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Abstract
In this work, we study the numerical approximation for the space fractional
FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson
(C–N) method in time and Legendre-spectral method in space. In addition, we prove
that the numerical scheme is unconditionally stable. Numerical examples are
presented to verify validity of the proposed scheme.
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1 Introduction
As a important model in describing a prototype of an excitable system, the FitzHugh–
Nagumo model [1] has received great attention in recent years. The space fractional
FitzHugh–Nagumo model is obtained by replacing standard Laplacian operator in
FitzHugh–Nagumo model by Riesz derivatives. The purpose of introducing the spatial
fractional FitzHugh–Nagumo model is mainly due to the fact that a spatial fractional
derivative can capture the spatial connectivity of the extracellular domain more accu-
rately.

Bu et al. [2] presented an ADI finite-element method to solve FitzHugh–Nagumo model.
In [3], Liu et al. constructed a shifted Grünwald–Letnikov scheme to discretize the Riesz
derivative of the fractional FitzHugh–Nagumo model. However, both the finite-element
and finite-difference methods will produce large dense matrices due to the nonlocal term
discretization when solving the linear systems. Yang et al. [4] and Cattani [5] proposed a
fractional derivative of sinc function without singular kernel. In recent work [6–9], some
general fractional calculus operators involving constant and variable order derivatives
were used. Kumar et al. [10, 11] and Singh [12] studied the fractional exothermic reaction
model with Mittag-Leffler law. The fractional Laplace decomposition technique was used
to investigate the numerical solution of that model. More results on numerical solutions
of fractional derivatives can be found in [13–15].

This paper uses the Legendre-spectral method to handle nonlocal terms. We propose
an efficient numerical scheme to solve the spatial fractional FitzHugh–Nagumo model,
the numerical scheme is performed by combining it with a second order method in time
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and Legendre-spectral method in space. Moveover, we prove that the obtained numerical
scheme is unconditionally stable.

In Sect. 2, we will introduce the spatial fractional FitzHugh–Nagumo model. In Sect. 3,
the numerical scheme and stability analysis are studied. In Sect. 4, numerical experiments
are performed to demonstrate the effectiveness of the numerical methods. The conclusion
of this article is given in last section.

2 FitzHugh–Nagumo model
We consider the following fractional FitzHugh–Nagumo model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = κ�α/2u + u(1 – u)(u – a) – v in Ωd × [0, T],

vt = βu – γ v + η in Ωd × [0, T],

u(·, 0) = u0, v(·, 0) = v0 in Ωd × [0, T],

u = 0 on ∂Ωd × [0, T],

(1)

where 1.5 ≤ α ≤ 2, Ωd = (–1, 1)d , d = 2, 3, and we define the following space fractional
Laplace operator (see [16]):

–�α := –
1
4
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α
)(CDα
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– C

xj
Dα

)
, (2)

where Dα
xj

, xj Dα
1 , CDα

xj
, C

xj
Dα

1 are left and right Riemann–Liouville and Captuo fractional
derivatives, respectively. It is worth mentioning that our derivative is an extension of the
Caputo and Riemann–Liouville derivative, so it contains a singular kernel around 0. But
Yang–Srivastava–Machado fractional derivative does not contain a singular kernel.

We use A � B to mean that A ≤ cB, and A � B to mean that A � B and B � A.
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Lemma 2 ([17]) Given s > 0, s �= n – 1
2 , n ∈N, for w, v ∈ Hs

0(Λ), we have
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From Lemmas 1 and 2, we obtain a bilinear form as follows:

a(u, w) := –
1
4
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It is easy to check that ‖u‖2
Hα � a(u, u).
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Theorem 1 Suppose that (u, v) ∈ Hα
0 (Ω), then we have the following estimates:

For γ ≥ 1,
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1
β
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(
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β
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)

+
(
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(
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2

)2)

|Ω|. (3)

For 1 > γ > 0,

‖u‖2 +
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Proof Taking the inner product of the first equation of (2) with u(t) and of second equation
with 1

β
v(t), we have
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This completes the proof. �

3 Numerical scheme and stability analysis
In this part, we will propose a C–N scheme in time, and we will also discuss the uncon-
ditional stability of our numerical scheme. First, we define the time step δt = T/M, where
M is a positive integer, tn = nδt, 0 ≤ n ≤ M – 1. Consider the second-order time-discrete
scheme as follows:

⎧
⎨

⎩

un+1–un

δt = –κ(–�)α/2un+ 1
2 + un+ 1

2 (1 – u∗)(u∗ – a) – vn+ 1
2 ,

vn+1–vn

δt = βun+ 1
2 – γ vn+ 1

2 + η,
(5)

where u∗ = 3
2 un – 1

2 un–1, for n ≥ 1, and u∗ = u0, for n = 0.

Theorem 2 The time discrete scheme (5) is unconditionally stable, and we have

∥
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Proof Taking the inner product of (5) with δt(un+1 + un) and 1
β
δt(vn+1 + vn), respectively,

we get
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Dropping some positive terms and summing up over n = 1, 2, . . . , k, we get
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Using discrete Gronwall lemma, one has
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Linking the first step, we can prove that
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This ends the proof. �

4 Numerical implementation and numerical results
We consider the Legendre-spectral method to discretize in the spatial direction. We obtain
the full discrete scheme of problem (5) as follows:

⎧
⎨

⎩

( un+1
N –un

N
δt ,φN ) = –κa(un+ 1

2
N ,φN ) + (un+ 1

2
N (1 – u∗

N )(u∗
N – a) – vn+ 1

2
N ,φN ), φN ∈ PN ,

( vn+1
N –vn

n
δt ,ϕN ) = β(un+ 1

2
N ,ϕN ) – γ (vn+ 1

2
N ,ϕN ) + (η,ϕN ), ϕN ∈ PN .

(7)

Define

un
N =

N–1∑

i,j=1

un
i,jLN ,i(x)LN ,j(y), vn

N =
N–1∑

i,j=1

vn
i,jLN ,i(x)LN ,j(y),

where LN ,i(x) are Lagrangian polynomials, un
i,j denote the unknown coefficients.

In order to verify the asymptotic behavior of the solutions, the effect of space-fractional
derivative α will also be investigated. The numerical method (7) is computed in the square
[0, 2.5]× [0, 2.5] with κ = 10–4, μ = 0.1, β = 5×10–3, γ = 10–2, and η = 0. Tables 1–4 display
the temporal convergence orders and the errors in the L2 and Hα/2 norms for α = 1.5
and 1.7. It is confirmed that our numerical scheme can achieve second-order accuracy
in time, and the numerical solutions are in good agreement with the exact solution. In
addition, using scheme (7), we simulate the dynamic behavior for different α, where the
results are summarized in Fig. 1. As can be seen from this figure, due to the long-tail
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Table 1 The L2 and Hα/2 numerical errors at α = 1.5 for various temporal resolutions u


t L2-error Hα/2-error Order

0.1 0.002853104 0.005747130 –
0.05 0.000741835 0.001483160 1.98009
0.01 3.06393E–05 6.08969E–05 1.99413
0.005 7.53784E–08 1.52751E–05 2.0059
0.001 2.96203E–09 6.04827E–07 2.01242
0.0005 6.98812E–10 1.51197E–07 2.00017

Table 2 The L2 and Hα/2 numerical errors at α = 1.5 for various temporal resolutions v


t L2-error Hα/2-error Order

0.1 1.27887E–05 2.51306E–05 –
0.05 3.41154E–06 6.67129E–06 1.90636
0.01 1.43796E–07 2.80067E–07 1.96747
0.005 3.62094E–08 7.04652E–08 1.98958
0.001 1.46667E–09 2.84137E–09 1.99219
0.0005 3.90331E–10 7.32173E–10 1.90986

Table 3 The L2 and Hα/2 numerical errors at α = 1.7 for various temporal resolutions u


t L2-error Hα/2-error Order

0.1 0.00285274 0.006814937 –
0.05 0.000741741 0.001731916 1.94336
0.01 3.06355E–05 7.10406E–05 1.98009
0.005 7.69009E–06 1.78184E–05 1.99413
0.001 3.01524E–07 7.06222E–07 2.01241
0.0005 7.53763E–08 1.76539E–07 2.00008

Table 4 The L2 and Hα/2 numerical errors at α = 1.7 for various temporal resolutions v


t L2-error Hα/2-error Order

0.1 1.2788E–05 2.92707E–05 –
0.05 3.41136E–06 7.76832E–06 1.90635
0.01 1.43788E–07 3.25984E–07 1.96741
0.005 3.62076E–08 8.20116E–08 1.98958
0.001 1.46662E–09 3.30567E–09 1.99224
0.0005 3.90343E–10 8.49135E–10 1.90973

Figure 1 The dynamic behavior for different α
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mechanism of the fractional Laplace operator, the wavelength becomes larger when the
fractional diffusion coefficient α becomes larger. This shows that a fractional equation
with diffusion mechanisms is a powerful tool to describe dynamic state.

5 Conclusions
An efficient linearized numerical scheme is constructed to solve the space fractional
FitzHugh–Nagumo equation. The numerical scheme is proved to be stable. Numerical
examples show that the proposed scheme is effective. Moreover, the fractional diffusion
coefficient α has a significant effect on the dynamic behavior.

Acknowledgements
The authors thank the editors and reviewers for their help.

Funding
The work of Jun Zhang is supported by the National Natural Science Foundation of China (No. 11901132), the Chinese
Postdoc Foundation Grant (No. 2019M653490) and the academic project of Guizhou University of Finance and Economics
(No. [2018]5774-033). The work of Shimin Lin is supported by the National Natural Science Foundation of China (No.
11901237). The work of Zixin Liu is supported Guizhou province university science and technology top talents project
(No. KY[2018]047) and Guizhou University of Finance and Economics (No. 2018XZD01). This work of Fubiao Lin is
supported by the Science Technology Foundation of Guizhou Education Department (No. QJK[KY] [2019]1051) and
academic project of Guizhou University of Finance and Economics (No. [2017] 5736-020).

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
We agree.

Authors’ contributions
JZ carried out an efficient numerical approach to solve the space fractional FitzHugh–Nagumo model. SL and FL made
their own efforts in numerical experiments and helped to draft the manuscript. ZL helped us to correct some typos and
grammar errors. All authors read and approved the final manuscript.

Authors’ information
Jun Zhang, Computational mathematics research center, Guizhou University of Finance and Economics, Guiyang 550025,
China. E-mail addresses: jzhang@mail.gufe.edu.cn. Shimin Lin, Department of Science, Jimei University, Xiamen, Fujian
361021, China. E-mail addresses: smlin@jmu.edu.cn. Zixin Liu, School of Mathematical Sciences, Guizhou University of
Finance and Economics, Guiyang 550025, China. E-mail addresses: xinxin905@163.com. Fubiao Lin, Corresponding author,
School of Mathematical Sciences, Guizhou University of Finance and Economics, Guiyang 550025, China. E-mail
addresses: linfubiao0851@163.com.

Author details
1Computational Mathematics Research Center, Guizhou University of Finance and Economics, Guiyang, China.
2Department of Science, Jimei University, Fujian, China. 3School of Mathematics and Statistical, Guizhou University of
Finance and Econmics, Guiyang, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 April 2019 Accepted: 28 July 2019

References
1. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466

(1961)
2. Bu, W., Tang, Y., Wu, Y., Yang, J.: Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional

FitzHugh–Nagumo monodomain model. Appl. Math. Comput. 257, 355–364 (2015)
3. Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional FitzHugh–Nagumo monodomain

model. ANZIAM J. 54, C608–C629 (2012)



Zhang et al. Advances in Difference Equations        (2019) 2019:350 Page 7 of 7

4. Yang, X.J., Gao, F., Machado, J.A.T., Baleanu, D.: A new fractional derivative involving the normalized sinc function
without singular kernel. Eur. Phys. J. Spec. Top. 226(16–18), 3567–3575 (2017)

5. Cattani, C.: Sinc-fractional operator on Shannon wavelet space. Front. Phys. 6, 118 (2018)
6. Yang, X.J., Gao, F., Ju, Y., Zhou, H.W.: Fundamental solutions of the general fractional-order diffusion equations. Math.

Methods Appl. Sci. 41(18), 9312–9320 (2018)
7. Yang, X.J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)
8. Gao, F.: General fractional calculus in nonsingular power-law kernel applied to model anomalous diffusion

phenomena in heat-transfer problems. Therm. Sci. 21, S11–S18 (2017)
9. Yang, X.J.: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in

heat-transfer problems. Therm. Sci. 21(3), 1161–1171 (2017)
10. Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source

in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)
11. Singh, J., Kumar, D., Baleanu, D.: New aspects of fractional biswasmilovic model with Mittag-Leffler law. Fractional

order mathematical models in physical sciences. Math. Model. Nat. Phenom. 14, 303 (2019)
12. Singh, J.: A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law.

Chaos, Interdiscip. J. Nonlinear Sci. 29, 013137 (2019)
13. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining

to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2017)
14. Goswami, A., Singh, J., Kumar, D., Sushila: An efficient analytical approach for fractional equal width equations

describing hydro-magnetic waves in cold plasma. Phys. A, Stat. Mech. Appl. 524(15), 563–575 (2019)
15. Singh, J., Kumar, D., Baleanu, D., Rathore, S.: On the local fractional wave equation in fractal strings. Math. Methods

Appl. Sci. 42(5), 1588–1595 (2019)
16. Lin, S., Azaïez, M., Xu, C.: A fractional Stokes equation and its spectral approximation. Int. J. Numer. Anal. Model. 15(1),

170–192 (2018)
17. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3),

2108–2131 (2009)


	An efﬁcient numerical approach to solve the space fractional FitzHugh-Nagumo model
	Abstract
	MSC
	Keywords

	Introduction
	FitzHugh-Nagumo model
	Numerical scheme and stability analysis
	Numerical implementation and numerical results
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Authors' information
	Author details
	Publisher's Note
	References


