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Abstract
In this paper, the combination of efficient sixth-order compact finite difference
scheme (E-CFDS6) based proper orthogonal decomposition and Strang splitting
method (E-CFDS6-SSM) is constructed for the numerical solution of the
multi-dimensional parabolic equation (MDPE). For this purpose, we first develop the
CFDS6 to attain a high accuracy for the one-dimensional parabolic equation (ODPE).
Then, by the Strang splitting method, we have converted the MDPE into a series of
one-dimensional ODPEs successfully, which is easier to implement and program with
CFDS6 than an alternating direction implicit method. Finally, we employ proper
orthogonal decomposition techniques to improve the computational efficiency of
CFDS6 and build the E-CFDS6-SSM with fewer unknowns and sufficiently high
accuracy. Six numerical examples are presented to demonstrate that the
E-CFDS6-SSM not only can largely alleviate the computational load but also hold a
high accuracy and simplify the process of the program for the numerical solution of
MDPE.

Keywords: Compact finite difference scheme; Proper orthogonal decomposition;
Multi-dimensional parabolic equation; Strang splitting method

1 Introduction
Many physical phenomena are simulated with parabolic equations such as proliferation
of gas, the penetration of liquids, heat conduction and spread of impurities in semicon-
ductor materials. However, due to the complexity of practical problems or the lack of rules
for initial values, their exact solutions for practical engineering problems are not generally
sought out so that we have to rely on numerical solutions. Currently, extensive numeri-
cal methods including the finite difference method, finite element method, finite volume
method and spectral method have been developed for the numerical solution of parabolic
equation. In these methods, the FDM has proved to be the most popular and efficient
method for finding the numerical solution of a parabolic equation because of its simplicity,
wide application in applied fields of sciences and easy programming. Although it is feasi-
ble to solve these equations by means of some traditional FDM such as the Euler method
and the central difference method, these schemes, which converge very slowly, may largely
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deviate from the exact solution. Therefore, it is imperative for us to construct a scheme
that can guarantee satisfying numerical solution and reflect the properties of equations.

In the existing papers, many scholars focus their eyes on the compact finite difference
scheme (CFDS), which has been widely used in numerical solution of various types of par-
tial differential equations. The outstanding advantage of CFDS is that it possesses a faster
convergence rate than the corresponding explicit schemes, not significantly increasing the
points in each coordinate direction of the grid. As one of the most effective numerical im-
plementations, there have been many numerical research reports concerning with CFDS.
For example, Hammad [1] constructed CFDS for Burgers–Huxley and Burgers–Fisher
equations. Wang [2] developed CFDS for Poisson equation. Mohebbi [3] combined CFDS
with a radial basis functions meshless approach to solve the 2D Rayleigh–Stokes problem.
Düring [4] applied CFDS to stochastic volatility models on non-uniform grids. Chen [5]
provided high-order CFDS to solve parabolic equation. Especially, some attempts have
been made whose main idea is to combine fourth Runge–Kutta in time and a sixth-order
compact finite difference in space (CFDS6) by the researchers [6–8]. However, the CFDS6
for parabolic equation, especially the case of desirable accuracy in high dimension, they
usually need small spatial discretization or extended finite difference stencils and a small
time step which brings about heavy computational loads. Therefore, an important prob-
lem for CFDS6 is how to build a scheme which not only saves the computational time in
the practical problems but also holds a sufficiently accurate numerical solution.

A large number of numerical examples have proved that the proper orthogonal decom-
position (POD) is a powerful technique offering the adequate approximation for numerical
models with fewer unknowns, which means that the models based on POD can alleviate
the computational loads and guarantee sufficiently accurate solution [9–11]. The POD
is also known as Karhunen–Loève expansions in signal analysis or principal component
analysis in statistics, which has been widely used in real-life applications. Especially, it also
has been combined with some numerical methods such as finite element methods [12],
meshless methods [13], finite difference methods [14] and finite volume methods [15] suc-
cessfully. However, to the best of our knowledge, there are no published results in papers
concerning efficient CFDS6 (E-CFDS6) for parabolic equations. Thus, the first task in this
paper is to build the E-CFDS6 based on the POD method for the parabolic equations.

The MDPE is widely used to describe many physical phenomena, such as engineering
problems, typically involving many complex physical phenomena in nature or for irreg-
ular computing areas. The study of MDPE has seen a growing interest, which plays an
extremely important role in the kinds of fields of physics. Until now, a large amount of
work has been done to study FDM with better properties for the numerical solution of
MDPE. Among these methods, the alternating direction implicit (ADI) metthod is a pop-
ular and well-known method. The main idea of the ADI [16] method is that the collection
of one-dimensional problems can be obtained by the discretization of multi-dimensional
problem in space and time, which is feasible since each one-dimensional problem in each
time level can be solved by tri-diagonal matrices. Nevertheless, the accuracy of ADI only
is of second order, which results in the accumulation of truncated errors in the process of
computation. Especially, ADI is more complex to execute as a computer program and it
requires a large amount of computational effort, which may produce considerable dissipa-
tion. Thus, a crucial issue is how to build more accurate or convenient scheme to solve the
multi-dimensional problems. The authors of [17] introduced a splitting technique whose
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main idea is to split the Burgers’ equation into two sub-equations and solve them by fi-
nite difference schemes. In [18], the authors have split the full problem into hyperbolic,
nonlinear and linear problems, solved by different numerical methods. Sun [19] had ap-
plied a splitting method for solving the radiative transfer problem. Therefore, the Strang
splitting method (SSM) is an effective numerical method for solving MDPE by convert-
ing MDPE to successions of ODPE. Then we just need to solve the sequence of a linear
tri-diagonal system, and the whole process of programming is also simplified. SSM has
been applied successfully in a diffusion–reaction problem [20]. To the best of our knowl-
edge, no high-order CFDS combined with POD and SSM (E-CFDS6-SSM) aimed to solve
MDPE efficiently has been developed so far. Hence, the second task in this paper is to de-
velop the E-CFDS6-SSM based on the POD and SSM methods to attain a highly accurate
numerical solution of MDPE, which only contains very few unknowns and simplifies the
whole process of computation.

The outline of this paper is organized as follows. In Sect. 2, a brief background is given on
the theoretical foundations of high-order compact finite difference scheme and POD tech-
nique. Then the formulation of the CFDS6 is given for ODPE. Besides, the efficient CFDS6
based on POD for solving ODPE is presented. In Sect. 3, the Strang splitting method is de-
scribed and the E-CFDS6 are extended to MDPE. In Sect. 4, the efficiency, simplicity and
capabilities of E-CFDS6-SSM are verified by six numerical examples. The conclusions are
drawn in Sect. 5.

2 Some high-order difference schemes for ODPE
In this section, we will give a brief description of the CFDS6 and POD techniques, then
the construction of E-CFDS6 based on POD for solving ODPE is derived.

2.1 The construction of sixth-order compact finite difference scheme for ODPE
Firstly, consider the following initial and boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – a ∂2u

∂x2 = 0, 0 < x < L, 0 ≤ t ≤ T ,

u(0, t) = g1(t), u(L, t) = g2(t), 0 ≤ t ≤ T ,

u(x, 0) = ϕ(x), 0 ≤ x ≤ L,

(1)

where g1(t), g2(t) and ϕ(x) are given enough smooth functions. Let h be the spatial step
increment in the x-direction and τ be the time step increment, and then write xj = (j – 1)h
(j = 1, 2, 3, . . . , J), tn = nτ (n = 0, 1, 2, . . . , N – 1), un

j ≈ u(xj, jn).
The CFDS can be summarized into two broad categories. The main idea of the first

methods is to apply the central difference to the governing partial differential equation and
then constantly replace the higher-order derivatives in the truncation error with low-order
derivatives of the partial differential equation, which is called the traditional explicit finite
difference method. The basic idea in the second methods is that all the spatial derivatives
in the governing PDEs can be obtained through solving a system of linear equations [21–
23]. In this paper, we choose the second way to build a high-order compact finite difference
scheme for a parabolic equation.

Because the parabolic equation (1) containing the second-order derivatives, we only give
the compact finite difference scheme for second-order derivatives. Next, we derive the
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CFDS6 for an ODPE. For the second-order derivatives at interior nodes uj, the sixth-order
scheme formula can be written as follows:
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At the most left boundary point x1, a sixth-order formula can be given as follows:
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At the second left boundary point x2, the sixth-order formula is given as follows:
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According to the symmetry, at the second right boundary point xJ–1, the sixth-order for-
mula is
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Similarly, at the most right boundary point xJ , a sixth-order formula is

u′′
J–1 + u′′
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Note that the scheme of Eqs. (2)–(6) can be written as

AU′′ = BU, (7)

where

U = (u1, u2, . . . , uJ–1, uJ )T ,
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As mentioned above, the parabolic equation in (1) has been converted into a system of
initial value problem of ordinary differential equations (ODEs) by the compact scheme
(2)–(6). Then the fourth-order Runge–Kutta (RK4) scheme is applied to integrate the
time-dependent governing ODEs,

dU
dt

= R(U), (8)

where R denotes a spatial differential operator. Assuming that the value of Un at tn is given,
then the numerical solution Un+1 at tn+1 = tn + τ is obtained through the following opera-
tions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 = τ · R(Un), U1 = Un + k0/2,

k1 = τ · R(U1), U2 = Un + k1/2,

k2 = τ · R(U2), U3 = Un + k2,

k3 = τ · R(U3), K = k0 + 2k1 + 2k2 + k3,

Un+1 = Un + 1
6 K.

(9)

Using the sixth-order compact difference scheme listed in Eq. (7), the second derivative
related to the operator R(U) at each time level is obtained. Then we can get the numerical
solution at tn+1 by the RK4 method. Thus, if the initial value is known, we can calculate
the value at any time steps through many iterations.

2.2 The establishment of E-CFDS6 based on POD technique
In this section, we use the POD technique to build the E-CFDS6. For more details, not
described here, please refer to [15, 24–26]. Meanwhile, the POD method has a vari-
ety of interpretations, refer to [9–11] to find more interpretations. As described in the
Introduction, the main goal of POD is to seek a set of orthogonal matrices generated by
applying a singular value decomposition (SVD) into sample space, which is called an op-
timal basis function. Then, by using the first M sequences of the optimal basis function,
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the samples can be expressed optimally. In this method, POD will be used to calculate the
optimal basis function. To this aim, we need a set of snapshots and use SVD to construct
the optimal basis.

We suppose that there are d samples (also usually called snapshots) s1, s2, . . . , sd which
can be written as a matrix S = (s1, s2, . . . , sd), where si ∈ RJ (i = 1, 2, . . . , d). S ∈ RJ×d , and
SST ∈ RJ×J is an J × J semi-definite matrix. Applying the SVD on matrix S:

S = G

[
Dr 0
0 0

]

VT , (10)

the matrix G = (α1,α2, . . . ,αJ ) with J rows and J columns. The G and Vd×d are both
orthogonal matrices, Dr = diag(λ1,λ2, . . . ,λr). The orthogonal eigenvectors of SST are
contained in the matrix G = (α1,α2, . . . ,αJ ). The singular values λi (i = 1, 2, . . . , r) satisfy
λ1 ≥ λ2 ≥ · · · ≥ λr > 0.

Denote d columns of S by β l = (sl
1, sl

2, . . . , sl
J )T (l = 1, 2, . . . , d), the projection Pk is defined

as follows:

PM
(
β l) =

M∑

i=1

(
αi,β l)αi, (11)

the 0 < M ≤ d and (·, ·) represents the inner product of vectors, then we can obtain the
following result [24]:

∥
∥β l – PM

(
β l)∥∥

2 ≤ λM+1, (12)

where ‖ · ‖2 is standard norm of vector. Hence, α1,α2, . . . ,αM are a group of the optimal
POD basis, which from basis matrix α = (α1,α2, . . . ,αM). It should be pointed out that
the basis matrix fulfills the orthogonality condition, i.e., αTα = I (I is unit matrix with M
dimension).

In the following, the procedure of establishing E-CFDS6 for parabolic equation is listed
by the POD basis.

If U of Eq. (7) is substituted for

U∗ = αV = αJ×MVM×1, (13)

we have

V′′ = αT A–1BαV, (14)

and noting that αTα = I, let V0 = αT Un then the RK4 for the reduced solution is given as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 = τ · R(V0), V1 = V0 + k0/2,

k1 = τ · R(V1), V2 = V0 + k1/2,

k2 = τ · R(V2), V3 = V0 + k2,

k3 = τ · R(V3), K = k0 + 2k1 + k2 + k3,

Vn+1 = V0 + 1
6 K.

(15)
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We can obtain the global solution Un+1 = αVn+1 when the reduced solution Vn+1 has
been obtained from Eq. (15). Here, the procedure of E-CFDS6 for parabolic equation is
listed as follows:

step 1 Snapshot S is generated from experiments or numerical simulations.
step 2 Formulate the optimal POD basis matrix α by the SVD method.
step 3 Apply Eq. (14) to work out the reduced second-order derivative V′′.
step 4 Obtain the reduced solution by solving Eq. (15).
step 5 Having applied Un+1 = αVn+1, then the reduced solution is expanded.
It is easy to see from that above algorithm that E-CFDS6 needs to solve only M × M

equations (Eq. (14)) at each iteration, but CFDS6 includes J × J equations (Eq. (7)) to solve
at each iteration. In general, M is much smaller than J , which means that E-CFDS6 needs
less computational time than CFDS6. Applying that whole procedure, we may complete
the entire calculation from tn to tn+1. Moreover, due to the use of a sixth-order compact
scheme for discretizing the space variables, it is not difficult to find that our algorithm is
of sixth-order accuracy.

3 Multi-dimensional case
The traditional numerical method for solving MDPE is the ADI method, which replaces
complex multi-dimensional problems with a number of one-dimensional problems. It is
a classical algorithm. However, with the use of the Crank–Nicolson method in time and
the center difference method in space, ADI is shown to only have second-order accuracy
in both time and space. Besides, this method produces a very complex set of equations
in MDPE, which is very expensive to solve. The benefits of the ADI method are that the
equation needed to be solved in each step is relatively simple, and the tri-diagonal matrix
algorithm can be used to solve the equation successfully. The ADI method is uncondi-
tionally stable. Compared with ADI, SSM is an effective numerical method that will lead
to no loss of accuracy. SSM is extremely efficient for solving MDPE by converting MDPE
to a product of ODPE and programming is very simple. It also can be use to accelerate
that calculation of problems related to operators of different time scales. In this section,
instead of using ADI, we applied E-CFDS6-SSM to solve MDPE. First, we apply SSM to
decompose MDPE into a product of ODPEs. Then we solve each ODPE by E-CFDS6.

3.1 Solutions to two-dimensional parabolic equation
Considering the following two-dimensional parabolic equation:

∂u
∂t

= b
(

∂2u
∂x2 +

∂2u
∂y2

)

, (x, y, t) ∈ Ω × [0, T]. (16)

We rewrite Eq. (16) as follows:

⎧
⎨

⎩

∂u1
∂t = b ∂2u1

∂x2 ,
∂u2
∂t = b ∂2u2

∂y2 ,
(17)

and
⎧
⎨

⎩

dU1
dt = HxU1,

dU2
dt = HyU2,

(18)
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where Hx and Hy are different operators solved by Eq. (7) in the x-direction and the y-
direction. The initial value of 2D equation Un at tn is split, respectively, into Un

1 and Un
2 in

the x-direction and the y-direction by Eq. (17). Then we use E-CFDS6 to compute Un+1
1

and Un+1
2 by Eq. (15). Finally, we obtain the following equations:

Un+1 = Un+1
1 · (Un+1

2
)T , (19)

where Un+1 represents the numerical result of 2D equation at tn+1. Thus, we split the two-
dimensional problem into two one-dimensional problems, which indicates that we only
solve each ODPE by E-CFDS6 introduced in Sect. 2, rather than solve a set of complicated
equations.

3.2 Solutions to three-dimensional parabolic equation
For the three-dimensional parabolic equation, the above E-CFDS6-SSM scheme can be
extended directly to the three-dimensional case. Similarly, consider the following three-
dimensional parabolic equation:

∂u
∂t

= c
(

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)

, (x, y, z, t) ∈ Ω × [0, T]. (20)

We also rewrite Eq. (20) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂u1
∂t = c ∂2u1

∂x2 ,
∂u2
∂t = c ∂2u2

∂y2 ,
∂u3
∂t = c ∂2u3

∂z2 ,

(21)

and

⎧
⎪⎪⎨

⎪⎪⎩

dU1
dt = HxU1,

dU2
dt = HyU2,

dU3
dt = HzU3,

(22)

where Hx, Hy, Hz are different operators obtained by Eq. (7) in the x-direction, y-direction,
and z-direction. It is necessary to note that the way of acquiring Un+1 is similar to Eq. (19),
which will not be listed again.

The Un+1
1 , Un+1

2 and Un+1
3 represent the numerical results of each ODPE obtained by

Eq. (15) in the x-direction, y-direction and z-direction. Compared with ADI, it is so simple
that we do not solve a very complicated set of equations in MDPE in the way mentioned
for ADI, and we just need to compute three ODPEs, respectively. It should be pointed out
that the scheme has the same accuracy as the one-dimensional cases.

3.3 Formulate POD basis for each ODPE split by MDPE
In this subsection, we will illustrate our methods and formulate the POD basis for each
ODPE. As described above, we have split 2D or 3D parabolic equations into a series of
ODPE. By solving the formulation of Eq. (15), we can get the approximate solutions {un

j }N
n=1

(j = 2, 3, . . . , J – 1). Then we may select {uni
j }d

i=1 (j = 2, 3, . . . , J – 1, 1 ≤ n1 ≤ n2 < · · · < nd ≤
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N) from the CFDS6 solutions {un
j }N

n=1 (j = 2, 3, . . . , J – 1) of Eq. (15), which is called the
method of ‘snapshots’. Finally, we can construct the POD basis for each ODPE in the way
mentioned in Eqs. (10)–(13).

Although the snapshot is obtained through the approximate solution of CFDS6 in this
paper, in fact, we can get the collection of snapshots through experiments and interpola-
tion when calculating the actual problem. If the development and change of a large num-
ber of future natural phenomena (for example, weather change, biology anagenesis, and
so on) are closely related to previous results, or if the physical system of the natural phe-
nomena performs well, that is, the past dynamics is representative and inclusive of the
future dynamics, then the previous or existing experimental data can be used to construct
a snapshot. Then the POD basis is obtained by using the POD method in Eqs. (10)–(13)
and we can derive an efficient scheme. Therefore, one can effectively simulate and pre-
dict the development and change of some future natural phenomena, which is of great
significance for practical applications.

4 Numerical examples
In order to see whether the present method is capable of getting an accurate solution,
in this section, the E-CFDS6-SSM will be evaluated for six examples of the MDPE given
below. In the case of the different number of nodes, we have some tests of the accuracy
and efficiency for the method described in this article. We performed our computations
using Matlab 2018a software on a Ryzen 7 1800X, 3.6 GHz CPU machine with 16 GB of
memory. The convergence order of the method presented in this article is calculated with
this formula:

R =
log errornew

errorold

log hnew
hold

.

Example 1 Consider the following 2D parabolic equation (SP1):

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2 , (x, y) ∈ Ω , 0 < t ≤ 1,

u(x, y, 0) = 109 sinπx sinπy, (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω , 0 < t ≤ 1,

where Ω = {(x, y); 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}, ∂Ω denotes the boundary of Ω . The exact solution
is u(x, y, t) = 109e–2π2t sinπx sinπy.

The obtained solutions and point-wise error of CFDS6-SSM with 41×41 uniformly dis-
tributed points are shown in Fig. 1 while the corresponding numerical results of E-CFDS6-
SSM are shown in Fig. 2. We choose h as 0.05 and τ = 0.0001. It is not difficult to see that
the results of E-CFDS6-SSM are in very good agreement with those of CFDS6-SSM, which
means that the E-CFDS6-SSM method possesses a high computational accuracy, as well
as CFDS6-SSM. We compare the error of E-CFDS6-SSM and CFDS6-SSM with the error
of the D’Yakonov alternating direction implicit (DADI) method with hx = hy = 0.01 and
τ = 0.01 in Table 1, which indicates that our algorithm significantly improves the accu-
racy. In order to compare the accuracy and efficiency of two approximate methods, we
list the error and computational time of E-CFDS6-SSM and CFDS6-SSM in Table 1 and
Table 2. The error of CFDS6-SSM and the error of E-CFDS6-SSM are also drawn in Figs. 1
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Figure 1 The CFDS6-SSM solution (left-hand side) and error of CFDS6-SSM (right-hand side) when J = 41 and
t = 1 for SP1

Figure 2 The E-CFDS6-SSM solution (left-hand side) and error of E-CFDS6-SSM (right-hand side) when J = 41
and t = 1 for SP1

and 2. It also can be clearly seen that the E-CFDS6-SSM is almost as accurate as CFDS6-
SSM and the computational times of E-CFDS6-SSM are less than those of CFDS6-SSM
under the same number of nodes. In Fig. 3, the error between CFDS6-SSM and E-CFDS6-
SSM is no more than 3 × 10–7. It also can be found that the accuracy of E-CFDS6-SSM
is almost identical to that of CFDS6-SSM. Besides, we also found that the order of con-
vergence obtained by E-CFDS6-SSM and CFDS6-SSM is almost the same in Table 2. In
addition, it should be noted that our algorithm is easier to execute than the classical ADI
algorithm.

Example 2 Consider the following 2D parabolic equation (SP2):

⎧
⎪⎪⎨

⎪⎪⎩

(1 + 1
22 ) ∂u

∂t = ∂2u
∂x2 + ∂2u

∂y2 , (x, y) ∈ Ω , 0 < t ≤ 2,

u(x, y, 0) = sin x sin y
2 , (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω , 0 < t ≤ 2,

where Ω = {(x, y); 0 ≤ x ≤ 2π , 0 ≤ y ≤ 2π}, ∂Ω denotes the boundary of Ω . The exact
solution is u(x, y, t) = e–t sin x sin y

2 .
We design this equation to let the solution u change much faster in the x-direction than

in y-direction. We give the figures of CFDS6-SSM and E-CFDS6-SSM in Figs. 4 and 5.
Obviously, they are very similar for the same nodes. Meanwhile, we also plot the error of
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Table 1 The error of two different schemes for SP1 at t = 1

(xi , yi) CFDS6-SSM E-CFDS6-SSM DADI (error)

(0.4, 0.4) 1.0284e–06 1.2736e–06 1.5021e–02
(0.8, 0.8) 3.9282e–07 4.7769e–07 5.8051e–03
(1.2, 1.2) 3.9282e–07 4.7769e–07 5.5856e–03
(1.6, 1.6) 1.0284e–06 1.2736e–06 1.4801e–02
Nodes 41× 41 41× 41 201× 201

Table 2 The convergence order and computational time for SP1 at t = 1

Nodes 11× 11 21× 21 41× 41

CFDS6-SSM Max (error) 0.0441 2.1770e–04 1.3977e–06
Time (s) 10.099649 126.587866 416.107510
Order – 7.662 7.283

E-CFDS6-SSM Max (error) 0.0197 5.9319e–05 1.1370e–06
Time (s) 1.091099 51.221890 234.497833
Order – 8.375 5.705

Figure 3 The error between the solution of CFDS6-SSM
and solution of E-CFDS6-SSM when J = 41 and t = 1 for
SP1

Figure 4 The CFDS6-SSM solution (left-hand side) and error of CFDS6-SSM (right-hand side) when J = 41 and
t = 2 for SP2

E-CFDS6-SSM and CFDS6-SSM in the right-hand side of Figs. 4 and 5 for comparison.
The error of CFDS6-SSM, the error of E-CFDS6-SSM and the computational time are
also shown in Table 3 and Table 4. It is not difficult to see that the results of E-CFDS6-
SSM are in very good agreement with those of CFDS6-SSM, which means that the E-
CFDS6-SSM not only possesses a high accuracy as well as CFDS6-SSM, but also alleviates
computational load. In addition, we compare the error of E-CFDS6-SSM and CFDS6-SSM
with the error of DADI with hx = hy = 0.01π and τ = 0.01 in Table 3, it also manifested that
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Figure 5 The E-CFDS6-SSM solution (left-hand side) and error of E-CFDS6-SSM (right-hand side) when J = 41
and t = 2 for SP2

Table 3 The error of two different schemes for SP2 at t = 2

(xi , yi) CFDS6-SSM E-CFDS6-SSM DADI (error)

(0.2π , 0.2π ) 1.3405e–06 1.3405e–06 8.4424e–5
(0.8π , 0.8π ) 4.1228e–06 4.1230e–06 2.5983e–4
(1.2π , 1.2π ) 4.1228e–06 4.1230e–06 2.5982e–4
(1.8π , 1.8π ) 1.3396e–06 1.3405e–06 8.4416e–5
Nodes 41× 41 41× 41 201× 201

Table 4 The convergence order and computational time for SP2 at t = 2

Nodes 21× 21 41× 41 81× 81

CFDS6-SSM Max (error) 1.7206e–04 1.3604e–06 2.5087e–08
Time (s) 24.018882 52.936624 121.629286
Order – 6.982 5.761

E-CFDS6-SSM Max (error) 1.7280e–04 1.3614e–06 2.5088e–08
Time (s) 5.014861 12.554003 32.825120
Order – 6.988 5.762

our algorithm significantly improves the accuracy. In Fig. 6, the error between CFDS6-
SSM and E-CFDS6-SSM is no more than 1.5 × 10–9. It also indicated that the accuracy
of E-CFDS6-SSM is almost identical to that of CFDS6-SSM under the same nodes and
time step. Besides, we also give the order of convergence obtained by E-CFDS6-SSM and
CFDS6-SSM in Table 4, by which it can be seen clearly that the numerical results confirm
the convergence with the rate O(h6) for this equation.

Example 3 Consider the following 2D parabolic equation (SP3):

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ( ∂2u

∂x2 + ∂2u
∂y2 ) = e–t sin x sin y, 0 < t ≤ 2,

u(x, y, 0) = sin x sin y, (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω , 0 < t ≤ 2,

where Ω = {(x, y); 0 ≤ x ≤ π , 0 ≤ y ≤ π}, ∂Ω denotes the boundary of Ω . The exact solu-
tion is u(x, y, t) = e–t sin x sin y.

Figure 7 and Fig. 8 plot the numerical solutions and point-wise absolute errors of
CFDS6-SSM and E-CFDS6-SSM, respectively. For comparison, Table 5 lists the error of
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Figure 6 The error between the solution of CFDS6-SSM
and solution of E-CFDS6-SSM when J = 41 and t = 2 for
SP2

Figure 7 The figure of CFDS6-SSM solution (left-hand side) and error of CFDS6-SSM (right-hand side) when
J = 41 and t = 2 for SP3

Figure 8 The E-CFDS6-SSM solution (left-hand side) and error of E-CFDS6-SSM (right-hand side) when J = 41
and t = 2 for SP3

E-CFDS6-SSM and DADI with hx = hy = 0.005π and τ = 0.01, which indicates that our
methods remarkably improve the accuracy. Similarly, we also list the absolute error, com-
putational time and convergence order in Table 6. It can be clearly seen that the E-CFDS6-
SSM greatly saved the time consumption and vastly improved the computational efficiency
compared with CFDS6-SSM. Besides, the convergence order in Table 6 confirms the con-
vergence with the rate O(h6) for this equation. The error between CFDS6-SSM and E-
CFDS6-SSM is also drawn in Fig. 9. It also can be clearly seen that the CFDS6-SSM is
almost accurate with the E-CFDS6-SSM.
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Table 5 The error of two different schemes for SP3 at t = 2

(xi , yi) CFDS6-SSM E-CFDS6-SSM DADI (error)

(0.2π , 0.2π ) 8.6691e–09 8.6716e–09 9.0752e–04
(0.4π , 0.4π ) 2.2696e–08 2.2699e–08 2.3615e–03
(0.6π , 0.6π ) 2.2696e–08 2.2699e–08 2.3437e–03
(0.8π , 0.8π ) 8.6691e–09 8.6716e–09 8.8970e–04
Nodes 41× 41 41× 41 201× 201

Table 6 The convergence order and computational time for SP3 at t = 2

Nodes 11× 11 21× 21 41× 41

CFDS6-SSM Max (error) 1.7091e–04 1.3605e–06 2.5092e–08
Time (s) 1.008504 24.672396 56.174196
Order – 6.972 5.761

E-CFDS6-SSM Max (error) 1.7344e–04 1.3630e–06 2.5095e–08
Time (s) 0.525925 11.531699 31.044471
Order – 6.991 5.763

Figure 9 The error between the solution of CFDS6-SSM
and solution of E-CFDS6-SSM when J = 41 and t = 2 for
SP3

Example 4 Consider the following 3D parabolic equation (SP4):

⎧
⎪⎪⎨

⎪⎪⎩

(1 + 1
22 + 22) ∂u

∂t = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 , (x, y, z) ∈ Ω , 0 < t ≤ 2,

u(x, y, z, 0) = sin x sin y
2 sin 2z, (x, y, z) ∈ Ω ,

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω , 0 < t ≤ 2,

where Ω = {(x, y, z); 0 ≤ x ≤ 2π , 0 ≤ y ≤ 2π , 0 ≤ z ≤ 2π}, ∂Ω denotes the boundary of Ω .
The exact solution is u(x, y, t) = e–t sin x sin y sin z.

In this example, we also let the solution u change differently in each direction. Com-
pared with the algorithm mentioned in [14], our algorithm is easier to carry out and
understand. In Fig. 10, the numerical solutions of CFDS6-SSM and E-CFDS6-SSM are
shown, which indicates that they are similar. Next, we let z = 0.4π , the figure becomes
the three-dimensional figure in Fig. 11. we report the absolute error and computational
time of E-CFDS6-SSM and CFDS6-SSM in Table 7. It is easy to see that the results of E-
CFDS6-SSM are in very good agreement with those of CFDS6-SSM, which means that the
E-CFDS6-SSM holds accuracy. It also shows that the E-CFDS6-SSM can greatly save the
time consumption and vastly improve the computational time. Then we plot point-wise
the error of CFDS6-SSM and E-CFDS6-SSM in Figs. 12 and 13. It can be seen that the E-
CFDS6-SSM is similar to CFDS6-SSM. Besides, in Table 7, in order to evaluate the overall
convergence rate of the E-CFDS6-SSM, we have reported the order of convergence ob-
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Figure 10 The numerical solution of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when
J = 41 and t = 2 for SP4

Figure 11 The numerical solution of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when
J = 41, z = 0.4π and t = 2 for SP4

Table 7 The convergence order and computational time for SP4 at t = 2

Nodes 21× 21× 21 41× 41× 41 81× 81× 81

CFDS6-SSM Max (error) 2.7607e–04 4.5042e–06 7.1814e–08
Time (s) 10.010231 40.045140 89.493375
Order – 5.937 5.971

E-CFDS6-SSM Max (error) 7.7141e–04 4.2592e–06 7.1633e–08
Time (s) 5.005856 10.031937 22.965542
Order – 7.501 5.894

tained by E-CFDS6-SSM and CFDS6-SSM, which shows that the E-CFDS6-SSM still can
produce very accurate solution.

Example 5 Consider the following 3D parabolic equation (SP5):

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ( ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 ) = e–t(3π2 – 1) sinπx sinπy sinπz, (x, y, z) ∈ Ω , 0 < t ≤ 1,

u(x, y, z, 0) = sinπx sinπy sinπz, (x, y, z) ∈ Ω ,

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω , 0 < t ≤ 1,

where Ω = {(x, y, z); –1 ≤ x ≤ 1, –1 ≤ y ≤ 1, –1 ≤ z ≤ 1}, ∂Ω denotes the boundary of Ω .
The exact solution is u(x, y, z, t) = e–t sinπx sinπy sinπz.
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Figure 12 The error of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when J = 41, z = 0.4π
and t = 2 for SP4

Figure 13 The error between the solution of CFDS6-SSM
and solution of E-CFDS6-SSM when J = 41, z = 0.4π and t
= 2 for SP4

Figure 14 The numerical solution of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when
J = 41 and t = 1 for SP5

In this example, we observe the three-dimensional parabolic problem by the slice fig-
ures of the four-dimensional images in Fig. 14. In Fig. 14, the solutions of CFDS6-SSM
and E-CFDS6-SSM are almost similar. In order to make the image more aestheticcally
pleasing, we let z = –0.4, the figure becomes the three-dimensional figure in Fig. 15. We
also list the absolute error of E-CFDS6-SSM and CFDS6-SSM in Table 8. It is easy to see
that the results of E-CFDS6-SSM are in very good agreement with those of CFDS6-SSM,
which means that the E-CFDS6-SSM without missing significant loss in accuracy. Then
the corresponding error of CFDS6-SSM and E-CFDS6-SSM are drawn in Fig. 16. It can
be seen that the CFDS6-SSM is slightly less accurate than E-CFDS6-SSM. In Fig. 17, the
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Figure 15 The numerical solution of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when
J = 41, z = –0.4 and t = 1 for SP5

Table 8 The convergence order and computational time for SP5 at t = 2

Nodes 11× 11× 11 21× 21× 21 41× 41× 41

CFDS6-SSM Max (error) 0.0021 6.3364e–06 1.1076e–07
Time (s) 5.139907 121.805555 351.633034
Order – 8.372 5.838

E-CFDS6-SSM Max (error) 3.6402e–04 4.0606e–06 1.1199e–07
Time (s) 1.008504 24.672396 56.174196
Order – 6.486 5.761

Figure 16 The error of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when J = 41, z = –0.4
and t = 1 for SP5

error between E-CFDS6-SSM and CFDS6-SSM is given. Besides, in Table 8, we also gave
the computational time and order of convergence obtained by E-CFDS6-SSM and CFDS6-
SSM, which indicates that the E-CFDS6-SSM is more efficient than the CFDS6-SSM for
solving the parabolic equation and E-CFDS6-SSM holds same accuracy.

Example 6 Consider the following 3D parabolic equation (SP6):

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ( ∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 ) = 2e–t sin x sin y sin z, (x, y, z) ∈ Ω , 0 < t ≤ 1,

u(x, y, z, 0) = sin x sin y sin z, (x, y, z) ∈ Ω ,

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω , 0 < t ≤ 1,
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Figure 17 The error between the solution of CFDS6-SSM
and solution of E-CFDS6-SSM when J = 41, z = –0.4 and t
= 1 for SP5

Figure 18 The numerical solution of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when
J = 41 and t = 1 for SP6

Figure 19 The numerical solution of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when
J = 41, z = 0.4π and t = 1 for SP6

where Ω = {(x, y, z); 0 ≤ x ≤ 2π , 0 ≤ y ≤ 2π , 0 ≤ z ≤ 2π}, ∂Ω denotes the boundary of Ω .
The exact solution is u(x, y, t) = e–t sin x sin y sin z.

In this example, in Fig. 18, the numerical solutions of CFDS6-SSM and E-CFDS6-SSM
are almost identical. Similarly, we let z = 0.4π , the figure becomes the three-dimensional
figure in Fig. 19. We list the absolute error and computational time of E-CFDS6-SSM and
CFDS6-SSM in Table 9. It is easy to see that the results of E-CFDS6-SSM are in very good
agreement with those of CFDS6-SSM, which means that the E-CFDS6-SSM does not have
a significant loss in accuracy. It also shows that the E-CFDS6-SSM can greatly save the time
consumption and vastly improve the computational time. Then we plot the numerical er-
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Table 9 The convergence order and computational time for SP6 at t = 1

Nodes 21× 21× 21 41× 41× 41 81× 81× 81

CFDS6-SSM Max (error) 3.9145e–04 7.0154e–06 1.1455e–07
Time (s) 20.035465 45.750996 90.070817
Order – 5.802 5.936

E-CFDS6-SSM Max (error) 3.9128e–04 7.0141e–06 1.1455e–07
Time (s) 5.032226 10.448344 23.028154
Order – 5.801 5.936

Figure 20 The error of CFDS6-SSM (left-hand side) and E-CFDS6-SSM (right-hand side) when J = 41, z = 0.4π
and t = 1 for SP6

Figure 21 The error between the solution of CFDS6-SSM
and solution of E-CFDS6-SSM when J = 41, z = 0.4π and t
= 1 for SP6

ror and point-wise absolute errors of CFDS6-SSM and E-CFDS6-SSM in Figs. 20 and 21.
It can be seen that the E-CFDS6-SSM is similar to CFDS6-SSM. Besides, in Table 9, we
also give the order of convergence obtained by E-CFDS6-SSM and CFDS6-SSM, which in-
dicates that the E-CFDS6-SSM is not only more efficient than the CFDS6-SSM for solving
the parabolic equation, but it holds the same accuracy.

5 Conclusions
In this article, we have established the E-CFDS6-SSM for the numerical solution of MDPE.
For this purpose, firstly, the snapshot is formed by means of the initial few solutions such as
the numerical simulation results or the collection of experiment data and the POD basis
is formulated by the SVD. Secondly, we have established E-CFDS6 based on the POD
technique, which can be used to solve ODPE efficiently. Finally, we split MDPE into a
product of ODPEs. Coupled with SSM, we have obtained the E-CFDS6-SSM for MDPE.
As listed in the table of Sect. 4, we have compared our method with ADI, which shows that
the E-CFDS6-SSM improves the accuracy greatly. In addition, the computational time of
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E-CFDS6-SSM is greatly less than CFDS6-SSM and the whole process of implementation
of E-CFDS6-SSM is simpler than CFDS6-SSM. We test our algorithm by six numerical
experiments, which implies that the E-CFDS6-SSM has high efficiency and is reliable for
solving the MDPE.

Appendix: The detailed implementation of ADI for 2D parabolic equation
For the 2D problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2 , (x, y, t) ∈ Ω = [0, a] × [0, b], 0 < t ≤ T ,

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω ,

u(0, y, t) = g1(y, t), u(a, y, t) = g2(y, t), 0 ≤ y ≤ b, 0 < t ≤ T ,

u(x, 0, t) = g3(x, t), u(x, b, t) = g4(x, t), 0 ≤ x ≤ a, 0 < t ≤ T .

(23)

We let xi = i ·�x (0 ≤ i ≤ a/�x), yj = j ·�y (0 ≤ j ≤ b/�y) and tk = k ·�t (0 ≤ k ≤ T/�t).
Firstly, define the following central difference operators:

⎧
⎨

⎩

δ2
x un

i,j = un
i–1,j – 2un

i,j + un
i+1,j,

δ2
y un

i,j = un
i,j–1 – 2un

i,j + un
i,j+1.

We can rewrite Eq. (23) by these difference operators

uk+1
i,j – uk

i,j

�t
=

1
2

(
δ2

x uk+1
i,j + δ2

x uk
i,j

�x2 +
δ2

y uk+1
i,j + δ2

y uk
i,j

�y2

)

. (24)

Then we have the formula
(

1 –
r1

2
δ2

x –
r2

2
δ2

y

)

uk+1
i,j =

(

1 +
r1

2
δ2

x +
r2

2
δ2

y

)

uk
i,j, (25)

where r1 = �t
�x2 and r2 = �t

�y2 .
In order to obtain a collection of one-dimensional problems that can be solved by the

tri-diagonal matrix, we add r1r2
4 δ2

xδ
2
y uk+1

i,j in the left-hand side of Eq. (25) and r1r2
4 δ2

xδ
2
y uk

i,j in
the right-hand side of Eq. (25). Then Eq. (25) can be written as

(

1 –
r1

2
δ2

x –
r2

2
δ2

y +
r1r2

4
δ2

xδ
2
y

)

uk+1
i,j =

(

1 +
r1

2
δ2

x +
r2

2
δ2

y +
r1r2

4
δ2

xδ
2
y

)

uk
i,j. (26)

Then Eq. (26) also can be rewritten as

(

1 –
r1

2
δ2

x

)(

1 –
r2

2
δ2

y

)

uk+1
i,j =

(

1 +
r1

2
δ2

x

)(

1 +
r2

2
δ2

y

)

uk
i,j. (27)

By introducing the variable Vi,j, the well-known Peaceman–Rachford scheme can be
obtained as follows:

⎧
⎨

⎩

(1 – r1
2 δ2

x )Vi,j = (1 + r2
2 δ2

y )uk
i,j,

(1 – r1
2 δ2

y )uk+1
i,j = (1 + r1

2 δ2
x )Vi,j.

(28)
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It should be noticed that the boundary condition should be given in the first scheme of
Eq. (28).

⎧
⎨

⎩

V0,j = 1
2 (1 + r2

2 δ2
y )uk

0,j + 1
2 (1 – r2

2 δ2
y )uk+1

0,j ,

Vm,j = 1
2 (1 + r2

2 δ2
y )uk

m,j + 1
2 (1 – r2

2 δ2
y )uk+1

m,j .
(29)

We assume the uk
i,j is given. In the first scheme of Eq. (28), we first fix j (1 ≤ j ≤ n – 1),

then the system consisting of m – 1 equations with m – 1 unknowns can be solved to get
the V . Similarly, we first fix i (1 ≤ i ≤ m – 1), then, by the V , the system consisting of n – 1
equations with n – 1 unknowns can be solved to get the uk+1

i,j .
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