 0.1 and the semi-major axis of a = 0.1 cm

and 40.40°C, respectively. The patterns of temperature distribution in microchannels with
different aspect ratio are different as shown in Fig. 5.

4 Conclusion
This paper presents a mathematical model and its semi-analytical solution for the oscil-
lating pressure-driven flow and heat transfer through an elliptic microchannel under the
slip condition using the Ritz method. The results show that the characteristics of the oscil-
lating flow of fluid and heat transfer in microchannels depends on the slip length and the
aspect ratio of the microchannel. The results of this research may help in the optimisation
of certain bioengineering systems.
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