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Abstract
We consider analytic and formal solutions of certain family of q-difference-differential
equations under the action of a complex perturbation parameter. The previous study
(Lastra and Malek in Adv. Differ. Equ. 2015:344, 2015) provides information in the case
where the main equation under study is factorizable as a product of two equations in
the so-called normal form. Each of them gives rise to a single level of q-Gevrey
asymptotic expansion. In the present work, the main problem under study does not
suffer any factorization, and a different approach is followed. More precisely, we lean
on the technique developed in (Dreyfus in Int. Math. Res. Not. 15:6562–6587, 2015,
where the first author makes distinction among the different q-Gevrey asymptotic
levels by successive applications of two q-Borel–Laplace transforms of different
orders, both to the same initial problem, which can be described by means of a
Newton polygon.
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1 Introduction
This work is devoted to the study of a family of linear q-difference-differential problems
in the complex domain. It can be arranged into a series of works dedicated to the asymp-
totic study of holomorphic solutions to different kinds of q-difference-differential prob-
lems involving irregular singularities such as [5–7, 10], and [12]. The study of q-difference
and q-difference-differential equations in the complex domain is a promising and fruitful
domain of research. In the literature, we may find other interesting approaches to these
problems. We refer to [20] as a reference, and contributions in the framework of nonlinear
q-analogs of Briot–Bouquet-type partial differential equations in [21]. We provide [18, 22]
as novel studies in this direction.

The study of q-difference equations has also been under study in different applications
in the last years. Some advances in this respect are [14–16] and the references therein.
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The main aim of this work is to study a family of q-difference-differential equations of
the form

Q(∂z)σq,tu(t, z, ε)

= (εt)dD1 σ

dD1
k1

+1
q,t RD1 (∂z)u(t, z, ε) + (εt)dD2 σ

dD2
k2

+1
q,t RD2 (∂z)u(t, z, ε)

+
D–1∑

�=1

ε�� td�σ
δ�
q,t

(
c�(t, z, ε)R�(∂z)u(t, z, ε)

)
+ σq,t f (t, z, ε), (1.1)

where D, D1, D2 are integer numbers greater than 3, Q, RD1 , RD2 , and R� for � = 1, . . . , D – 1
are polynomials with complex coefficients, �� ≥ 0, δ�, d� ≥ 1 are nonnegative integers for
1 ≤ � ≤ D – 1, dD1 and dD2 are positive integers, and q > 1 stands for a real number.

We consider the dilation operator σq,t acting on the variable t, that is, σq,t(t �→ f (t)) :=
f (qt), and the generalization of its composition given by

σ
γ
q,t

(
t �→ f (t)

)
:= f

(
qγ t

)

for γ ∈R. We also fix positive integer numbers k1 and k2 such that

1 ≤ k1 < k2.

As in the previous work [13] of the third author, the coefficients c�(t, z, ε) and the forcing
term f (t, z, ε) represents a bounded holomorphic function in the vicinity of the origin in
C

2 with respect to (t, ε) and on a horizontal strip Hβ = {z ∈C/| Im(z)| < β} of width 2β > 0
relatively to the space variable z. However, a new additional constraint is required on the
growth of the Taylor expansion of each c� according to the mixed variable tε; see (4.6). It
implies that the functions c�(t, z, ε) can be extended to entire functions in the monomial
εt in the whole plane C with so-called q-exponential growth of some order related to k1

and k2 (this terminology will be explained later in the paper).
Two singularly perturbed terms on the right-hand side of equation (1.1) are distin-

guished. This makes a crucial difference with respect to the previous work [7], in which
only one term appears, whilst the multilevel q-Gevrey asymptotic behavior comes from
the forcing term. More precisely, in that previous work, we focused on families of q-
difference-differential equations that can be factorized as products of two operators in
the so-called normal forms, each enjoying one single level of q-Gevrey asymptotics. In
the present work, the appearance of these two terms would cause a multilevel q-Gevrey
phenomenon in the study of the asymptotic solution of (1.1) regarding the perturbation
parameter. Our approach is following a two-step procedure of summation of the formal
solution, which makes the two q-Gevrey asymptotic orders emerge.

Another important difference compared to our previous contribution [7] is that we are
now able to handle holomorphic coefficients in time t whilst only polynomial coefficients
were considered in [7]. This fact relies on new technical bounds for a q-analog of the
convolution of order k presented in Proposition 2.6.

The point of view we use here is similar to that performed in the work of the first author
(see [3]) and is related to direct constraints on the shape of the main equation via a possible
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description by a Newton polygon. It is important to stress that this approach is specific to
the q-difference case. Namely, such a direct procedure for producing two different Gevrey
levels in the differential case for the problem stated in the work [6] is impossible due to
very strong restrictions related to a formula used in the proof and appearing in [19] (see
formula (8.7) on p. 3630. In that case, only a proposal via factoring the main equation did
actually work, as performed in our joint work [8].

Let us briefly review the steps followed to achieve our main results in the present work.
Let 0 ≤ p ≤ ς – 1. First, we apply the q-Borel transformation of order k1 to equation

(1.1) to obtain our first auxiliary problem in a Borel plane, problem (4.11). A fixed point
result in a complex Banach space of functions under an appropriate growth at infinity
leads us to an analytic solution wdp

k1
(τ , m, ε) of (4.11). More precisely, wdp

k1
(τ , m, ε) defines

a continuous function defined in (Udp ∪ D(0,ρ)) × R × D(0, ε0), where Udp is an infinite
sector of bisecting direction dp, and holomorphic with respect to the variables τ and ε in
(Udp ∪ D(0,ρ)) and D(0, ε0), respectively. In addition, this function admits q-exponential
growth of order κ at infinity with respect to τ in Udp .This result is described in detail in
Proposition 4.2.

A second auxiliary problem in the Borel plane is constructed by applying the formal q-
Borel transformation of order k2 to the main problem (1.1). The second auxiliary equation
is stated in (4.26). A second fixed point result in another appropriate Banach space of
functions allows us to guarantee the existence of an actual solution wdp

k2
(τ , m, ε) of the

second auxiliary problem defined in Sdp ×R × D(0, ε0) and holomorphic with respect to
τ and ε in Sdp and D(0, ε0), respectively. Here, Sdp stands for an infinite sector with vertex
at the origin and bisecting direction dp. Moreover, this function has q-exponential growth
of order k2 at infinity with respect to τ on Sdp . This statement is proved in Proposition 4.3.

As a matter of fact, the key point in our reasoning is the link between the q-Laplace
transforms of wdp

k1
and wdp

k2
of order κ with respect to variable τ . In Proposition 4.4, we

guarantee that both functions coincide in the intersection of their domain of definition.
This would entail that the function Ld

q;1/κ (wd
k1

(τ , m, ε)) can be continued along the direc-
tion dp, with q-exponential growth of order k2; see Propoposition 4.4.

The construction of the analytic solution udp (t, z, ε) of (1.1) is obtained after the appli-
cation of the q-Laplace transform of order k2 and the inverse Fourier transform, providing
a holomorphic function defined in T × Hβ ′ × Ep, where T is some well-chosen bounded
sector centered at 0, and {Ep}0≤p≤ς–1 represents a good covering in C

∗ (see Definition 5.1).
This result is described in Theorem 5.3. Figure 1 illustrates the procedure to follow. For the
attainment of the asymptotic properties of the analytic solution, we use a Ramis–Sibuya-
type theorem in two levels (see Theorem 6.3) and the properties held by the difference
of two analytic solutions in the intersection of their domains whenever it is not empty.
The conclusion yields two different q-Gevrey levels of asymptotic behavior of the analytic

Figure 1 Scheme of the different Borel levels
attained in the construction of the solution
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solution with respect to the formal solution depending on the geometry of the problem.
The final main result states the splitting of both formal and analytic solutions to the prob-
lem under study as a sum of three terms. More precisely, if F denotes the Banach space
of holomorphic and bounded functions defined in T × Hβ ′ , and û(t, z, ε) stands for the
formal power series solution of (1.1), then

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε),

where a(t, z, ε) ∈ F{ε} and û1(t, z, ε), û2(t, z, ε) ∈ F�ε� are such that for every 0 ≤ p ≤ ς – 1,
the function udp can be written in the form

udp (t, z, ε) = a(t, z, ε) + udp
1 (t, z, ε) + udp

2 (t, z, ε),

where ε �→ udp
1 (t, z, ε) is an F-valued function admitting û1(t, z, ε) as its q-Gevrey asymp-

totic expansion of order 1/k1 on Ep, and also ε �→ udp
2 (t, z, ε) is an F-valued function admit-

ting û2(t, z, ε) as its q-Gevrey asymptotic expansion of order 1/k2 on Ep. This corresponds
to Theorem 6.4.

The paper is organized as follows. In Sect. 2.1, we define a weighted Banach space of
continuous functions on the domain (D(0,ρ) ∪ U) ×R with q-exponential growth on the
unbounded sector U with respect to the first variable and exponential decay on R with
respect to the second one. We study the continuity properties of several operators acting
on this Banach space. Section 2.2. is concerned with the study of a second family of Banach
spaces of functions with q-exponential growth on an infinite sector with respect to one
variable and exponential decay on R with respect to the other variable. In Sect. 3, we
recall the definitions and main properties of formal and analytic operators involved in the
solution of the main equation. Namely, the formal q-Borel transformation and analytic
q-Laplace transform of certain q-Gevrey orders, and the inverse Fourier transform. In
Sects. 4.1 and 4.2, we study the analytic solutions of two auxiliary problems in two different
Borel planes and relate them via q-Laplace transformation (see Theorem 5.3). In Sect. 5,
we describe in detail the main problem under study and construct its analytic solution
and the rate of growth of the difference of two neighboring solutions in their common
domain of definition. Finally, in Sect. 6, we deal with the existence of a formal solution of
the problem and study the asymptotic behavior relating the analytic and formal solutions
through a multilevel q-Gevrey asymptotic expansion (Theorem 6.4). This result is attained
with the application of a two-level q-version of the Ramis–Sibuya theorem (Theorem 6.3).

2 Auxiliary Banach spaces of functions
In this section, we describe auxiliary Banach spaces of functions with certain growth and
decay behavior. We also provide important properties of such spaces under certain oper-
ators.

Let Ud be an open unbounded sector with vertex at the origin in C, bisecting direction
d ∈R, and positive opening. We take ρ > 0 and consider D(0,ρ) = {τ ∈C : |τ | < ρ}.

We fix real numbers β ,μ, δ > 0, q > 1, and α ≥ 0 through the whole section. We assume
that the distance from Ud ∪D(0,ρ) to the real number –δ is strictly larger than 1. Let k > 0.
We denote by D(0,ρ) the closure of D(0,ρ).

The next definition of a Banach space of functions and subsequent properties have al-
ready been studied in previous works. Analogous spaces were treated in [5, 9], inspired
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by the functional spaces appearing in [17]. We refer the reader to [7, 13] for some of the
proofs of the following results, whose statements are included for completeness.

2.1 First family of Banach spaces of functions with q-exponential growth and
exponential decay

Definition 2.1 Let q > 1. We denote by Expq
(k,β ,μ,α,ρ) the vector space of complex-valued

continuous functions (τ , m) �→ h(τ , m) on (Ud ∪ D(0,ρ)) × R, holomorphic with respect
to τ on Ud ∪ D(0,ρ) and such that

∥∥h(τ , m)
∥∥

(k,β ,μ,α,ρ)

= sup
τ∈Ud∪D(0,ρ),

m∈R

(
1 + |m|)μeβ|m| exp

(
–

k
2

log2 |τ + δ|
log(q)

– α log |τ + δ|
)∣∣h(τ , m)

∣∣

is finite. The space (Expq
(k,β ,μ,α,ρ),‖ · ‖(k,β ,μ,α,ρ)) is a Banach space.

The proof of the following lemma is straightforward.

Lemma 2.2 Let (τ , m) �→ a(τ , m) be a bounded continuous function on (Ud ∪ D(0,ρ)) ×R,
holomorphic with respect to τ on Ud ∪ D(0,ρ). Then

∥∥a(τ , m)h(τ , m)
∥∥

(k,β ,μ,α,ρ) ≤
(

sup
τ∈Ud∪D(0,ρ),m∈R

∣∣a(τ , m)
∣∣
)∥∥h(τ , m)

∥∥
(k,β ,μ,α,ρ)

for every h(τ , m) ∈ Expq
(k,β ,μ,α,ρ).

Proposition 2.3 Let γ1,γ2,γ3 ≥ 0 be such that

γ1 + kγ3 ≥ γ2.

Let aγ1 (τ ) be a continuous function on Ud ∪ D(0,ρ), holomorphic on Ud ∪ D(0,ρ), with

∣∣aγ1 (τ )
∣∣ ≤ 1

(1 + |τ |)γ1

for every τ ∈ (Ud ∪ D(0,ρ)). Then there exists C1 > 0, depending on k, q, α, γ1, γ2, γ3, such
that

∥∥aγ1 (τ )τ γ2σ –4γ3
q,τ f (τ , m)

∥∥
(k,β ,μ,α,ρ) ≤ C1

∥∥f (τ , m)
∥∥

(k,β ,μ,α,ρ)

for every f ∈ Expq
(k,β ,μ,α,ρ).

Definition 2.4 We write E(β ,μ) for the vector space of continuous functions h : R → C

such that

∥∥h(m)
∥∥

(β ,μ) = sup
m∈R

(
1 + |m|)μ

exp
(
β|m|)∣∣h(m)

∣∣ < ∞.

Then (E(β ,μ),‖ · ‖(β ,μ)) is a Banach space.
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The Banach space (E(β ,μ),‖·‖(β ,μ)) can be endowed with the structure of a Banach algebra
with the following noncommutative product (see Proposition 2 in [13] for further details).

Proposition 2.5 Let Q(X), R(X) ∈C[X] be polynomials such that

deg(R) ≥ deg(Q), R(im) �= 0,

for all m ∈R. Let m �→ b(m) be a continuous function in R such that

∣∣b(m)
∣∣ ≤ 1/

∣∣R(im)
∣∣, m ∈R.

Assume that μ > deg(Q) + 1. Then there exists a constant C2 > 0 (depending on Q(X), R(X),
μ) such that

∥∥∥∥b(m)
∫ +∞

–∞
f (m – m1)Q(im1)g(m1) dm1

∥∥∥∥
(β ,μ)

≤ C2
∥∥f (m)

∥∥
(β ,μ)

∥∥g(m)
∥∥

(β ,μ)

for every f (m), g(m) ∈ E(β ,μ). We further adopt the notation

f (m) �Q g(m) :=
∫ +∞

–∞
f (m – m1)Q(im1)g(m1) dm1

for m ∈ R, extending the classical convolution product � for Q ≡ 1. As a result, (E(β ,μ),
‖ · ‖(β ,μ)) becomes a Banach algebra for the product �b,Q defined by

f (m) �b,Q g(m) := b(m)f (m) �Q g(m).

The next proposition is a slightly modified version of Proposition 3 in [13], adapted to
the appearance of two different types of growth of the functions involved, which force
some positive distance to the origin.

Proposition 2.6 Let b(m), Q(X), R(X) be as in Proposition 2.5. We assume that 1 ≤ k ≤ κ

is an integer. Let ch(m) ∈ E(β ,μ) for h ≥ 0 be such that

‖ch‖(β ,μ) ≤ C
(

1
T

)h

q
h2
2k (1– κ

k ), h ≥ 0, (2.1)

for some C > 0 and T > q1/(2k). Let ϕk(τ , m) be the power series

ϕk(τ , m) =
∑

h≥0

ch(m)
τ h

(q1/k)h(h–1)/2 ∈ E(β ,μ) �τ �,

which, in view of (2.1), defines an entire function with respect to τ with values in E(β ,μ).
For every f (τ , m) ∈ Expq

(κ ,β ,μ,α,ρ), we define a q-analog of the convolution of order k of
ϕk(τ , m) and f (τ , m) as

ϕk(τ , m) �
Q
q;1/k f (τ , m) :=

∑

h≥0

τ h

(q1/k)h(h–1)/2 ch(m) �Q (
σ

– h
k

q,τ f
)
(τ , m).
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Then the function b(m)ϕk(τ , m)�Q
q;1/k f (τ , m) belongs to Expq

(κ ,β ,μ,α,ρ), and there exists C3 > 0,
depending on μ, q, α, k, κ , Q(X), R(X), δ, T , such that

∥∥b(m)ϕk(τ , m) �
Q
q;1/k f (τ , m)

∥∥
(κ ,β ,μ,α,ρ) ≤ C3C

∥∥f (τ , m)
∥∥

(κ ,β ,μ,α,ρ).

Proof Let f (τ , m) ∈ Expq
(κ ,β ,μ,α,ρ). From the definition of the norm ‖ · ‖(κ ,β ,μ,α,ρ) we know

that

∥∥b(m)ϕk(τ , m) �
Q
q;1/k f (τ , m)

∥∥
(κ ,β ,μ,α,ρ)

= sup
τ∈Ud∪D(0,ρ),m∈R

(
1 + |m|)μeβ|m| exp

(
–

κ

2
log2(|τ + δ|)

log(q)
– α log

(|τ + δ|)
)∣∣b(m)

∣∣

×
∣∣∣∣
∑

h≥0

τ h

(q1/k)
h(h–1)

2

∫ +∞

–∞
ch(m – m1)Q(im1)f

(
τ

qh/k , m1

)
dm1

∣∣∣∣

= sup
τ∈Ud∪D(0,ρ),m∈R

L(τ , m).

We first give upper estimates for

sup
τ∈D(0,ρ),m∈R

L(τ , m).

By construction there exist two constants Q,R > 0 such that

∣∣Q(im1)
∣∣ ≤ Q

(
1 + |m1|

)deg(Q) and
∣∣R(im)

∣∣ ≥ R
(
1 + |m|)deg(R) (2.2)

for all m ∈ R. Using (2.2), from Lemma 4 in [11] (see also Lemma 2.2 in [1]) we get a
constant C̃2 > 0 such that

(
1 + |m|)μ∣∣b(m)

∣∣
∫ +∞

–∞
|Q(im1)|

(1 + |m – m1|)μ(1 + |m1|)μ dm1

≤ sup
m∈R

Q

R

(
1 + |m|)μ–deg(R) ×

∫ +∞

–∞
1

(1 + |m – m1|)μ(1 + |m1|)μ–deg(Q) dm1

≤ C̃2, (2.3)

provided that μ > deg(Q) + 1. From the definition of ‖f ‖(κ ,β ,μ,α,ρ) and ‖ch‖(β ,μ) for all h ≥ 0,
(2.2), and (2.3) we get that for all τ ∈ D(0,ρ) and m ∈R, L(τ , m) is upper bounded by

(
1 + |m|)μeβ|m| exp

(
–

κ

2
log2(|τ + δ|)

log(q)
– α log

(|τ + δ|)
)∣∣b(m)

∣∣

×
∑

h≥0

|τ |h
(q1/k)h(h–1)/2

∫ +∞

–∞
‖ch‖(β ,μ)

1
(1 + |m – m1|)μ e–β|m–m1|∣∣Q(im1)

∣∣

× 1
(1 + |m1|)μ e–β|m1|

× exp

(
κ

2
log2(|τ /qh/k + δ|)

log(q)
+ α log

(∣∣τ /qh/k + δ
∣∣)

)
dm1

∥∥f (τ , m)
∥∥

(κ ,β ,μ,α,ρ)
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≤ C̃2 exp

(
–

κ

2
log2(|τ + δ|)

log(q)
– α log

(|τ + δ|)
)∑

h≥0

|τ |h
(q1/k)h(h–1)/2 ‖ch‖(β ,μ)

× exp

(
κ

2
log2(|τ /qh/k + δ|)

log(q)
+ α log

(∣∣τ /qh/k + δ
∣∣)

)∥∥f (τ , m)
∥∥

(κ ,β ,μ,α,ρ)

≤ Ĉ2
∑

h≥0

ρh

(q1/k)h(h–1)/2 ‖ch‖(β ,μ)
∥∥f (τ , m)

∥∥
(κ ,β ,μ,α,ρ)

with Ĉ2 = C̃2 exp( κ
2

log2(ρ+δ)
log(q) + α log(ρ + δ)). Assumption (2.1) on ‖ch‖(β ,μ) allows us

to conclude the result when restricting the domain on the variable τ to the subset
D(0,ρ).

Let Ũd be the complement of D(0,ρ) in Ud . From what precedes we may take the supre-
mum over Ũd instead of Ud ∪ D(0,ρ).

By inserting terms that correspond to the ‖ · ‖(β ,μ) norm of ch(m) and to the ‖ · ‖(κ ,β ,μ,α,ρ)

norm of f (τ /qh/k , m) there exists C̃1 > 0 such that we can give the bound estimates

sup
τ∈Ũd ,m∈R

L(τ , m)

≤ sup
τ∈Ũd ,m∈R

(
1 + |m|)μeβ|m| exp

(
–

κ

2
log2(|τ + δ|)

log(q)
– α log

(|τ + δ|)
)∣∣b(m)

∣∣

×
∑

h≥0

∫ +∞

–∞

((
1 + |m – m1|

)μeβ|m–m1| |ch(m – m1)|
(q1/k)h(h–1)/2 |τ |h

)

×
(∣∣∣∣f

(
τ

qh/k , m1

)∣∣∣∣
(
1 + |m1|

)μeβ|m1|

× exp

(
–

κ

2
log2(|τ /qh/k + δ|)

log(q)
– α log

(∣∣τ /qh/k + δ
∣∣)

))

×
(

e–β|m–m1|

(1 + |m – m1|)μ
|Q(im1)|

(1 + |m1|)μ e–β|m1|

× exp

(
κ

2
log2(|τ /qh/k + δ|)

log(q)
+ α log

(∣∣τ /qh/k + δ
∣∣)

))
dm1.

By means of the triangular inequality |m| ≤ |m – m1| + |m1| we deduce that

sup
τ∈Ũd ,m∈R

L(τ , m) ≤ Ĉ
∥∥f (τ , m)

∥∥
(κ ,β ,μ,α,ρ), (2.4)

where

Ĉ = sup
τ∈Ũd ,m∈R

(
1 + |m|)μ

exp

(
–

κ

2
log2(|τ + δ|)

log(q)
– α log

(|τ + δ|)
)∣∣b(m)

∣∣

×
∑

h≥0

‖ch‖(β ,μ)
|τ |h

(q1/k)h(h–1)/2

∫ +∞

–∞
|Q(im1)|

(1 + |m – m1|)μ(1 + |m1|)μ dm1

× exp

(
κ

2
log2(|τ /qh/k + δ|)

log(q)
+ α log

(∣∣τ /qh/k + δ
∣∣)

)
. (2.5)
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Again, we can also apply (2.3) at this point. On the other hand, we can provide upper
estimates on the expression

exp

(
κ

2 log(q)

(
log2

(∣∣∣∣
τ

qh/k + δ

∣∣∣∣

)
– log2

(∣∣∣∣
τ

qh/k

∣∣∣∣

)))

× exp

(
κ

2 log(q)

(
log2

(∣∣∣∣
τ

qh/k

∣∣∣∣

)
– log2(|τ |)

))

× exp

(
κ

2 log(q)
(
log2(|τ |) – log2(|τ + δ|))

)

× exp

(
α log

(∣∣∣∣
τ

qh/k

∣∣∣∣

)
– α log

(|τ |)
)

× exp

(
α log

(∣∣∣∣
τ

qh/k + δ

∣∣∣∣

)
– α log

(∣∣∣∣
τ

qh/k

∣∣∣∣

))

× exp
(
α log

(|τ |) – α log
(|τ + δ|)) (2.6)

as follows. The proof of Proposition 3 in [13] can be applied to the second and fourth lines
of (2.6), which yield

exp

(
κ

2 log(q)

(
log2

(∣∣∣∣
τ

qh/k

∣∣∣∣

)
– log2(|τ |)

))
= q

h2κ

2k2 |τ |– hκ
k (2.7)

and

exp

(
α log

(∣∣∣∣
τ

qh/k

∣∣∣∣

)
– α log

(|τ |)
)

= q– αh
k , (2.8)

respectively. It is straightforward to check that the expression in the fifth line of (2.6) is
upper bounded by

C31
(
qh/k)α (2.9)

for some positive constant C31.
We give upper bounds for the first line in (2.6). In the case that |τ /qh/k| ≤ 1, this expres-

sion is upper bounded by a constant that depends neither on τ nor on h. Otherwise, we
have

exp

(
κ

2 log(q)

(
log2

(∣∣∣∣
τ

qh/k + δ

∣∣∣∣

)
– log2

(∣∣∣∣
τ

qh/k

∣∣∣∣

)))

≤ exp

(
κ

2 log(q)

(
log2

(∣∣∣∣
τ

qh/k

∣∣∣∣ + δ

)
– log2

(∣∣∣∣
τ

qh/k

∣∣∣∣

)))

≤ sup
x>1

exp

(
κ

2 log(q)
(
log2(x + δ)

)
– log2(x)

)
≤ C32 (2.10)

for some C32 > 0. We finally provide upper bounds on the third line of (2.6) taking into
account that

log2 |τ | – log2 |τ + δ| = – log2
∣∣∣∣1 +

δ

τ

∣∣∣∣ – 2 log |τ | log

∣∣∣∣1 +
δ

τ

∣∣∣∣ ≤ C33, τ ∈ Ũd, (2.11)
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for some C33 > 0. From (2.5), (2.3), (2.6), (2.7), (2.8), (2.9), (2.10), and (2.11) we derive the
existence of C̃31, C̃32 > 0 such that

Ĉ ≤ C̃31
∑

h≥0

‖ch‖(β ,μ)

(
sup
τ∈Ũd

|τ |h(1– κ
k )

)
q

h
2k + h2

2k ( κ
k –1)

≤ C̃32C
∑

h≥0

(
q1/(2k)

T

)h

≤ C3C,

which yields the result by choosing T > q1/(2k). �

Remark Observe that condition (2.1) on the coefficients ch is always satisfied in the case
where only a finite number of ch is not identically zero, that is, ϕk ∈ E(β ,μ)[τ ].

2.2 Second family of Banach spaces of functions with q-exponential growth and
exponential decay

The second family of auxiliary Banach spaces has already been studied in previous works,
such as [7, 13]. We refer to these references for the proofs of the related results.

Let Sd be an infinite sector of bisecting direction d, and let ν ∈R.

Definition 2.7 We write Expq
(k,β ,μ,ν) for the vector space of continuous functions (τ , m) �→

h(τ , m) on Sd ×R, holomorphic with respect to τ on Sd , such that

∥∥h(τ , m)
∥∥

(k,β ,μ,ν) = sup
τ∈Sd ,m∈R

(
1 + |m|)μeβ|m| exp

(
–

k log2 |τ |
2 log(q)

– ν log |τ |
)∣∣h(τ , m)

∣∣

is finite. Then (Expq
(k,β ,μ,ν),‖ · ‖(k,β ,μ,ν)) is a Banach space.

Remark 2.8 Let 0 ≤ κ1 ≤ κ2. For every f ∈ Expq
(κ1,β ,μ,ν), we have that f ∈ Expq

(κ2,β ,μ,ν) and

∥∥f (τ , m)
∥∥

(κ2,β ,μ,ν) ≤ ∥∥f (τ , m)
∥∥

(κ1,β ,μ,ν).

The proof of the following lemma is a straightforward consequence of the definition.

Lemma 2.9 Let a(τ , m) be a bounded continuous function on Sd ×R, holomorphic on Sd

with respect to τ . Then

∥∥a(τ , m)f (τ , m)
∥∥

(k,β ,μ,ν) ≤ sup
τ∈Sd ,m∈R

∣∣a(τ , m)
∣∣∥∥f (τ , m)

∥∥
(k,β ,μ,ν)

for every f (τ , m) ∈ Expq
(k,β ,μ,ν).

Proposition 2.10 Let γ1,γ2 ≥ 0 and γ3 ∈R be such that

γ1 + kγ3 ≥ γ2. (2.12)

Let aγ1 (τ ) be holomorphic on Sd with

∣∣aγ1 (τ )
∣∣ ≤ 1

(1 + |τ |)γ1
, τ ∈ Sd.
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Then there exists C4 > 0, depending on k, q, ν , γ1, γ2, γ3, such that

∥∥aγ1 (τ )τ γ2σ –γ3
q,τ f (τ , m)

∥∥
(k,β ,μ,ν) ≤ C4

∥∥f (τ , m)
∥∥

(k,β ,μ,ν)

for every f ∈ Expq
(k,β ,μ,ν).

Proof For every f ∈ Expq
(k,β ,μ,ν), we have

∥∥aγ1 (τ )τ γ2σ –γ3
q,τ f (τ , m)

∥∥
(k,β ,μ,ν)

≤ sup
τ∈Sd ,m∈R

(
1 + |m|)μeβ|m| exp

(
–

k log2 |τ |
2 log(q)

– ν log |τ |
) |τ |γ2

(1 + |τ |)γ1

∣∣f
(
τ /qγ3 , m

)∣∣

× exp

(
–

k log2 |τ /qγ3 |
2 log(q)

– ν log
∣∣τ /qγ3

∣∣
)

exp

(
k log2 |τ /qγ3 |

2 log(q)
+ ν log

∣∣τ /qγ3
∣∣
)

≤ sup
τ∈Sd

q
kγ 2

3 –2νγ3
2

|τ |–kγ3+γ2

(1 + |τ |)γ1

∥∥f (τ , m)
∥∥

(k,β ,μ,ν).

The result follows from condition (2.12). �

Following the same lines of arguments as in Proposition 2.6, we deduce the next propo-
sition.

Proposition 2.11 Let b(m), Q(X), R(X), ch for h ≥ 0, and let ϕk(τ , m) be chosen as in Propo-
sition 2.6. For every f (τ , m) ∈ Expq

(k,β ,μ,ν), we have that b(m)ϕk(τ , m) �
Q
q;1/k f (τ , m) belongs to

Expq
(k,β ,μ,ν) and there exists C4 > 0, depending on μ, q, ν , k, Q(X), R(X), such that

∥∥b(m)ϕk(τ , m) �
Q
q;1/k f (τ , m)

∥∥
(k,β ,μ,ν) ≤ CC4

∥∥f (τ , m)
∥∥

(k,β ,μ,ν).

3 Formal and analytic operators involved in the study of the problem
We give the main properties of some formal and analytic transformations for complete-
ness. In this section, E stands for a complex Banach space.

The definition and the main properties of the q-analogs of Borel and Laplace transforms
in several different orders can be found in [3, 17]. The proofs of the following results can
be found in [13].

Let q > 1 be a real number, and let k ≥ 1 be a rational number.

Definition 3.1 For every â(T) =
∑

n≥0 anTn ∈ E�T �, we define the formal q-Borel trans-
form of order k of â(T) by

B̂q;1/k
(
â(T)

)
(τ ) =

∑

n≥0

an
τ n

(q1/k)n(n–1)/2 ∈ E�τ �.

Proposition 3.2 Let σ ∈N and j ∈Q. Then

B̂q;1/k
(
Tσ σ j

qâ(T)
)
(τ ) =

τσ

(q1/k)σ (σ–1)/2 σ
j– σ

k
q

(
B̂q;1/k

(
â(T)

)
(τ )

)

for every â(T) ∈ E�T �.
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The q-analog of Laplace transform as it is shown was developed in [2]. The associated
kernel of such a transform is the Jacobi theta function of order k defined by

Θq1/k (x) =
∑

n∈Z
q– n(n–1)

2k xn,

which turns out to be a holomorphic function in C
�. It also turns out to be a solution of

the q-difference equation

Θq1/k
(
q

m
k x

)
= q

m(m+1)
2k xmΘq1/k (x) (3.1)

for every m ∈ Z, valid for all x ∈C
�. As a matter of fact, the Jacobi theta function of order

k is a function of q-Gevrey decrease of order k at infinity in the sense that for every δ̃ > 0,
there exists Cq,k > 0, not depending on δ̃, such that

∣∣Θq1/k (x)
∣∣ ≥ Cq,k δ̃ exp

(
k
2

log2 |x|
log(q)

)
|x|1/2 (3.2)

for x ∈C
� under the condition that |1 + xq

m
k | > δ̃ for every m ∈ Z.

Definition 3.3 Let ρ > 0, and let Ud be an unbounded sector with vertex at 0 and bisect-
ing direction d ∈ R. Let f : D(0,ρ) ∪ Ud → E be a holomorphic function, continuous on
D(0,ρ), such that there exist K > 0 and α ∈R with

∥∥f (x)
∥∥
E

≤ K exp

(
k log2 |x|
2 log(q)

+ α log |x|
)

, x ∈ Ud, |x| ≥ ρ,

and

∥∥f (x)
∥∥
E

≤ K , x ∈ D(0,ρ).

Set πq1/k = log(q)
k

∏
n≥0(1 – 1

q(n+1)/k )–1. We define the q-Laplace transform of order k of f
along direction d by

Ld
q;1/k

(
f (x)

)
(T) =

1
πq1/k

∫

Ld

f (u)
Θq1/k ( u

T )
du
u

,

where Ld := {teid : t ∈ (0,∞)}.

We refer the reader to Lemma 4 and Proposition 6 in [13] for the proofs of the next
results. The algebraic property held by q-Laplace transform will allow us to commute some
operators with respect to it.

Lemma 3.4 Let δ̃ > 0. Under the hypotheses of Definition 3.3, we have that Ld
q;1/k(f (x))(T)

defines a bounded holomorphic function on Rd,δ̃ ∩ D(0, r1) for every 0 < r1 ≤ q( 1
2 –α)/k/2,

where

Rd,δ̃ :=
{

T ∈C
� :

∣∣∣∣1 +
reid

T

∣∣∣∣ > δ̃, for all r ≥ 0
}

. (3.3)
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A different choice for d modulo 2πZ would provide the same function due to the Cauchy
formula.

Proposition 3.5 Let f be a function that satisfies the properties in Definition 3.3, and let
δ̃ > 0. Then, for every σ ≥ 0, we have

Tσ σ j
q
(
Ld

q;1/kf (x)
)
(T) = Ld

q;1/k

(
xσ

(q1/k)σ (σ–1)/2 σ
j– σ

k
q f (x)

)
(T)

for every T ∈Rd,δ̃ ∩ D(0, r1) with 0 < r1 ≤ q( 1
2 –α)/k/2.

Another operator is used through the work is the inverse Fourier transform.

Proposition 3.6 Let f ∈ E(β ,μ) with β > 0 and μ > 1. The inverse Fourier transform of f is
defined by

F–1(f )(x) =
1

(2π )1/2

∫ ∞

–∞
f (m) exp(ixm) dm

for x ∈ R. The function F–1(f ) extends to an analytic function on the strip

Hβ =
{

z ∈C/
∣∣Im(z)

∣∣ < β
}

.

Let φ(m) = imf (m) ∈ E(β ,μ–1). Then we have

∂zF–1(f )(z) = F–1(φ)(z)

for all z ∈ Hβ .
Let g ∈ E(β ,μ), and let ψ(m) = 1

(2π )1/2 f �g(m), the convolution product of f and g , for m ∈R.
From Proposition 2.5 we know that ψ ∈ E(β ,μ). Moreover, we have

F–1(f )(z)F–1(g)(z) = F–1(ψ)(z)

for all z ∈ Hβ .

4 Formal and analytic solutions to some auxiliary convolution initial value
problems with complex parameters

Let 1 ≤ k1 < k2 and D, D1, D2 ≥ 3 be integers and define κ–1 = k–1
1 –k–1

2 . Observe that κ > k1.
Let q > 1 be a real number. We also consider the positive integer numbers dD1 , dD2 . For
every 1 ≤ � ≤ D – 1, we consider nonnegative integers d�, δ� ≥ 1 and �� ≥ 0. We assume
that

δ1 = 1, δ� < δ�+1 (4.1)

for 1 ≤ � ≤ D – 2. We also assume that

�� ≥ d�,
dD1 – 1

κ
+

d�

k2
+ 1 ≥ δ�,

d�

k1
+ 1 ≥ δ�,

dD2 – 1
k2

≥ δ� – 1 (4.2)
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for every 1 ≤ � ≤ D – 1, and also

k1(dD2 – 1) > k2dD1 . (4.3)

Let Q(X), R�(X) ∈C[X] for 1 ≤ � ≤ D – 1 and RD1 , RD2 ∈C[X] be such that

deg(RD2 ) = deg(RD1 ) (4.4)

and

deg(Q) ≥ deg(RDj ) ≥ deg(R�), μ – 1 > deg(RDj ),

Q(im) �= 0, RDj (im) �= 0,
(4.5)

for some μ > deg(RDj ) + 1 with j = 1, 2 and all m ∈R, 1 ≤ � ≤ D – 1.
We consider sequences of functions m �→ Fn(m, ε) and m �→ C�,n(m, ε) for n ≥ 0 belong-

ing to the Banach space E(β ,μ) for some β > 0, depending holomorphically on ε ∈ D(0, ε0)
for some ε0 > 0. Moreover, we assume that there exist C̃�, CF , T0 > 0 such that

‖C�,n‖(β ,μ) ≤ C̃�

(
1

T0

)n

q– n2κ
2k1k2 , ‖Fn‖(β ,μ) ≤ CF

(
1

T0

)n

, n ≥ 0. (4.6)

We define the formal power series in E(β ,μ) �T �

Ĉ�(T , m, ε) =
∑

n≥0

C�,n(m, ε)Tn, F̂(T , m, ε) =
∑

n≥0

Fn(m, ε)Tn.

We consider the initial value problem

Q(im)σq,T U(T , m, ε)

= TdD1 σ

dD1
k1

+1
q,T RD1 (im)U(T , m, ε) + TdD2 σ

dD2
k2

+1
q,T RD2 (im)U(T , m, ε)

+
D–1∑

�=1

ε��–d�Td�σ
δ�
q,T

(
1

(2π )1/2

∫ +∞

–∞
Ĉ�(T , m – m1, ε)R�(im1)U(T , m1, ε) dm1

)

+ σq,T F̂(T , m, ε). (4.7)

Proposition 4.1 There exists a unique formal power series

Û(T , m, ε) =
∑

n≥0

Un(m, ε)Tn, (4.8)

solution of (4.7), where the coefficients Un(m, ε) belong to E(β ,μ) for β > 0 and μ > deg(RDj ) +
1, j ∈ {1, 2}, given above and depend holomorphically on ε ∈ D(0, ε0).

Proof We plug the formal power series (4.8) into equation (4.7) to obtain a recursion for-
mula for the coefficients Un, n ≥ 0. We have

Q(im)Un(m, ε)qn

= RD1 (im)Un–dD1
(m, ε)q(

dD1
k1

+1)(n–dD1 ) + RD2 (im)Un–dD2
(m, ε)q(

dD2
k2

+1)(n–dD2 )
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+
D–1∑

�=1

ε��–d�q(n–d�)δ�

×
( ∑

n1+n2=n–d�

1
(2π )1/2

∫ +∞

–∞
C�,n1 (m – m1, ε)R�(im1)Un2 (m1, ε) dm1

)

+ Fn(m, ε)qn

for every n ≥ max{dD1 , dD2 , max1≤�≤D–1 d�}. Due to C�,n, Fn ∈ E(β ,μ) for every n ≥ 0 and
1 ≤ � ≤ D – 1, we get Un ∈ E(β ,μ) by recursion. We observe that Proposition 2.5 is applied
in the recursion. �

4.1 Analytic solutions of a first auxiliary problem in the q-Borel plane
We proceed to multiply both sides of equation (4.7) by Tk1 and then apply the formal
q-Borel transform of order k1 with respect to T . Let ϕk1,�(τ , m, ε) be the formal q-Borel
transform of order k1 of Ĉ�(T , m, ε) with respect to T , and let Ψk1 (τ , m, ε) be the formal
q-Borel transform of order k1 of F̂(T , m, ε) with respect to T . More precisely, we have

ϕk1,�(τ , m, ε) =
∑

n≥0

C�,n(m, ε)
τ n

(q1/k1 )n(n–1)/2 ,

Ψk1 (τ , m, ε) =
∑

n≥0

Fn(m, ε)
τ n

(q1/k1 )n(n–1)/2 .
(4.9)

According to Lemma 5 of [13], the expression Ψk1 (τ , m, ε) represents an entire function
of q-exponential growth of order k1 that belongs to the Banach space Expq

(κ ,β ,μ,α,ρ) since
κ > k1, provided that α satisfies T0 > q

1
2k1 /qα/k1 , for any unbounded sector Ud and any disc

D(0,ρ). More precisely, we have

∥∥Ψk1 (τ , m, ε)
∥∥

(κ ,β ,μ,α,ρ) ≤ CΨk1
(4.10)

for some constant CΨk1
> 0 and all ε ∈ D(0, ε0).

In view of the properties of the q-Borel transform of order k1, we arrive at the equation

Q(im)
τ k1

(q1/k1 )
k1(k1–1)

2
wk1 (τ , m, ε)

= RD1 (im)
τ dD1 +k1

(q1/k1 )
(dD1 +k1)(dD1 +k1–1)

2

wk1 (τ , m, ε)

+ RD2 (im)
τ dD2 +k1

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2

σ
dD2 ( 1

k2
– 1

k1
)

q,τ wk1 (τ , m, ε)

+
τ k1

(q1/k1 )
k1(k1–1)

2
Ψk1 (τ , m, ε) +

D–1∑

�=1

ε��–d�
τ d�+k1

(q1/k1 )
(d�+k1)(d�+k1–1)

2

σ
δ�– d�

k1
–1

q,τ

×
(

1
(2π )1/2 ϕk1,�(τ , m, ε) �

R�

q;1/k1
wk1 (τ , m, ε)

)
, (4.11)



Dreyfus et al. Advances in Difference Equations        (2019) 2019:326 Page 16 of 42

where wk1 (τ , m, ε) stands for the formal q-Borel transform of order k1 of U(T , m, ε) with
respect to T . Observe the appearance only of negative powers of the dilation operator in
each term in the sum of the right-hand side of the equation.

We assume that there exists an unbounded sector of bisecting direction dQ,RD1
∈R,

SQ,RD1
=

{
z ∈C : |z| ≥ rQ,RD1

,
∣∣arg(z) – dQ,RD1

∣∣ ≤ νQ,RD1

}

for some rQ,RD1
,νQ,RD1

> 0, in such a way that

Q(im)
RD1 (im)

∈ SQ,RD1

for every m ∈ R. We factorize

Pm,1(τ ) =
Q(im)

(q1/k1 )
k1(k1–1)

2
–

RD1 (im)

(q1/k1 )
(dD1 +k1)(dD1 +k1–1)

2

τ dD1

in the form

Pm,1(τ ) = –
RD1 (im)

(q1/k1 )
(dD1 +k1)(dD1 +k1–1)

2

dD1 –1∏

�=0

(
τ – q�(m)

)

with

q�(m) = e
2iπ�
dD1

(
Q(im)

RD1 (im)

)1/dD1
q

dD1 +2k1–1
2k1

for every 0 ≤ � ≤ dD1 –1. Let Ud be an unbounded sector, and let ρ > 0 be that the following
statements hold:

(1) There exists M1 > 0 such that |τ – q�(m)| ≥ M1(1 + |τ |) for all 0 ≤ � ≤ dD1 – 1,
m ∈R, and τ ∈ Ud ∪ D(0,ρ). An appropriate choice of rQ,RD1

and ρ yields
|q�(m)| > 2ρ for all m ∈R and 0 ≤ � ≤ dD1 – 1. In the case that νQ,RD1

is small
enough, the set {q�(m) : m ∈R, 0 ≤ � ≤ dD1 – 1} stays at a positive distance to Ud ,
and it can be chosen so that 1/τ has positive distance to 1 ∈C for all τ ∈ Ud , m ∈ R,
and 0 ≤ � ≤ dD1 – 1.

(2) There exists M2 > 0 such that |τ – q�(m)| ≥ M2|q�(m)| for all � ∈ {0, . . . , dD1 – 1},
m ∈R, and τ ∈ Ud ∪ D(0,ρ). This is a direct consequence of 1) for some small
enough M2 > 0.

In order to prove the following upper estimates in (4.12), we make use of (1) for all
� ∈ {0, . . . , dD1 – 1}, except for one of them, say �0, for which (2) is applied. The previous
conditions yield the existence of CP > 0 such that

∣∣Pm,1(τ )
∣∣

≥ M
dD1 –1
1 M2

|RD1 (im)|(1 + |τ |)dD1 –1

(q1/k1 )
(dD1 +k1)(dD1 +k1–1)

2

( |Q(im)|
|RD1 (im)|

)1/dD1
q

dD1 +2k1–1
2k1

≥ CP(rQ,RD1
)1/dD1

∣∣RD1 (im)
∣∣(1 + |τ |)dD1 –1 (4.12)

for all τ ∈ Ud ∪ D(0,ρ) and m ∈R.
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The next result states the existence and uniqueness of a solution of (4.11) in the space
Expq

(κ ,β ,μ,α,ρ), provided that its norm in that space is small enough.

Proposition 4.2 Under Assumptions (4.1), (4.2), (4.3), (4.4), and (4.5), there exist rQ,RD1
>

0, a constant � > 0, and constants ςϕ ,ςΨ > 0 such that if

C̃� ≤ ςϕ , and CΨk1
≤ ςΨ (4.13)

for all 1 ≤ � ≤ D – 1 (see (4.6) and (4.10)), then equation (4.11) admits a unique solution
wd

k1
(τ , m, ε) ∈ Expq

(κ ,β ,μ,α,ρ) with ‖wd
k1

(τ , m, ε)‖(κ ,β ,μ,α,ρ) ≤ � for every ε ∈ D(0, ε0).

Proof Let ε ∈ D(0, ε0) and consider the operator Hε defined by

H1
ε

(
w(τ , m)

)
:=

RD2 (im)
Pm,1(τ )

τ dD2

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2

σ
dD2 ( 1

k2
– 1

k1
)

q,τ w(τ , m)

+
D–1∑

�=1

ε��–d�
τ d�

Pm,1(τ )(q1/k1 )
(d�+k1)(d�+k1–1)

2

σ
δ�– d�

k1
–1

q,τ

×
(

1
(2π )1/2 ϕk1,�(τ , m, ε) �

R�

q;1/k1
w(τ , m)

)

+
1

Pm,1(τ )(q1/k1 )
k1(k1–1)

2
Ψk1 (τ , m, ε).

Note that a fixed point of H1
ε (w(τ , m)) will lead to a convenient solution of (4.11). To apply

the fixed point theorem, we are going to prove successively two facts.
(1) We may choose ςϕ ,ςΨ ,� > 0 small enough and rQ,RD1

> 0 large enough such that

H1
ε

(
B(0,� )

) ⊆ B(0,� ), (4.14)

where B(0,� ) stands for the closed disc centered at 0 with radius � in the Banach
space Expq

(κ ,β ,μ,α,ρ).
(2) We have

∥∥H1
ε

(
w1(τ , m)

)
– H1

ε

(
w2(τ , m)

)∥∥
(κ ,β ,μ,α,ρ)

≤ 1
2
∥∥w1(τ , m) – w2(τ , m)

∥∥
(κ ,β ,μ,α,ρ) (4.15)

for all w1(τ , m), w2(τ , m) ∈ B(0,� ).

Proof of (4.14) We first check (4.14). Let w(τ , m) ∈ Expq
(κ ,β ,μ,α,ρ).

By (4.2) and the definition of κ we find that dD1 – 1 + κ(d�/k1 + 1 – δ�) ≥ d� and d�/k1 +
1 – δ� ≥ 0. Thus, taking into account assumptions (4.1), (4.5) and regarding (4.12) together
with Propositions 2.3 and 2.6, we get

∥∥∥∥ε��–d�
τ d�

Pm,1(τ )(q1/k1 )
(d�+k1)(d�+k1–1)

2

σ
δ�– d�

k1
–1

q,τ

×
(

1
(2π )1/2 ϕk1,�(τ , m, ε) �

R�

q;1/k1
w(τ , m)

)∥∥∥∥
(κ ,β ,μ,α,ρ)
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≤ ε
��–d�
0

C1C3ςϕ

(q1/k1 )
(d�+k1)(d�+k1–1)

2 CP(rQ,RD1
)1/dD1 (2π )1/2

∥∥w(τ , m)
∥∥

(κ ,β ,μ,α,ρ). (4.16)

Gathering Lemma 2.2, we get

∥∥∥∥
1

Pm,1(τ )(q1/k1 )k1(k1–1)/2 Ψk1 (τ , m, ε)
∥∥∥∥

(κ ,β ,μ,α,ρ)

≤ 1
(q1/k1 )k1(k1–1)/2CP(rQ,RD1

)1/dD1
sup
m∈R

1
|RD1 (im)|ςΨ . (4.17)

Condition (4.4) and an application of Proposition 2.3 and Lemma 2.2 yield

∥∥∥∥
RD2 (im)
Pm,1(τ )

τ dD2

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2

σ
dD2 ( 1

k2
– 1

k1
)

q,τ w(τ , m)
∥∥∥∥

(κ ,β ,μ,α,ρ)

≤ sup
m∈R

|RD2 (im)|
|RD1 (im)|

C1

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2 CP(rQ,RD1
)1/dD1

� . (4.18)

An appropriate choice of rQ,RD1
> 0, � ,ςΨ ,ςϕ > 0 gives

D–1∑

�=1

ε
��–d�
0

C3ςϕC1

(q1/k1 )
(d�+k1)(d�+k1–1)

2 CP(rQ,RD1
)1/dD1 (2π )1/2

�

+
1

(q1/k1 )k1(k1–1)/2CP(rQ,RD1
)1/dD1

sup
m∈R

1
|RD1 (im)|ςΨ

+ sup
m∈R

|RD2 (im)|
|RD1 (im)|

C1�

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2 CP(rQ,RD1
)1/dD1

≤ � . (4.19)

Regarding (4.16), (4.17), (4.18), and (4.19), we obtain (4.14).

Proof of (4.15) We proceed to prove (4.15). Let w1, w2 ∈ Expq
(κ ,β ,μ,α,ρ). We assume that

‖w�(τ , m)‖(κ ,β ,μ,α,ρ) ≤ � , � = 1, 2, for some � > 0. Let E(τ , m) := w1(τ , m) – w2(τ , m). On
one hand, from (4.16) we have

∥∥∥∥
ε��–d�τ d�

Pm,1(τ )(q1/k1 )
(d�+k1)(d�+k1–1)

2

σ
δ�– d�

k1
–1

q,τ

(
1

(2π )1/2 ϕk1,�(τ , m, ε) �
R�

q;1/k1
E(τ , m)

)∥∥∥∥
(κ ,β ,μ,α,ρ)

≤ ε
��–d�
0

C3ςϕC1

(q1/k1 )
(d�+k1)(d�+k1–1)

2 CP(rQ,RD1
)1/dD1 (2π )1/2

∥∥E(τ , m)
∥∥

(κ ,β ,μ,α,ρ). (4.20)

On the other hand, (4.18) yields

∥∥∥∥
RD2 (im)
Pm,1(τ )

τ dD2

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2

σ
dD2 ( 1

k2
– 1

k1
)

q,τ E(τ , m)
∥∥∥∥

(κ ,β ,μ,α,ρ)

≤ sup
m∈R

|RD2 (im)|
|RD1 (im)|

C1

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2 CP(rQ,RD1
)1/dD1

∥∥E(τ , m)
∥∥

(κ ,β ,μ,α,ρ). (4.21)
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We choose rQ,RD1
> 0 and ςϕ > 0 such that

D–1∑

�=1

ε
��–d�
0

C3ςϕC1

(q1/k1 )
(d�+k1)(d�+k1–1)

2 CP(rQ,RD1
)1/dD1 (2π )1/2

+ sup
m∈R

|RD2 (im)|
|RD1 (im)|

C1

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2 CP(rQ,RD1
)1/dD1

≤ 1
2

. (4.22)

Statement (4.15) is a direct consequence of condition (4.22) applied to (4.20) and (4.21).

Let us finish the proof of the proposition. At this point, in view of (4.14) and (4.15),
we can choose � > 0 such that B(0,� ) ⊆ Expq

(κ ,β ,μ,α,ρ), which defines a complete metric
space for the norm ‖ · ‖(κ ,β ,μ,α,ρ). The map H1

ε is contractive from B(0,� ) into itself. The
fixed point theorem states that H1

ε admits a unique fixed point wd
k1

(τ , m, ε) ∈ B(0,� ) ⊆
Expq

(κ ,β ,μ,α,ρ) for every ε ∈ D(0, ε0). The construction of wd
k1

(τ , m, ε) allows us to conclude
that it turns out to be a solution of (4.11). �

The next step consists of studying the solutions of a second auxiliary problem. This
problem lies in a second q-Borel plane, and its solution would guarantee the extension
with appropriate growth of the acceleration of the solution to our first auxiliary problem
described in (4.11).

We set

Ψk2 (τ , m, ε) =
∑

n≥0

Fn(m, ε)
τ n

(q1/k2 )n(n–1)/2 , (4.23)

the q-Borel transform of order k2 of F̂(T , m, ε). According to the second condition of
(4.6), the expression Ψk2 (τ , m, ε) stands for an entire function of q-exponential growth
of order k2 that belongs to the Banach space Expq

(k2,β ,μ,ν), provided that ν ∈ R satisfies

T0 > q
1

2k2 /qν/k2 for any unbounded sector Sd . More precisely, we have

∥∥Ψk2 (τ , m, ε)
∥∥

(k2,β ,μ,ν) ≤ CΨk2
(4.24)

for some constant CΨk2
> 0 and all ε ∈ D(0, ε0).

4.2 Analytic solutions of a second auxiliary problem in the q-Borel plane
We multiply both sides of equation (4.7) by Tk2 and apply the formal q-Borel transform of
order k2 with respect to T . In view of the properties of the q-Borel transform, the resulting
problem is determined by

Q(im)
τ k2

(q1/k2 )
k2(k2–1)

2
ŵk2 (τ , m, ε)

= RD1 (im)
τ dD1 +k2

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2

σ
dD1 ( 1

k1
– 1

k2
)

q,τ ŵk2 (τ , m, ε)

+ RD2 (im)
τ dD2 +k2

(q1/k2 )
(dD2 +k2)(dD2 +k2–1)

2

ŵk2 (τ , m, ε) +
τ k2

(q1/k2 )
k2(k2–1)

2
Ψk2 (τ , m, ε)
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+
D–1∑

�=1

ε��–d�
τ d�+k2

(q1/k2 )
(d�+k2)(d�+k2–1)

2

σ
δ�– d�

k2
–1

q,τ

×
(

1
(2π )1/2 ϕk2,�(τ , m, ε) �

R�

q;1/k2
ŵk2 (τ , m, ε)

)
. (4.25)

Here ŵk2 (τ , m, ε), Ψk2 (τ , m, ε), and ϕk2,l(τ , m, ε) stand for the formal q-Borel transforms
of order k2 of U(T , m, ε), F̂(T , m, ε), and Ĉl(T , m, ε).

We consider our second auxiliary problem

Q(im)
τ k2

(q1/k2 )
k2(k2–1)

2
wk2 (τ , m, ε)

= RD1 (im)
τ dD1 +k2

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2

σ
dD1 ( 1

k1
– 1

k2
)

q,τ wk2 (τ , m, ε)

+ RD2 (im)
τ dD2 +k2

(q1/k2 )
(dD2 +k2)(dD2 +k2–1)

2

wk2 (τ , m, ε) +
τ k2

(q1/k2 )
k2(k2–1)

2
Ψk2 (τ , m, ε)

+
D–1∑

�=1

ε��–d�
τ d�+k2

(q1/k2 )
(d�+k2)(d�+k2–1)

2

σ
δ�– d�

k2
–1

q,τ

×
(

1
(2π )1/2 ϕk2,�(τ , m, ε) �

R�

q;1/k2
wk2 (τ , m, ε)

)
. (4.26)

We assume that there exists an unbounded sector of bisecting direction dQ,RD2
∈R,

SQ,RD2
=

{
z ∈C : |z| ≥ rQ,RD2

,
∣∣arg(z) – dQ,RD2

∣∣ ≤ νQ,RD2

}

for some νQ,RD2
> 0, such that

Q(im)
RD2 (im)

∈ SQ,RD2

for every m ∈ R. We factorize

Pm,2(τ ) =
Q(im)

(q1/k2 )
k2(k2–1)

2
–

RD2 (im)

(q1/k2 )
(dD2 +k2)(dD2 +k2–1)

2

τ dD2

in the form

Pm,2(τ ) = –
RD2 (im)

(q1/k2 )
(dD2 +k2)(dD2 +k2–1)

2

dD2 –1∏

�=0

(
τ – q�,2(m)

)
.

Let Sd be an unbounded sector with small enough aperture such that:
(1) There exists M12 > 0 such that |τ – q�,2(m)| ≥ M12(1 + |τ |) for all 0 ≤ � ≤ dD2 – 1,

m ∈R, and τ ∈ Sd .
(2) There exists M22 > 0 such that |τ – q�,2(m)| ≥ M22|q�,2(m)| for all

� ∈ {0, . . . , dD2 – 1}, m ∈R, and τ ∈ Sd .
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In the following estimates, we apply (1) in the previous assumption to all indices � ∈
{0, . . . , dD2 – 1}, except one of them, say �0, for which we apply (2). This yields the existence
of CP,2 > 0 such that

∣∣Pm,2(τ )
∣∣ ≥ CP,2(rQ,RD2

)1/dD2
∣∣RD2 (im)

∣∣(1 + |τ |)dD2 –1 (4.27)

for every τ ∈ Sd , and m ∈R.

Proposition 4.3 Under hypotheses (4.1), (4.2), (4.3), (4.4), (4.5), and those on the ge-
ometry of the problem, there exist rQ,RD2

,� > 0 and ςϕ ,ςΨ > 0 under (4.13) such that
for every ε ∈ D(0, ε0), equation (4.26) admits a unique solution wd

k2
(τ , m, ε) in the space

Expq
(k2,β ,μ,ν) for ν ∈ R and depends holomorphically with respect to ε ∈ D(0, ε0). Moreover,

‖wd
k2

(τ , m, ε)‖(k2,β ,μ,ν) ≤ � .

Proof Let ε ∈ D(0, ε0). We consider the map H2
ε defined by

H2
ε

(
w(τ , m)

)
:=

RD1 (im)
Pm,2(τ )

τ dD1

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2

σ
dD1 ( 1

k1
– 1

k2
)

q,τ w(τ , m)

+
D–1∑

�=1

ε��–d�
τ d�

Pm,2(τ )(q1/k2 )
(d�+k2)(d�+k2–1)

2

σ
δ�– d�

k2
–1

q,τ

×
(

1
(2π )1/2 ϕk2,�(τ , m, ε) �

R�

q;1/k2
w(τ , m)

)

+
1

Pm,2(τ )(q1/k2 )
k2(k2–1)

2
Ψk2 (τ , m, ε). (4.28)

Note that a fixed point of H2
ε (w(τ , m)) will lead to a convenient solution of (4.26). To apply

the fixed point theorem, we are going to prove successively two facts.
(1) We may choose ςϕ ,ςΨ ,� > 0 small enough and rQ,RD2

> 0 large enough such that

H2
ε

(
B(0,� )

) ⊆ B(0,� ), (4.29)

where B(0,� ) stands for the closed disc centered at 0 with radius � in the Banach
space Expq

(k2,β ,μ,ν).
(2) We have

∥∥H2
ε

(
w1(τ , m)

)
– H2

ε

(
w2(τ , m)

)∥∥
(k2,β ,μ,ν)

≤ 1
2
∥∥w1(τ , m) – w2(τ , m)

∥∥
(k2,β ,μ,ν) (4.30)

for all w1(τ , m), w2(τ , m) ∈ B(0,� ).

Proof of (4.29) We first check (4.29). Let w(τ , m) ∈ Expq
(k2,β ,μ,ν).
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With (4.2), we find that dD2 – 1 + k2(d�/k2 + 1 –δ�) ≥ d�. Taking into account assumptions
(4.1), (4.4), and (4.5), regarding (4.27) together with Lemma 2.9, Proposition 2.10, and
Proposition 2.11, we get

∥∥∥∥ε��–d�
τ d�

Pm,2(τ )(q1/k2 )
(d�+k2)(d�+k2–1)

2

σ
δ�– d�

k2
–1

q,τ

×
(

1
(2π )1/2 ϕk2,�(τ , m, ε) �

R�

q;1/k2
w(τ , m)

)∥∥∥∥
(k2,β ,μ,ν)

≤ ε
��–d�
0

C4C3ςϕ

(q1/k2 )
(d�+k2)(d�+k2–1)

2 CP,2(rQ,RD2
)1/dD2 (2π )1/2

∥∥w(τ , m)
∥∥

(k2,β ,μ,ν). (4.31)

Gathering Lemma 2.9, we get

∥∥∥∥
1

Pm,2(τ )(q1/k2 )k2(k2–1)/2 Ψk2 (τ , m, ε)
∥∥∥∥

(k2,β ,μ,ν)

≤ 1
(q1/k2 )k2(k2–1)/2CP,2(rQ,RD2

)1/dD2
sup
m∈R

1
|RD2 (im)|ςΨ2 (4.32)

for some ςΨ2 . Observe that ςΨ2 tends to 0 as ςΨ does.
Condition (4.4) and an application of Proposition 2.10 and Lemma 2.9 yield

∥∥∥∥
RD1 (im)
Pm,2(τ )

τ dD1

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2

σ
dD1 ( 1

k1
– 1

k2
)

q,τ w(τ , m)
∥∥∥∥

(k2,β ,μ,ν)

≤ sup
m∈R

|RD1 (im)|
|RD2 (im)|

C4

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2 CP,2(rQ,RD2
)1/dD2

� . (4.33)

An appropriate choice of rQ,RD2
> 0, � ,ςϕ ,ςΨ > 0 gives

D–1∑

�=1

ε
��–d�
0

C3ςϕC4

(q1/k2 )
(d�+k2)(d�+k2–1)

2 CP,2(rQ,RD2
)1/dD2 (2π )1/2

�

+
1

(q1/k2 )k2(k2–1)/2CP,2(rQ,RD2
)1/dD2

sup
m∈R

1
|RD2 (im)|ςΨ

+ sup
m∈R

|RD1 (im)|
|RD2 (im)|

C4�

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2 CP,2(rQ,RD2
)1/dD2

≤ � . (4.34)

Regarding (4.31), (4.32), (4.33), and (4.34), we obtain (4.29). �

Proof of (4.30) We proceed to prove (4.30). Let w1, w2 ∈ Expq
(k2,β ,μ,ν). We assume that

‖w�(τ , m)‖(k2,β ,μ,ν) ≤ � , � = 1, 2, for some � > 0. Let E(τ , m) = w1(τ , m) – w2(τ , m). On



Dreyfus et al. Advances in Difference Equations        (2019) 2019:326 Page 23 of 42

one hand, from (4.31) we have
∥∥∥∥ε��–d�

τ d�

Pm,2(τ )(q1/k2 )
(d�+k2)(d�+k2–1)

2

σ
δ�– d�

k2
–1

q,τ

×
(

1
(2π )1/2 ϕk2,�(τ , m, ε) �

R�

q;1/k2
E(τ , m)

)∥∥∥∥
(k2,β ,μ,ν)

≤ ε
��–d�
0

C3ςϕC4

(q1/k2 )
(d�+k2)(d�+k2–1)

2 CP,2(rQ,RD2
)1/dD2 (2π )1/2

∥∥E(τ , m)
∥∥

(k2,β ,μ,ν).

On the other hand, (4.33) yields

∥∥∥∥
RD1 (im)
Pm,2(τ )

τ dD1

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2

σ
dD1 ( 1

k1
– 1

k2
)

q,τ E(τ , m)
∥∥∥∥

(k2,β ,μ,ν)

≤ sup
m∈R

|RD1 (im)|
|RD2 (im)|

C4

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2 CP,2(rQ,RD2
)1/dD2

∥∥E(τ , m)
∥∥

(k2,β ,μ,ν).

We choose rQ,RD2
> 0, ςϕ > 0 such that

D–1∑

�=1

ε
��–d�
0

C3ςϕC4

(q1/k2 )
(d�+k2)(d�+k2–1)

2 CP,2(rQ,RD2
)1/dD2 (2π )1/2

+ sup
m∈R

|RD1 (im)|
|RD2 (im)|

C4

(q1/k2 )
(dD1 +k2)(dD1 +k2–1)

2 CP,2(rQ,RD2
)1/dD2

≤ 1
2

.

We conclude (4.30). Let us finish the proof of the proposition. At this point, in view of
(4.29) and (4.30), we can choose � > 0 such that B(0,� ) ⊆ Expq

(k2,β ,μ,ν), which defines a
complete metric space for the norm ‖ · ‖(k2,β ,μ,ν). The map H2

ε is contractive from B(0,� )
into itself. The fixed point theorem states thatH2

ε admits a unique fixed point wd
k2

(τ , m, ε) ∈
B(0,� ) ⊆ Expq

(k2,β ,μ,ν) for every ε ∈ D(0, ε0). The construction of wd
k2

(τ , m, ε) allows us to
conclude that it is a solution of (4.26). �

The existing link between the acceleration of wd
k1

and wd
k2

is now provided. Both func-
tions coincide in the intersection of their domain of definition. This fact ensures the ex-
tension of the acceleration of wd

k1
along direction d with appropriate q-exponential growth

to apply the q-Laplace transform of that order to recover the analytic solution of the main
problem under study.

Proposition 4.4 We consider wd
k1

(τ , m, ε) constructed in Proposition 4.2. The function

τ �→Ld
q;1/κ

(
wd

k1 (τ , m, ε)
)

:= Ld
q;1/κ

(
h �→ wd

k1 (h, m, ε)
)
(τ )

defines a bounded holomorphic function in Rd,δ̃ ∩D(0, r1) for 0 < r1 ≤ q( 1
2 –α)/κ/2. Moreover,

we have

Ld
q;1/κ

(
wd

k1 (τ , m, ε)
)

= wd
k2 (τ , m, ε), (τ , m, ε) ∈ Sb

d ×R× D(0, ε0), (4.35)

where Sb
d is a finite sector of bisecting direction d.



Dreyfus et al. Advances in Difference Equations        (2019) 2019:326 Page 24 of 42

Proof We recall from Proposition 4.2 that wd
k1

∈ Expq
(κ ,β ,μ,α,ρ). This guarantees appropriate

bounds on τ ∈ Ud to apply the q-Laplace transform of order κ along direction d. This
yields that for every δ̃ > 0, the function Ld

q;1/κ (wd
k1

(τ , m, ε)) defines a bounded holomorphic
function in Rd,δ̃ ∩ D(0, r1) for 0 < r1 ≤ q( 1

2 –α)/κ/2.
To prove (4.35), it is sufficient to prove that Ld

q;1/κ (wd
k1

(τ , m, ε)) and wd
k2

are both solu-
tions of some problem, with unique solution in a certain Banach space, and so they must
coincide. For that purpose, we multiply both sides of equation (4.11) by τ–k1 and take the
q-Laplace transform of order κ along direction d.

The properties of the q-Laplace transform yield

Ld
q;1/κ

(
τ dD1 wd

k1 (τ , m, ε)
)

=
(
q1/κ)dD1 (dD1 –1)/2

τ dD1 σ

dD1
κ

q,τ Ld
q;1/κ

(
wd

k1

)
(τ , m, ε), (4.36)

Ld
q;1/κ

(
τ dD2 σ

dD2 ( 1
k2

– 1
k1

)
q,τ wd

k1 (τ , m, ε)
)

=
(
q1/κ)dD2 (dD2 –1)/2

τ dD2Ld
q;1/κ

(
wd

k1

)
(τ , m, ε), (4.37)

and

Ld
q;1/κ

(
τ d�σ

δ�+ d�
k1

–1
q,τ

(
1

(2π )1/2 ϕk1,�(τ , m, ε) �
R�

q;1/k1
wd

k1 (τ , m, ε)
))

=
(
q1/κ)d�(d�–1)/2

τ d�σ
δ�– d�

k2
–1

q,τ Ld
q;1/κ

(
1

(2π )1/2 ϕk1,�(τ , m, ε) �
R�

q;1/k1
wd

k1 (τ , m, ε)
)

. (4.38)

We claim that

Ld
q;1/κ

(
ϕk1,�(τ , m, ε)�R�

q;1/k1
wd

k1 (τ , m, ε)
)

= ϕk2,�(τ , m, ε)�R�

q;1/k2
Ld

q;1/κ
(
wd

k1 (τ , m, ε)
)
. (4.39)

This is a consequence of the change of integration order in the operators involved in
(4.39). This situation is different from that of (60) in the proof of Proposition 12 in [7]. As-
sume that the variable of integration with respect to Laplace operator is r. After the change
of variable r̃ = r/qh/k1 , we reduce the study to that of Ξ in the proof of Proposition 12 in
[7], with r replaced by r1–h. This last argument guarantees the availability of the change of
order in the integration operators involved in (4.39). We now give a proof of (4.39) under
this consideration.

We have

Ld
q;1/κ

(
ϕk1,�(τ , m, ε) �

R�

q;1/k1
wd

k1 (τ , m, ε)
)

=
1

πq1/κ

∫ ∞

0

(
ϕk1,�

(
reid, m, ε

)
�

R�

q;1/k1
wd

k1

(
reid, m, ε

)) 1
Θq1/κ ( reid

τ
)

dr
r

=
1

πq1/κ

∫ ∞

0

(∑

n≥0

(reid)n

(q1/k1 )n(n–1)/2 C�,n(m, ε) �R�
(
σ

– n
k1

q,τ wd
k1

)(
reid, m, ε

)) 1
Θq1/κ ( reid

τ
)

dr
r

=
1

πq1/κ

∫ ∞

0

(∑

n≥0

(reid)n

(q1/k1 )n(n–1)/2

×
∫ ∞

–∞
C�,n(m – m1, ε)R�(im1)wd

k1

(
reidq– n

k1 , m1, ε
)

dm1

)
1

Θq1/κ ( reid
τ

)
dr
r

.
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We make the change of variable r̃ = r/qn/k1 to get that the previous expression equals

1
πq1/κ

∫ ∞

0

(∫ ∞

–∞

∑

n≥0

(r̃eid)nqn2/k1

(q1/k1 )n(n–1)/2 C�,n(m – m1, ε)R�(im1)wd
k1

(
r̃eid, m1, ε

)
dm1

)

× 1

Θq1/κ ( r̃eidqn/k1
τ

)

dr̃
r̃

.

In view of (3.1), k–1
1 = κ–1 + k–1

2 , the change of order of the integrals, and the dominated
convergence theorem, the previous equation equals

=
1

πq1/κ

∫ ∞

0

(∫ ∞

–∞

∑

n≥0

(r̃eid)nqn2/k1

(q1/k1 )n(n–1)/2 C�,n(m – m1, ε)R�(im1)wd
k1

(
r̃eid, m1, ε

)
dm1

)

× 1

Θq1/κ ( r̃eidqn/k2
τ

)q
n(n+1)

2κ ( r̃eidqn/k2
τ

)n

dr̃
r̃

=
1

πq1/κ

∫ ∞

0

(∫ ∞

–∞

∑

n≥0

τ nqn(n–1)/(2κ)

(q1/k1 )n(n–1)/2 C�,n(m – m1, ε)R�(im1)wd
k1

(
r̃eid, m1, ε

)
dm1

)

× 1

Θq1/κ ( r̃eidqn/k2
τ

)

dr̃
r̃

=
∫ ∞

–∞

(∑

n≥0

τ n

(q1/k2 )n(n–1)/2 C�,n(m – m1, ε)
)

R�(im1)

×
[

1
πq1/κ

∫ ∞

0

wd
k1

(r̃eid, m1, ε)

Θq1/κ ( r̃eidqn/k2
τ

)

dr̃
r̃

]
dm1

= ϕk2,�(τ , m, ε) �
R�

q;1/k2
Ld

q;1/κ
(
wd

k1 (τ , m, ε)
)
,

from which we obtain (4.39).
On the other hand, we observe by direct computation that

Ld
q;1/κ

(
Ψk1 (τ , m, ε)

)
= Ψk2 (τ , m, ε) (4.40)

for every (τ , m, ε) ∈ (Rd,δ̃ ∩ D(0, r1)) ×R× D(0, ε0).
In view of (4.36), (4.37), (4.38), (4.39), and the last formula before (4.40), we derive that

Q(im)

(q1/k1 )
k1(k1–1)

2
Ld

q;1/κ
(
wd

k1

)
(τ , m, ε)

= RD1 (im)
(q1/κ )dD1 (dD1 –1)/2

(q1/k1 )
(dD1 +k1)(dD1 +k1–1)

2

τ dD1 σ

dD1
κ

q,τ Ld
q;1/κ

(
wd

k1

)
(τ , m, ε)

+ RD2 (im)
(q1/κ )

dD2 (dD2 –1)
2

(q1/k1 )
(dD2 +k1)(dD2 +k1–1)

2

τ dD2Ld
q;1/κ

(
wd

k1

)
(τ , m, ε)
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+
1

(q1/k1 )
k1(k1–1)

2
Ψk2 (τ , m, ε) +

D–1∑

�=1

ε��–d�τ d�
(q1/κ )

d�(d�–1)
2

(q1/k1 )
(d�+k1)(d�+k1–1)

2

σ
δ�– d�

k2
–1

q,τ

×
(

1
(2π )1/2 ϕk2,�(τ , m, ε) �

R�

q;1/k2
Ld

q;1/κ
(
wd

k1

)
(τ , m, ε)

)

for every (τ , m, ε) ∈ (Rd,δ̃ ∩ D(0, r1)) ×R× D(0, ε0). We multiply both sides of the previous
equation by (q1/k1 )k1(k1–1)/2/(q1/k2 )k2(k2–1)/2. The fact that

(q1/κ )
D(D–1)

2 (q1/k1 )
k1(k1–1)

2

(q1/k1 )
(D+k1)(D+k1–1)

2 (q1/k2 )
k2(k2–1)

2
=

1

(q1/k2 )
(D+k2)(D+k2–1)

2

with D ∈ {dD1 , dD2 , d�} entails that Ld
q;1/κ (wd

k1
(τ , m, ε)) is a solution of (4.26) in its domain

of definition.
Let Sb

d be a bounded sector of bisecting direction d such that Sb
d ⊆ (Rd,δ̃ ∩ D(0, r1)) ∩ Sd ,

which is a nonempty set due to the assumptions on the construction of these sets. The
functions Ld

q;1/κ (wd
k1

(τ , m, ε)) and wd
k2

(τ , m, ε) are continuous complex functions defined
on Sb

d ×R× D(0, ε0) and holomorphic with respect to τ (resp., ε) on Sb
d (resp., D(0, ε0)).

Let ε ∈ D(0, ε0) and put Ω = min{α,ν}. It is straightforward to check that both func-
tions belong to the complex Banach space H(k2,β ,μ,Ω) of all continuous functions (τ , m) �→
h(τ , m) defined on Sb

d ×R and holomorphic with respect to τ in Sb
d such that

∥∥h(τ , m)
∥∥

H(k2,β ,μ,Ω)
= sup

τ∈Sb
d ,m∈R

(
1 + |m|)μeβ|m| exp

(
–

k2

2
log2 |τ |
log(q)

– Ω log |τ |
)∣∣h(τ , m)

∣∣

is finite. Then Ld
q;1/κ (wd

k1
(τ , m, ε)), wd

k2
(τ , m, ε), and Ψk2 (τ , m, ε) belong to H(k2,β ,μ,Ω) due to

Propositions 4.2 and 4.3. As we can see in the proof of Proposition 4.3, the operator H2
ε

defined in (4.28) has a unique fixed point in H(k2,β ,μ,Ω), provided that constants ςΨ ,ςϕ > 0
are small enough, for 1 ≤ � ≤ D – 1. Indeed, this fixed point is a solution of the auxiliary
problem (4.26) in the disc D(0,ς ) of H(k2,β ,μ,Ω), whilst Ld

q;1/κ (wd
k1

(τ , m, ε)), wd
k2

(τ , m, ε) are
both solutions of the same problem in the disc D(0,ς ) of H(k2,β ,μ,Ω), so they do coincide in
the domain Sb

d ×R× D(0, ε0). Identity (4.35) follows from here. �

5 Analytic solutions to a q-difference-differential equation
This section is devoted to determine in detail the main problem under study and provide
an analytic solution to it. It is worth mentioning that, although the techniques developed
in previous sections are essentially novel, once the tools have been implemented, the pro-
cedure of construction of the solution coincides with that explained in Sect. 5 of [7]. For
completeness and a self-contained work, we describe every step of the construction in
detail, whilst we have decided to pass over the proofs which can be found in [7].

Let 1 ≤ k1 < k2. We define 1/κ = 1/k1 – 1/k2 and take integers D, D1, D2 greater than 3.
Let q > 1 be a real number. We also consider positive integers dD1 , dD2 , and for every 1 ≤
� ≤ D – 1, we choose nonnegative integers d�, δ� ≥ 1 and �� ≥ 0. We make the following
assumptions on the previous constants.

Assumption (A) δ1 = 1 and δ� < δ�+1 for every 1 ≤ � ≤ D – 2.
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Assumption (B) We have

�� ≥ d�,
dD1 – 1

κ
+

d�

k2
+ 1 ≥ δ�,

d�

k1
+ 1 ≥ δ�,

dD2 – 1
k2

≥ δ� – 1,

for every 1 ≤ � ≤ D – 1, and

k1(dD2 – 1) > k2dD1 .

Let Q, RD1 , RD2 , and R� for 1 ≤ � ≤ D – 1 be polynomials with complex coefficients such
that:

Assumption (C) deg(RD2 ) = deg(RD1 ), deg(Q) ≥ deg(RD1 ) ≥ deg(R�). Moreover, we as-
sume that Q(im) �= 0 and RDj (im) �= 0 for all m ∈R, 1 ≤ � ≤ D – 1.

Let SQ,RD1
and SQ,RD2

be unbounded sectors of bisecting directions dQ,RD1
∈R and

dQ,RD2
∈ R, respectively, with

SQ,RDj
=

{
z ∈ C : |z| ≥ rQ,RDj

,
∣∣arg(z) – dQ,RDj

∣∣ ≤ νQ,RDj

}

for some νQ,RDj
> 0 and such that

Q(im)
RDj (im)

∈ SQ,RDj

for every m ∈ R.

Definition 5.1 Let ς ≥ 2 be an integer. A family (Ep)0≤p≤ς–1 is said to be a good covering
in C

� (in the ε plane) if the following hypotheses hold:
• Ep is an open sector of finite radius ε0 > 0 and vertex at the origin for every

0 ≤ p ≤ ς – 1.
• Ej ∩ Ek �= ∅ for 0 ≤ j, k ≤ ς – 1 if and only if |j – k| ≤ 1 (we put Eς := E0).
•

⋃ς–1
p=0 Ep = U \ {0} for some neighborhood of the origin U .

Definition 5.2 Let (Ep)0≤p≤ς–1 be a good covering. Let T be an open bounded sector with
vertex at the origin and radius rT > 0. Given α ∈R and ν ∈ R, we assume that

0 < ε0, rT < 1, ν +
k2

log(q)
log(rT ) < 0,

α +
κ

log(q)
log(ε0rT ) < 0, ε0rT ≤ q( 1

2 –ν)/k2 /2.

We consider a family of unbounded sectors Udp , 0 ≤ p ≤ ς – 1, with bisecting direction
dp ∈R and a family of open domains Rb

dp := Rdp ,δ̃ ∩ D(0, ε0rT ) with

Rdp ,δ̃ :=
{

T ∈C
� :

∣∣∣∣1 +
reidp

T

∣∣∣∣ > δ̃ for every r ≥ 0
}

for some δ̃ < 1. We assume that dp, 0 ≤ p ≤ ς – 1, are chosen to satisfy the following con-
ditions: there exist Sdp ∪ D(0,ρ) and ρ > 0 such that
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• Conditions (1) and (2) in Sect. 4.1 hold. Observe that, under this assumption,
Conditions (1) and (2) in Sect. 4.2 hold for Sdp .

• For every 0 ≤ p ≤ ς – 1, we have Rb
dp ∩Rb

dp+1 �= ∅, and for all t ∈ T and ε ∈ Ep, we
have εt ∈Rb

dp (where Rdς := Rd0 ).
The family {(Rdp ,δ̃)0≤p≤ς–1, D(0,ρ),T } is said to be associated with the good covering
(Ep)0≤p≤ς–1.

Let (Ep)0≤p≤ς–1 be a good covering, and let a family {(Rdp ,δ̃)0≤p≤ς–1, D(0,ρ),T } be asso-
ciated with it. For every 0 ≤ p ≤ ς – 1, we study the equation

Q(∂z)σq,tudp (t, z, ε)

= (εt)dD1 σ

dD1
k1

+1
q,t RD1 (∂z)udp (t, z, ε) + (εt)dD2 σ

dD2
k2

+1
q,t RD2 (∂z)udp (t, z, ε)

+
D–1∑

�=1

ε�� td�σ
δ�
q,t

(
c�(t, z, ε)R�(∂z)udp (t, z, ε)

)
+ σq,t f (t, z, ε). (5.1)

The terms c�(t, z, ε) are determined for every 1 ≤ � ≤ D – 1 as follows. Let C�(T , m, ε) be
the entire function in T , with coefficients in E(β ,μ) for some β > 0 and μ ∈R, given by

C�(T , m, ε) =
∑

n≥0

C�,n(m, ε)Tn,

such that μ – 1 ≥ deg(RDj ), for j ∈ {1, 2}. Assume that this function depends holomorphi-
cally on ε ∈ D(0, ε0) and also that there exist C̃�, T0 > 0 such that the left-hand side of (4.6)
holds for all n ≥ 0 and ε ∈ D(0, ε0). We put

c�(t, z, ε) := F–1(m �→ C�(εt, m, ε)
)
(z),

which is a holomorphic bounded function on T × Hβ ′ × D(0, ε0) with 0 < β ′ < β . Indeed,
we can substitute T by any bounded set in C in the previous product domain.

The function f (t, z, ε) is constructed as follows. Let m �→ Fn(m, ε) be a function in E(β ,μ)

for every n ≥ 0, depending holomorphically on ε ∈ D(0, ε0). We also assume that there
exist CF and T0 such that (4.6) holds and define F̂(T , m, ε) =

∑
n≥0 FnTn.

By construction, for all ε ∈ D(0, ε0), F̂(T , m, ε) represents a holomorphic function in T
on the disc D(0, T0/2) with values in the Banach space E(β ,μ). We define

f (t, z, ε) = F–1(m �→ F̂(εt, m, ε)
)
(z),

which stands for a holomorphic bounded function on D(0, ε0T0/2) × Hβ ′ × D(0, ε0) for all
0 < β ′ < β .

Theorem 5.3 Under the construction made at the beginning of this section of the elements
involved in problem (5.1), assume that the above conditions hold. Let (Ep)0≤p≤ς–1 be a good
covering in C

�, and let a family {(Rdp ,δ̃)0≤p≤ς–1, D(0,ρ),T } be associated with this covering.
Then there exist rQ,RD1

, rQ,RD2
> 0 large enough and constants ςΨ > 0 and ςϕ > 0 such that

if

C̃� ≤ ςϕ and CΨ1 ≤ ςψ
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for all 1 ≤ � ≤ D – 1, then for every 0 ≤ p ≤ ς – 1, we can construct a solution udp (t, z, ε) of
(5.1) that defines a holomorphic function on T × Hβ ′ × Ep for every 0 < β ′ < β .

Proof Let 0 ≤ p ≤ ς – 1 and consider the equation

Q(im)σq,T Udp (T , m, ε)

= TdD1 σ

dD1
k1

+1
q,T RD1 (im)Udp (T , m, ε) + TdD2 σ

dD2
k2

+1
q,T RD2 (im)Udp (T , m, ε)

+
D–1∑

�=1

ε��–d�Td�σ
δ�
q,T

(
1

(2π )1/2

∫ +∞

–∞
C�(T , m – m1, ε)R�(im1)Udp (T , m1, ε) dm1

)

+ σq,T F̂(T , m, ε). (5.2)

Under an appropriate choice of the constants ςΨ and ςϕ , we can follow the construction
in Sect. 4.1 and apply Proposition 4.2 to obtain a solution Udp (T , m, ε) of (5.2).

Regarding the properties of the q-Laplace transform, from the results obtained in
Sect. 4.2 we have that Udp (T , m, ε) is the q-Laplace transform of order k2 of a function
wdp

k2
along direction dp, which depends on T . Indeed,

Udp (T , m, ε) =
1

πq1/k2

∫

Ldp

wdp
k2

(u, m, ε)
Θq1/k2 ( u

T )
du
u

(5.3)

for some Ldp ⊆ Sdp ∪ {0}, and wdp
k2

(τ , m, ε) is a continuous function on Sdp ×R× D(0, ε0),
holomorphic with respect to (τ , ε) in Sdp × D(0, ε0). In addition, there exists C

w
dp
k2

> 0 such

that

∣∣wdp
k2

(τ , m, ε)
∣∣ ≤ C

w
dp
k2

1
(1 + |m|)μ e–β|m| exp

(
k2

2 log(q)
log2 |τ | + ν log |τ |

)
(5.4)

for some ν ∈ R. This holds for τ ∈ Sdp , m ∈ R, and ε ∈ D(0, ε0). Moreover, in view of
Proposition 4.4, the function wdp

k2
(τ , m, ε) and the q-Laplace transform of order κ of the

function wdp
k1

(τ , m, ε) along direction d1
p, where eid1

pR+ ⊆ Sdp ∪ {0}, depending on τ , coin-
cide in (Sdp ∩ D(0, r1)) ×R× D(0, ε0) for 0 < r1 ≤ q( 1

2 –α)/κ/2 with some α ∈R. The function
wdp

k1
(τ , m, ε) is such that for some C

w
dp
k1

, δ > 0,

∣∣wdp
k1

(τ , m, ε)
∣∣ ≤ C

w
dp
k1

1
(1 + |m|)μ e–β|m| exp

(
κ

2 log(q)
log2 |τ + δ| + α log |τ + δ|

)
(5.5)

for τ ∈ (D(0,ρ) ∪ Udp ), m ∈ R, and ε ∈ D(0, ε0). This function is an extension of a function
wk1 (τ , m, ε), common for every 0 ≤ p ≤ ς – 1, continuous on D(0,ρ) × R × D(0, ε0), and
holomorphic with respect to (τ , ε) in D(0,ρ) × D(0, ε0).

The bounds in (5.4) with respect to variable m are transmitted to Udp (T , m, ε) as defined
in (5.3). This allows us to define the function

udp (t, z, ε) := F–1(m �→ Udp (εt, m, ε)
)
(z)

=
1

(2π )1/2
1

π
1/k2
q

∫ ∞

–∞

∫

Ldp

wdp
k2

(u, m, ε)
Θq1/k2 ( u

εt )
du
u

exp(izm) dm,
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which turns out to be holomorphic on T × Hβ ′ ×Ep. The properties of the inverse Fourier
transform allow us to conclude that udp (t, z, ε) is a solution of equation (5.1) defined on
T × Hβ ′ × Ep. �

Proposition 5.4 Let 0 ≤ p ≤ ς – 1. Under the hypotheses of Theorem 5.3, assume that the
unbounded sectors Udp and Udp+1 are wide enough so that Udp ∩ Udp+1 contains the sector
Udp ,dp+1 = {τ ∈C

� : arg(τ ) ∈ [dp,dp+1]}. Then there exist K1 > 0 and K2 ∈R such that

∣∣udp+1 (t, z, ε) – udp (t, z, ε)
∣∣ ≤ K1 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K2 (5.6)

for all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep ∩ Ep+1.

Proof Let 0 ≤ p ≤ ς – 1. Taking into account that Udp ,dp+1 ⊆ Udp ∩ Udp+1 , we ob-
serve from the construction of the functions Udp and Udp+1 that Ldp

q;1/κ (wdp
k1

)(τ , m, ε) and
Ldp+1

q;1/κ (wdp+1
k1

)(τ , m, ε) coincide in the domain (Rb
dp ∩ Rb

dp+1 ) × R × D(0, ε0). This entails

the existence of wdp ,dp+1
k2

(τ , m, ε) that is holomorphic with respect to τ on Rb
dp ∪ Rb

dp+1 ,
continuous with respect to m ∈ R, and holomorphic with respect to ε in D(0, ε0) and co-
incides with Ldp

q;1/κ (wdp
k1

)(τ , m, ε) on Rb
dp ×R× D(0, ε0) and also with Ldp+1

q;1/κ (wdp+1
k1

)(τ , m, ε)
on Rb

dp+1 ×R× D(0, ε0).
Let ρ̃ > 0 be such that ρ̃eidp ∈Rb

dp and ρ̃eidp+1 ∈Rb
dp+1 . The function

u �→ wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )

is holomorphic on Rb
dp ∪ Rb

dp+1 for all (m, ε) ∈ R × (Ep ∩ Ep+1), and its integral along
the closed path constructed by concatenation of the segment starting at the origin and
with ending point fixed at ρ̃eidp , the arc of circle with radius ρ̃ connecting ρ̃eidp with
ρ̃eidp+1 ⊆Rb

dp+1 , and the segment from ρ̃eidp+1 to 0 vanishes. The difference udp+1 – udp

can be written in the form

udp+1 (t, z, ε) – udp (t, z, ε)

=
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Ldp+1,ρ̃

wdp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm

–
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Ldp ,ρ̃

wdp
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm

+
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Cρ̃,dp ,dp+1

wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm, (5.7)

where Ldj ,ρ̃ = [ρ̃, +∞)eidj for j ∈ {p, p + 1}, and Cρ̃,dp ,dp+1 is the arc of circle connecting ρ̃eidp

with ρ̃eidp+1 (see Fig. 2).
Let

I1 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Ldp+1,ρ̃

wdp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣.
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Figure 2 Deformation of the path of integration,
first case

In view of (5.4) and (3.2), we have

I1 ≤
C

w
dp+1
k2

Cq,k2 δ̃(2π )1/2

|εt|1/2

πq1/k2

∫ ∞

–∞
e–β|m|–m�(z) dm

(1 + |m|)μ

×
∫ ∞

ρ̃

exp

(
k2 log2 |u|
2 log(q)

+ ν log |u|
)

|u|–3/2 exp

(
–

k2 log2( |u|
|εt| )

2 log(q)

)
d|u|.

We recall that we have restricted the domain of the variable z so that |�(z)| ≤ β ′ < β . Then
the first integral in the previous expression is convergent, and we derive

I1 ≤
C̃

w
dp+1
k2

(2π )1/2
(ε0rT )1/2

πq1/k2

∫ ∞

ρ̃

exp

(
k2 log2 |u|
2 log(q)

)
exp

(
–

k2 log2( |u|
|εt| )

2 log(q)

)
|u|ν–3/2 d|u|

for some C̃
w
dp+1
k2

> 0. We derive

exp

(
k2 log2 |u|
2 log(q)

)
exp

(
–

k2 log2( |u|
|εt| )

2 log(q)

)

= exp

(
k2

2 log(q)
(
– log2 |ε| – 2 log |ε| log |t| – log2 |t|)

)

× exp

(
k2

log(q)
(
log |u| log |ε| + log |u| log |t|)

)
.

Since by assumption 0 < ε0 < 1 and 0 < rT < 1, we get

exp

(
–

k2

log(q)
log |ε| log |t|

)
≤ |ε|–

k2
log(q) log(rT ),

exp

(
k2

log(q)
log |u| log |ε|

)
≤ |ε|

k2
log(q) log(ρ̃)

(5.8)

for t ∈ T , ε ∈ Ep ∩ Ep+1, and |u| ≥ ρ̃ , and also, for t ∈ T ,

exp

(
k2

log(q)
log |u| log |t|

)
≤ |t|

k2
log(q) log(ρ̃) if ρ̃ ≤ |u| ≤ 1,

exp

(
k2

log(q)
log |u| log |t|

)
≤ |u|

k2
log(q) log(rT ) if |u| ≥ 1.

(5.9)
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In addition, there exists Kk2,ρ̃,q > 0 such that

sup
x>0

x
k2

log(q) log(ρ̃) exp

(
–

k2

2 log(q)
log2(x)

)
≤ Kk2,ρ̃,q. (5.10)

In view of (5.8), (5.9), and (5.10), bearing in mind the inequalities of Definition 5.2, we
deduce that there exist K̃1 ∈R and K̃2 > 0 such that

exp

(
k2 log2 |u|
2 log(q)

)
exp

(
–

k2 log2( |u|
|εt| )

2 log(q)

)
|u|ν ≤ K̃2 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̃1

for t ∈ T , r ≥ ρ̃ , and ε ∈ Ep ∩ Ep+1. From the last inequality we arrive at

I1 ≤
K̃2C̃

w
dp+1
k2

(2π )1/2
(ε0rT )1/2

πq1/k2

∫ ∞

ρ̃

d|u|
|u|3/2 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̃1

= K̃3 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̃1 (5.11)

for some K̃3 > 0 and for all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep ∩ Ep+1.
We can estimate in the same manner the expression

I2 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Ldp ,ρ̃

wdp
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣

to arrive at the existence of K̃4 > 0 such that

I2 ≤ K̃4 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̃1

(5.12)

for all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep ∩ Ep+1. We now provide upper bounds for the quantity

I3 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Cρ̃,dp ,dp+1

wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣.

From the construction of wdp ,dp+1
k2

(τ , m, ε) we have

∣∣wdp ,dp+1
k2

(u, m, ε)
∣∣ ≤ C̃

w
dp
k1

1
(1 + |m|)μ e–β|m|

for some C̃
w
dp
k1

> 0 and for all u ∈ Cρ̃,dp ,dp+1 , m ∈R, and ε ∈ D(0, ε0).

The estimates with (3.2) allow us to obtain the existence of C̃dp ,dp+1
wk2

> 0 such that

I3 ≤ C̃dp ,dp+1
wk2

∫ ∞

–∞
e–β|m|–m�(z)

(1 + |m|)μ dm|dp+1 – dp||t|1/2 exp

(
–

k2 log2( ρ̃

|εt| )
2 log(q)

)
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for all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep ∩ Ep+1. We can follow analogous arguments as in the
previous steps to provide upper estimates of the expression

|t|1/2 exp

(
–

k2 log2( ρ̃

|εt| )
2 log(q)

)
.

Indeed,

|t|1/2 exp

(
–

k2 log2( ρ̃

|εt| )
2 log(q)

)

= exp

(
–

k2 log2(ρ̃)
2 log(q)

)
|ε|

k2 log(ρ̃)
log(q) |t|

k2 log(ρ̃)
log(q)

× exp

(
k2

2 log(q)
(
– log2 |ε| – 2 log |ε| log |t| – log2 |t|)

)
|t|1/2.

Since by assumption 0 ≤ ε0 < 1, we check that

exp

(
–

k2

log(q)
log |ε| log |t|

)
≤ |ε|–

k2
log(q) log(rT )

for t ∈ T and ε ∈ Ep ∩ Ep+1. Gathering (5.10), we get the existence of K̃5 ∈ R and K̃6 > 0
such that

|t|1/2 exp

(
–

k2 log2( ρ̃

|εt| )
2 log(q)

)
≤ K̃6 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̃5

to conclude that

I3 ≤ K̃7 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̃5

(5.13)

for some K̃7 > 0 and all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep ∩ Ep+1. We conclude the proof of this
result in view of (5.11), (5.12), (5.13), and decomposition (5.7). �

Lemma 5.5 Let 0 ≤ p ≤ ς – 1. Under the hypotheses of Theorem 5.3, assume that
Udp ∩ Udp+1 = ∅. Then there exist KL

p > 0 and ML
p ∈ R such that

∣∣Ldp+1
q;1/κ

(
wdp+1

k1

)
(τ , m, ε) – Ldp

q;1/κ
(
wdp

k1

)
(τ , m, ε)

∣∣

≤ KL
p e–β|m|(1 + |m|)–μ

exp

(
–

κ

2 log(q)
log2 |τ |

)
|τ |ML

p

for all ε ∈ (Ep ∩ Ep+1), τ ∈ (Rb
dp ∩Rb

dp+1 ), and m ∈ R.

Proof We first recall that, without loss of generality, the intersection Rb
dp ∩Rb

dp+1 can be
assumed to be a nonempty set because we can vary δ̃ in advance to be as close to 0 as
desired.
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Analogous arguments as in the beginning of the proof of Proposition 5.4 allow us to write

Ldp+1
q;1/κ

(
wdp+1

k1

)
(τ , m, ε) – Ldp

q;1/κ
(
wdp

k1

)
(τ , m, ε)

=
1

πq1/κ

∫

Ldp+1,ρ̃

wdp+1
k1

(u, m, ε)
Θq1/κ ( u

τ
)

du
u

–
1

πq1/κ

∫

Ldp ,ρ̃

wdp
k1

(u, m, ε)
Θq1/κ ( u

τ
)

du
u

+
1

πq1/κ

∫

Cρ̃,dp ,dp+1

wk1 (u, m, ε)
Θq1/κ ( u

τ
)

du
u

, (5.14)

where ρ̃ , Ldp ,ρ̃ , Ldp+1,ρ̃ , and Cρ̃,dp ,dp+1 are constructed in Proposition 5.4.
In view of (5.5) and (3.2), we have

IL1 :=
∣∣∣∣

1
πq1/κ

∫

Ldp ,ρ̃

wdp
k1

(u, m, ε)
Θq1/κ ( u

τ
)

du
u

∣∣∣∣

≤
C

w
dp
k1

Cq,κ δ̃

|τ |1/2

(1 + |m|)μ e–β|m|
∫ ∞

ρ̃

exp( κ log2 |reidp +δ|
2 log(q) + α log |reidp + δ|)

exp( κ
2

log2( r
|τ | )

log(q) )

dr
r3/2

≤ KL
p,1|τ |1/2(1 + |m|)–μe–β|m|

∫ ∞

ρ̃

exp( κ log2 r
2 log(q) + α log r)

exp( κ
2

log2( r
|τ | )

log(q) )

dr
r3/2

for some KL
p,1 > 0. Taking into account the choice of α in Definition 5.2, by usual calcula-

tions we derive that the previous expression equals

KL
p,1|τ |1/2(1 + |m|)–μe–β|m| exp

(
–

κ

2 log(q)
log2 |τ |

)∫ ∞

ρ̃

r
κ log |τ |
log(q) +α–3/2 dr.

Besides, we observe from direct computations that
∫ ∞

ρ̃

r
κ log |τ |
log(q) +α– 3

2 dr

is upper bounded by a constant times |τ |� for every � < κ
log(q) log(ρ̃). This yields

IL1 ≤ KL
p,2

(
1 + |m|)–μe–β|m| exp

(
–

κ

2 log(q)
log2 |τ |

)
|τ |�+ 1

2 (5.15)

for some KL
p,2 > 0. Analogous arguments allow us to obtain the existence of KL

p,3 > 0 such
that

IL2 :=
∣∣∣∣

1
πq1/κ

∫

Ldp+1,ρ̃

wdp+1
k1

(u, m, ε)
Θq1/κ ( u

τ
)

du
u

∣∣∣∣

≤ KL
p,3

(
1 + |m|)–μe–β|m| exp

(
–

κ

2 log(q)
log2 |τ |

)
|τ |�+ 1

2 (5.16)

for � as before.
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We write

IL3 :=
∣∣∣∣

1
πq1/κ

∫

Cρ̃,dp ,dp+1

wk1 (u, m, ε)
Θq1/κ ( u

τ
)

du
u

∣∣∣∣.

Regarding (5.5) and (3.2), we derive that

IL3 ≤
C

w
dp
k1

πq1/κ

e–β|m|

(1 + |m|)μ
|τ |1/2

ρ̃1/2Cq,κ δ̃

∫ dp+1

dp

exp( κ log2 |ρ̃eiθ +δ|
2 log(q) + α log |ρ̃eiθ + δ|)

exp( κ
2

log2( ρ̃
|τ | )

log(q) )
dθ

≤ KL
p,4|τ |1/2 e–β|m|

(1 + |m|)μ exp

(
–

κ

2
log2( ρ̃

|τ | )
log(q)

)

with

KL
p,4 = |dp+1 – dp|

C
w
dp
k1

πq1/κ

1
ρ̃1/2Cq,κ δ̃

exp

(
κ log2(ρ̃ + δ)

2 log(q)
+ α log(ρ̃ + δ)

)
.

Let KL
p,5 = KL

p,4 exp(– κ
2 log(q) log2(ρ̃)). It is straightforward to check that

IL3 ≤ KL
p,5|τ |1/2+ κ log(ρ̃)

log(q)
e–β|m|

(1 + |m|)μ exp

(
–

κ

2
log2 |τ |
log(q)

)
. (5.17)

Substitution of (5.15), (5.16), and (5.17) into (5.14) yields the result. �

Proposition 5.6 Let 0 ≤ p ≤ ς – 1. Under the hypotheses of Theorem 5.3, assume that
Udp ∩ Udp+1 = ∅. Then there exist K3 > 0 and K4 ∈ R such that

∣∣udp+1 (t, z, ε) – udp (t, z, ε)
∣∣ ≤ K3 exp

(
–

k1

2 log(q)
log2 |ε|

)
|ε|K4 (5.18)

for all t ∈ T , z ∈ Hβ ′ , and ε ∈ Ep ∩ Ep+1.

Proof Let 0 ≤ p ≤ ς – 1. Under the assumptions of the statement, we observe that we
cannot proceed as in the proof of Proposition 5.4 since there does not exist a common
function for both indices p and p + 1, defined in Rb

dp ∪Rb
dp+1 in the variable of integration

when applying the q-Laplace transform. However, we can use the analytic continuation
property and write the difference udp+1 – udp as follows. Let ρ̃ > 0 be such that ρ̃eidp ∈Rb

dp

and ρ̃eidp+1 ∈Rb
dp+1 , and let θp,p+1 ∈R be such that ρ̃eθp,p+1 lies in both Rb

dp and Rb
dp+1 . We

write udp+1 (t, z, ε) – udp (t, z, ε) as follows:

udp+1 (t, z, ε) – udp (t, z, ε)

=
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Ldp+1,ρ̃

wdp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm

–
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Ldp ,ρ̃

wdp
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm



Dreyfus et al. Advances in Difference Equations        (2019) 2019:326 Page 36 of 42

Figure 3 Deformation of the path of integration,
second case

–
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Cρ̃,θp,p+1,dp+1

wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm

+
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

Cρ̃,θp,p+1,dp

wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm

+
1

(2π )1/2
1

πq1/k2

∫ ∞

–∞

∫

L0,ρ̃,θp,p+1

Ldp+1
q;1/κ (wdp+1

k1
)(τ , m, ε) – Ldp

q;1/κ (wdp
k1

)(τ , m, ε)
Θq1/k2 ( u

εt )

× exp(izm)
du
u

dm. (5.19)

Here we have denoted Ldj ,ρ̃ = [ρ̃, +∞)eidj for j ∈ {p, p + 1}, Cρ̃,θp,p+1,dp+1 is the arc of circle
connecting ρ̃eidp+1 with ρ̃eiθp,p+1 , Cρ̃,θp,p+1,dp is the arc of circle connecting ρ̃eidp with ρ̃eiθp,p+1 ,
and L0,ρ̃,θp,p+1 = [0, ρ̃]eiθp,p+1 , as it is shown in Fig. 3.

Following the same line of arguments as those in the proof of Proposition 5.4, we can
guarantee the existence of K̂ j > 0 and K̂k ∈R for 1 ≤ j ≤ 4 and 5 ≤ k ≤ 8 such that

J1 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Ldp+1,ρ̃

wdp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣

≤ K̂1 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̂5 ,

J2 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Ldp ,ρ̃

wdp
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣

≤ K̂2 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̂6

,

J3 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Cρ̃,θp,p+1,dp+1

wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣

≤ K̂3 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̂7

,

J4 :=
∣∣∣∣

1
(2π )1/2

1
πq1/k2

∫ ∞

–∞

∫

Cρ̃,θp,p+1,dp

wdp ,dp+1
k2

(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣

≤ K̂4 exp

(
–

k2

2 log(q)
log2 |ε|

)
|ε|K̂8

.
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We now give estimates for

J5 :=
1

(2π )1/2
1

πq1/k2

×
∣∣∣∣
∫ ∞

–∞

∫

L0,ρ̃,θp,p+1

Ldp+1
q;1/κ (wdp+1

k1
)(u, m, ε) – Ldp

q;1/κ (wdp
k1

)(u, m, ε)
Θq1/k2 ( u

εt )
exp(izm)

du
u

dm
∣∣∣∣.

In view of Lemma 5.5 and (3.2), we have

J5 ≤ KL
p

(2π )1/2
1

πq1/k2

∫ ∞

–∞
e–β|m|–�(z)m dm

(1 + |m|)μ
∫ ρ̃

0

exp(– κ
2 log(q) log2 |u|)|u|ML

p

Cq,k2 δ̃ exp( k2
2

log2 | u
εt |

log(q) )| u
εt |1/2

d|u|
|u| .

We recall that z ∈ Hβ ′ for some β ′ < β . Then there exists K31 > 0 such that

J5 ≤ KL
p K31

(2π )1/2
|ε|1/2r1/2

T
πq1/k2 Cq,k2 δ̃

∫ ρ̃

0

exp(– κ
2 log(q) log2 |u|)|u|ML

p

exp( k2
2

log2 | u
εt |

log(q) )

d|u|
|u|3/2 .

We now proceed to prove that the expression

∫ ρ̃

0

exp(– κ
2 log(q) log2 |u|)

exp( k2
2

log2 | u
εt |

log(q) )
exp

(
k1

2 log(q)
log2 |ε|

)
d|u|

|u|3/2–ML
p

is upper bounded by a positive constant times a certain power of |ε| for all ε ∈ (Ep ∩ Ep+1)
and t ∈ T . This implies the existence of K32 > 0 such that

J5 ≤ K32|ε|1/2 exp

(
–

k1

2 log(q)
log2 |ε|

)
(5.20)

for all ε ∈ (Ep ∩ Ep+1), t ∈ T , and z ∈ Hβ ′ .
Indeed, we have that

∫ ρ̃

0

exp(– κ
2 log(q) log2 |u|)

exp( k2
2

log2( |u|
|εt| )

log(q) )
exp

(
k1

2 log(q)
log2 |ε|

)
d|u|

|u|3/2–ML
p

equals

exp

(
k1

2 log(q)
log2 |ε| –

k2

2 log(q)
log2 |εt|

)

×
∫ ρ̃

0
exp

(
–

(κ + k2)
2 log(q)

log2 |u|
)

|u|
k2 log |εt|

log(q) – 3
2 +ML

p d|u|. (5.21)

Given m1 ∈ R and m2 > 0, the function [0,∞) � x �→ H(x) = xm1 exp(–m2 log2(x)) attains
its maximum value H(x0) = exp( m2

1
4m2

) at x0 = exp( m1
2m2

). This yields an upper bound for the
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integrand in (5.21); the expression in (5.21) is estimated from above by

ρ̃ exp

( (ML
p – 3/2)2 log(q)

2(κ + k2)

)
exp

(
1

2 log(q)

(
k2

2
κ + k2

– k2 + k1

)
log2 |ε|

)

× exp

(
1

2 log(q)

(
k2

2
κ + k2

– k2

)
log2 |t|

)
|t|

k2(MLp –3/2)
κ+k2

× exp

(
1

log(q)

(
k2

2
κ + k2

– k2

)
log |ε| log |t|

)
|ε|

k2(MLp –3/2)
κ+k2 . (5.22)

The second line in (5.22) is upper bounded for every t because k2
2

κ+k2
< k2, and we also have

an upper bound for exp( 1
log(q) ( k2

2
κ+k2

– k2) log |ε| log |t|) is 1. Regarding Definition 5.2 and
taking into account that

k2
2

κ + k2
– k2 = –k1,

expression (5.22) is upper bounded by

K33|ε|
k2(MLp –3/2)

κ+k2

for some K33 > 0. The conclusion is achieved. The result follows from (5.19), the estimates
of J1 to J4, and (5.20). �

6 Existence of formal series solutions in the complex parameter and
asymptotic expansion in two levels

In the first part of this section, we recall two q-analogs of the Ramis–Sibuya theorem from
[7, 13]. This result provides a tool to guarantee the existence of a formal power series
in the perturbation parameter, which formally solves the main problem and such that it
asymptotically represents the analytic solution of that equation.

This asymptotic representation is held in the sense of q-asymptotic expansions of certain
positive order.

Definition 6.1 Let V be a bounded open sector with vertex at 0 in C. Let (F,‖ · ‖F) be a
complex Banach space. Let q ∈ R with q > 1, and let k be a positive integer. We say that a
holomorphic function f : V → F admits the formal power series f̂ (ε) =

∑
n≥0 fnε

n ∈ F�ε�

as its q-Gevrey asymptotic expansion of order 1/k if for every open subsector U with
(U \ {0}) ⊆ V , there exist A, C > 0 such that

∥∥∥∥∥f (ε) –
N∑

n=0

fnε
n

∥∥∥∥∥
F

≤ CAN+1q
N(N+1)

2k |ε|N+1

for all ε ∈ U and N ≥ 0.

The set of functions that admit the null q-Gevrey asymptotic expansion of certain pos-
itive order are characterized as follows. The proof of this result, already stated in [13],
provides the q-analog of Theorem XI-3-2 in [4].
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Lemma 6.2 A holomorphic function f : V → F admits the null formal power series 0̂ ∈
F�ε� as its q-Gevrey asymptotic expansion of order 1/k if and only if for every open subsec-
tor U with (U \ {0}) ⊆ V , there exist constants K1 ∈R and K2 > 0 such that

∥∥f (ε)
∥∥
F

≤ K2 exp

(
–

k
2 log(q)

log2 |ε|
)

|ε|K1

for all ε ∈ U .

The next result is based on the one-level version of the q-analog of the Ramis–Sibuya
theorem, stated in [13], and provides a two-level result in this framework. See [7] for a
proof.

Theorem 6.3 Let (F,‖ · ‖F) be a Banach space, and let (Ep)0≤p≤ς–1 be a good covering in
C

�. Let 0 < k1 < k2, consider a holomorphic function Gp : Ei → F for 0 ≤ p ≤ ς – 1, and put
�p(ε) = Gp+1(ε) – Gp(ε) for ε ∈ Zp := Ep ∩ Ep+1. Moreover, we assume that:

(1) The functions Gp(ε) are bounded as ε tends to 0 on Ep for every 0 ≤ p ≤ ς – 1.
(2) There exist nonempty sets I1, I2 ⊆ {0, 1, . . . ,ς – 1} such that I1 ∪ I2 = {0, 1, . . . ,ς – 1}

and I1 ∩ I2 = ∅. Also,
– for every p ∈ I1, there exist constants K1 > 0 and M1 ∈R such that

∥∥�p(ε)
∥∥
F

≤ K1|ε|M1 exp

(
–

k1

2 log(q)
log2 |ε|

)
, ε ∈ Zp, and

– for every p ∈ I2, there exist constants K2 > 0 and M2 ∈R such that

∥∥�p(ε)
∥∥
F

≤ K2|ε|M2 exp

(
–

k2

2 log(q)
log2 |ε|

)
, ε ∈ Zp.

Then there exists a convergent power series a(ε) ∈ F{ε} defined on some neighborhood of
the origin and Ĝ1(ε), Ĝ2(ε) ∈ F�ε� such that Gp can be written in the form

Gp(ε) = a(ε) + G1
p(ε) + G2

p(ε),

where G1
p(ε) is holomorphic on Ep and admits Ĝ1(ε) as its q-Gevrey asymptotic expansion

of order 1/k1 on Ep for every p ∈ I1, and G2
p(ε) is holomorphic on Ep and admits Ĝ2(ε) as its

q-Gevrey asymptotic expansion of order 1/k2 on Ep for every p ∈ I2.

We conclude this section with the main result in the work in which we guarantee the
existence of a formal solution of the main problem (5.1), written as a formal power series in
the perturbation parameter, with coefficients in an appropriate Banach space, say û(t, z, ε).
Moreover, it represents, in some sense to be made precise, each solution udp (t, z, ε) of
problem (5.1).

From now on, F stands for the Banach space of bounded holomorphic functions defined
on T × Hβ ′ with the supremum norm, where β ′ < β as before.

Theorem 6.4 Under the hypotheses of Theorem 5.3, there exists a formal power series

û(t, z, ε) =
∑

m≥0

hm(t, z)
εm

m!
∈ F�ε�, (6.1)
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a formal solution of the equation

Q(∂z)σq,tû(t, z, ε)

= (εt)dD1 σ

dD1
k1

+1
q,t RD1 (∂z)û(t, z, ε) + (εt)dD2 σ

dD2
k2

+1
q,t RD2 (∂z)û(t, z, ε)

+
D–1∑

�=1

ε�� td�σ
δ�
q,t

(
c�(t, z, ε)R�(∂z)û(t, z, ε)

)
+ σq,t f (t, z, ε). (6.2)

Moreover, û(t, z, ε) turns out to be the common q-Gevrey asymptotic expansion of order 1/k1

on Ep of the function udp , seen as a holomorphic function from Ep into F, for 0 ≤ p ≤ ς – 1.
In addition to that, û is of the form

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε),

where a(t, z, ε) ∈ F{ε} and û1(t, z, ε), û2(t, z, ε) ∈ F�ε� are such that for every 0 ≤ p ≤ ς – 1,
the function udp can be written in the form

udp (t, z, ε) = a(t, z, ε) + udp
1 (t, z, ε) + udp

2 (t, z, ε),

where ε �→ udp
1 (t, z, ε) is an F-valued function that admits û1(t, z, ε) as its q-Gevrey asymp-

totic expansion of order 1/k1 on Ep, and also ε �→ udp
2 (t, z, ε) is an F-valued function that

admits û2(t, z, ε) as its q-Gevrey asymptotic expansion of order 1/k2 on Ep.

Proof For every 0 ≤ p ≤ ς –1, we can consider the function udp (t, z, ε) constructed in The-
orem 5.3. We define Gp(ε) := (t, z) �→ udp (t, z, ε), which is a holomorphic bounded func-
tion from Ep into F. In view of Propositions 5.4 and 5.6, we can split the set {0, 1, . . . ,ς – 1}
into two nonempty subsets of indices, I1 and I2 with {0, 1, . . . ,ς – 1} = I1 ∪ I2 and such
that I1 (resp., I2) consists of all the elements in {0, 1, . . . ,ς – 1} such that Udp ∩ Udp+1 con-
tains the sector Udp ,dp+1 , as defined in Proposition 5.4 (resp., Udp ∩ Udp+1 = ∅). By (5.6)
and (5.18) we can apply Theorem 6.3 and deduce the existence of formal power series
Ĝ1(ε), Ĝ2(ε) ∈ F�ε�, a convergent power series a(ε) ∈ F{ε}, and holomorphic functions
G1

p(ε) and G2
p(ε) defined on Ep with values in F such that

Gp(ε) = a(ε) + G1
p(ε) + G2

p(ε),

and for j = 1, 2, Gj
p(ε) admits Ĝj(ε) as its q-Gevrey asymptotic expansion or order 1/kj on

Ep. We put

û(t, z, ε) =
∑

m≥0

hm(t, z)
εm

m!
:= a(ε) + Ĝ1

p(ε) + Ĝ2
p(ε).

It only remains to prove that û(t, z, ε) is a solution of (6.2). Indeed, since udp admits
û(t, z, ε) as its q-Gevrey asymptotic expansion of order 1/k1 on Ep, we have that

lim
ε→0,ε∈Ep

sup
t∈T ,z∈Hβ′

∣∣∂m
ε udp (t, z, ε) – hm(t, z)

∣∣ = 0
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for all 0 ≤ p ≤ ς – 1 and m ≥ 0. Let p ∈ {0, 1, . . . ,ς – 1}. By construction, the function
udp (t, z, ε) solves equation (6.2). We take the derivatives of order m ≥ 0 with respect to ε

of both sides of equation (5.1) and deduce that

Q(∂z)σq,t
(
∂m
ε udp

)
(t, z, ε)

=
∑

m1+m2=m

m!
m1!m2!

∂m1
ε

(
εdD1

)
tdD1 σ

dD1
k1

+1
q,t RD1 (∂z)

(
∂m2
ε udp

)

+
∑

m1+m2=m

m!
m1!m2!

∂m1
ε

(
εdD2

)
tdD2 σ

dD2
k2

+1
q,t RD2 (∂z)

(
∂m2
ε udp

)

+
D–1∑

�=1

∑

m1+m2+m3=m

m!
m1!m2!m3!

(
∂m1
ε ε��

)
td�σ

δ�
q,t

(
∂m2
ε c�(t, z, ε)R�(∂z)∂m3

ε udp (t, z, ε)
)

+ σq,t
(
∂m
ε f

)
(t, z, 0) (6.3)

for every (t, z, ε) ∈ T × Hβ ′ × Ep. We let ε → 0 in (6.3) and obtain the recursion formula

Q(∂z)σq,thm(t, z)

=
m!

(m – dD1 )!
tdD1 σ

dD1
k1

+1
q,t RD1 (∂z)

(
hm–dD1

(t, z)
)

+
m!

(m – dD2 )!
tdD2 σ

dD2
k2

+1
q,t RD2 (∂z)

(
hm–dD2

(t, z)
)

+
D–1∑

�=1

∑

m2+m3=m–��

m!
m2!m3!

td�σ
δ�
q,t

(
∂m2
ε c�(t, z, 0)R�(∂z)hm3 (t, z)

)

+ σq,t
(
∂m
ε f

)
(t, z, 0) (6.4)

for all m ≥ max{dD1 , dD2 , max1≤�≤D–1 ��} and (t, z) ∈ T × Hβ ′ .
Bearing in mind that both cl and f are holomorphic with respect to ε in a neighborhood

of the origin, in such neighborhood, we have

c�(t, z, ε) =
∑

m≥0

(∂m
ε cm)(t, z, 0)

m!
εm, f (t, z, ε) =

∑

m≥0

(∂m
ε f )(t, z, 0)

m!
εm (6.5)

for every 1 ≤ � ≤ D – 1.
By plugging (6.1) into (6.2) and bearing in mind (6.4) and (6.5) we conclude that the

formal power series û(t, z, ε) =
∑

m≥0 hm(t, z)εm/m! is a solution of equation (6.2). �
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