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Abstract
This paper proposes a delayed fractional-order model of glucose–insulin interaction
in the sense of the Caputo fractional derivative with incommensurate orders. This
fractional-order model is developed from the first-order model of glucose–insulin
interaction. Firstly, we investigate the non-negativity and the boundedness of
solutions of the fractional-order model. Secondly, the stability and the bifurcation of
the model are studied by separating the associated characteristic equation of the
model into its real and imaginary parts and taking a time delay as the bifurcation
parameter. The asymptotic stability and the Hopf bifurcation are discussed via the
condition of creation of the bifurcation. Furthermore, it is shown that the onset of the
bifurcation is related to the fractional orders of the model. Finally, some numerical
simulations of the model using the Adam–Bashforth–Moulton predictor corrector
scheme are demonstrated to support our obtained theoretical results.
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1 Introduction
Several mathematicians have developed mathematical models describing the relation-
ship between insulin and glucose in human beings. Such models have been restricted to
integer-order ordinary differential equations and delay differential equations [1–5]. The
most widely used model in physiological research on the metabolism of glucose is the so-
called minimal model. In 1981, Bergman et al. [6] proposed a three-compartment minimal
model to analyze and estimate insulin sensitivity and pancreatic responsivity to the glu-
cose tolerance of human subjects. In 1986, Pacini and Bergman [7] applied the model to
MINMOD, which is a computer program for the identification of model parameters for
each individual. Gaetano and Arino [8] modified the minimal model by incorporating the
insulin dynamics. Their modified model consists of the following three state variables:
G(t) denotes the plasma glucose concentration at time t, I(t) represents the insulin con-
centration at time t, and X(t) is an auxiliary function describing insulin-excitable tissue
glucose uptake activity. The modified minimal model can be expressed as

dG(t)
dt

= –
(
p1 + X(t)

)
G(t) + p1Gb,

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2262-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2262-6&domain=pdf
http://orcid.org/0000-0001-6751-7555
http://orcid.org/0000-0003-0715-470X
http://orcid.org/0000-0001-5236-033X
mailto:sekson.s@sci.kmutnb.ac.th


Lekdee et al. Advances in Difference Equations        (2019) 2019:318 Page 2 of 22

dX(t)
dt

= –p2X(t) + p3
(
I(t) – Ib

)
, (1)

dI(t)
dt

= p4
(
G(t) – p5

)+t – p6
(
I(t) – Ib

)
,

with the initial conditions G(0) = p0, X(0) = 0, I(0) = p7 + Ib. The meaning of the parame-
ters in the model, i.e., p0, p1, p2, . . . , p7, Gb, and Ib are defined in [8]. The term (G(t) – p5)+ is
taken to be (G(t) – p5) if G(t) > b5, otherwise it is taken to be zero. However, there are three
drawbacks for minimal model (1) as mentioned [8, 9]. The first disadvantage of system (1)
is that it does not admit an equilibrium point and its solutions may not be bounded. Since
the minimal model cannot conduct a single-step parameter fitting process, then erratic
estimates of insulin sensitivity definitely occur. This is considered as the second defect of
the model. The final drawback of system (1) is that it does not have an explicit time delay
to impede the action of insulin on glucose, but it performs an artificial delay via the vari-
able X(t) instead. Therefore, the authors in [8] introduced the dynamical model to solve
the mentioned problems of the minimal model. However, the physiological hypotheses
underlying Eq. (1) are still maintained; in other words, the disappearance of glucose from
plasma may be explained as a first-order process of the rate which is both dependent and
independent upon insulin concentration. The new model takes the form of

dG(t)
dt

= –b1G(t) – b4I(t)G(t) + b7,

I(t)
dt

= –b2I(t) +
b6

b5

∫ t

t–b5

G(s) ds.
(2)

The initial conditions for the above model are G(0) = Gb + b0, I(0) = Ib + b3b0, and
G(t) ≡ Gb for t ∈ [–b5, 0). Also, the meaning of the parameters in dynamical model (2),
i.e., b0, b1, b2, . . . , b7, Gb, and Ib, are described in [8]. However, the dynamical model gives
a few assumptions that may not be necessary or realistic [9] as follows. For instance, the
interaction term b4I(t)G(t) is too restrictive so it can be replaced by the more general and
realistic term b4I(t)G(t)

(αG(t)+1) , where 1
α

denotes the half-saturation constant. Moreover, the ap-
proach used to introduce the delay b5 in Eq. (2) is quite restrictive because it depends on
only one subjective assumption that the effective pancreatic secretion of insulin at time
t is considered to be proportional to the average value of glucose concentration in the b5

minutes preceding time t. Other possible ways of incorporating the time delay should be
brought to fix this problem. Moreover, the model is always globally asymptotically stable.
The main objective for a use of the above two models is only to study metabolism of glu-
cose via the medical experiment called the intra venous glucose tolerance test (IVGTT)
[7, 10].

Later on, Li and Kuang [9] thus generalized the dynamical model using some techniques,
e.g., finding an appropriate way of incorporating time delay so that the new models can
have unstable positive steady states and generate sustainable oscillatory solutions. In gen-
eral, diabetic patients can exhibit intrinsic glucose oscillation [11]. Obtaining sustained
insulin and glucose oscillations depends on two essential factors [9, 11, 12], i.e., (i) a time
delay of 30–45 min for the effect of insulin on hepatic glucose production and (ii) an in-
ert effect of insulin on glucose utilization because insulin performs from a compartment
remote from plasma. Obviously, both minimal model (1) and dynamical model (2) do not
account for the delayed influence of insulin on the hepatic glucose production and are
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Table 1 Meaning of the parameters used in the model of glucose–insulin interaction in Eq. (3)

Parameter Meaning

a1 Insulin-independent constant of tissue glucose uptake rate
a2 Apparent first-order disappearance rate constant for insulin
a3 Constant measuring the insulin-dependent glucose disappearance rate per unit [pM] of

plasma insulin concentration
a4 Reciprocal of the half-saturation constant of plasma glucose
a5 Second-phase pancreatic insulin release rate constant in mg/dl of the average plasma glucose

concentration throughout the previous τ minutes
a6 Constant increase rate in plasma glucose concentration due to constant baseline liver glucose

release
τ Number of minutes of the past period whose plasma glucose concentrations influence the

current pancreatic insulin secretion

not designed to explain insulin oscillation. Hence, these two models cannot produce un-
stable steady states. This is confirmed from the clinic data reported in [8]. Renaming the
parameters of the specific model proposed by Li and Kuang with the ordered new param-
eters, the convenient model, which is the special case of their delay differential models of
glucose–insulin interaction, can be written as follows [9]:

dG(t)
dt

= –a1G(t) –
a3I(t)G(t)

(a4G(t) + 1)
+ a6,

dI(t)
dt

= –a2I(t) + a5G(t – τ ),
(3)

where τ ≥ 0 and the initial conditions are G(t) ≡ G0 for t ∈ [–τ , 0] and I(0) = I0. The
above model in Eq. (3) consists of two differential equations describing the variation of
blood glucose concentration G(t) [mg/dl] and blood insulin concentration I(t) [μUI/ml].
The meaning of the positive parameters a1, a2, a3, a4, a5, a6, and τ are given in Table 1.
They provided two important differences of model (3) comparing with model (2). First,
they used the more general and realistic Michaelis–Menten form I(t)G(t)

(a4G(t)+1) for insulin-
dependent net glucose tissue uptake instead of I(t)G(t). This is because of the capacity
of insulin’s ability for digesting glucose and the limit of time. Second, they assumed that
the effective pancreatic secretion at time t is affected by the value of glucose concentration
in the τ minutes preceding time t instead of the average amount in that period. Performing
extensive simulations using the clinic data in [8], they successfully obtained periodic so-
lutions in model (3). They concluded that even without hepatic glucose production, their
model can give oscillatory solutions.

Recently, fractional-order differential equations, which are used to model complex phe-
nomena, have been extensively applied in many fields [13–16]. This is because the behav-
iors of many biological systems have memory or hereditary properties which can be bet-
ter described using fractional-order derivatives [17]. Hence, fractional-order differential
equations, which use fractional-order derivatives such as the Caputo fractional deriva-
tive [18] and the Grünwald–Letnikov derivative [19], can be used to model real prob-
lems better than using integer-order differential equations for some particular problems.
In consequence, several mathematicians and scientific researchers have introduced many
fractional-order differential equation models developed from their original integer-order
differential equation models.

There have been some articles describing the use of fractional-order differential equa-
tions to model real-world problems in mathematical biosciences. For example, Ertürk et
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al. [20] proposed and solved numerically the fractional-order differential system for a giv-
ing up smoking model using the multi-step generalized differential transform method
(MSGDTM). Cho et al. [21] developed a fractional-order version of the minimal model
for glucose–insulin dynamics. They also investigated local stability of the model. Car-
valho and Pinto [22] proposed a delay fractional-order model for co-infection of malaria
and HIV/AIDS while personal protection and vaccination against malaria are considered.
Huang et al. [23] studied a bifurcation control for a novel incommensurate fractional-
order predator-prey system with a time delay. Lekdee et al. [24] solved a fractional-order
model of the glucose–insulin homeostasis in rats, obtaining analytical and numerical so-
lutions using the Laplace–Adomian–Padé method and the Adams–Bashforth–Moulton
type predictor–corrector scheme. They also found all exact solutions of this fractional-
order model using the Laplace transform. More recent applications of fractional-order
differential equations in biological studies can be found in [25–28].

In particular, many glucose–insulin interactions have been investigated using first-order
differential equation models (see, e.g., [8, 11, 29–35]). However, there were some recent re-
search evidences of the significant usefulness of fractional-order derivatives in construct-
ing glucose–insulin models. For instance, in 2017, Sakulrang et al. [36] verified that de-
terministic fractional-order models could provide better fits than first-order differential
equation models to continuous glucose monitoring (CGM) data from subjects with type 1
diabetes. They also concluded that for physiologic plausibility, their fractional-order mod-
els provide a reasonable rate of movement of glucose from the blood into the environment.
In 2015, Kim et al. [21] proposed a generalized MINMOD Millennium model using the
Caputo fractional-order derivative of order α ∈ (0, 1]. They discovered from the model
that the value of β1–α is inversely proportional to the value of SI , where β is a fractional
time constant for preserving units and SI is the insulin sensitivity. This can be biologically
interpreted as meaning that the concentrations of glucose and insulin in the system can be
balanced by increasing the active rate β1–α and decreasing SI , or vice versa. This is because
the value of β1–α (e.g., β1–α = 1 represents normal subjects while β1–α = 2 is for diabetic
patients) can be physiologically considered as the effect of the rheological behavior in en-
hancing the muscular and liver sensitivity to the action of insulin [6, 37]. Hence, fractional-
order differential equations currently play a significant role in generalizing integer-order
mathematical models for glucose–insulin dynamics so that some mentioned advantages
of fractional-order derivatives are carried on with the classical models.

Motivated by the significance and importance of fractional-order derivatives and the
advantages of the generalized dynamical model (3) as described above, we will convert
the first-order delay differential equations for glucose–insulin interaction in Eq. (3) into a
delayed fractional model in the sense of the Caputo fractional derivative with incommen-
surate orders. We will find a positive equilibrium point of the resulting system and analyze
asymptotic stability of the system. In addition, we will establish conditions for which the
fractional-order system undergoes a Hopf bifurcation at the equilibrium point. Finally,
the Adams–Bashforth–Moulton type predictor–corrector method will be used to obtain
numerical solutions of this model to confirm the theoretical analysis.

The paper is organized as follows. In Sect. 2, we present some preliminaries includ-
ing the definition of Caputo fractional derivative and its properties and the asymptotic
stability theorem for a delayed fractional differential system. The description of the modi-
fied Adams–Bashforth method for solving delayed fractional differential equations is con-
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tained in this section. In Sect. 3, the transformation from Eq. (3) to an incommensurate
fractional-order differential system for glucose–insulin interaction is obtained. The non-
negativity and boundedness of solutions of the proposed model are proved in Sect. 4.
The stability analysis of a positive equilibrium point of the resulting model is discussed
in Sect. 5. The existence of a Hopf bifurcation for the model is established in this section.
In Sect. 6, numerical simulations are provided. Finally, the conclusions are given in the last
section.

2 Preliminaries
Frequently, real-world problems can be mathematically modeled using differential equa-
tions equipped with some initial conditions. Thus, Caputo’s definition of fractional-order
derivative is appropriate to replace the classical derivative used in the original models. In
addition, the Laplace transform of Caputo’s derivative can be written in terms of the given
initial conditions of the problems and Caputo’s derivative of a constant is equal to zero.
Hence, we will reasonably use this fractional-order derivative for our delayed fractional-
order glucose–insulin interaction model.

A function f (t) (t > 0) is said to be in the space Cq (q ∈ R) if it can be expressed as
f (t) = tpg(t) for some p > q, where g(t) is continuous in [0,∞). The function is also said
to be in the space Cm

q if f (m) ∈ Cq, m ∈ N (see [17, 38] and the references cited therein for
further details).

Definition 2.1 ([17]) The Riemann–Liouville fractional integral operator of order q > 0
of a function f ∈ Cq with a ≥ 0 is defined as

RLJq
a f (t) =

1
Γ (q)

∫ t

a
(t – τ )q–1f (τ ) dτ , t > a, (4)

where Γ (z) =
∫ ∞

0 e–uuz–1 du is the gamma function.

Definition 2.2 ([17]) For a positive real number q, the Caputo fractional derivative of
order q with a ≥ 0 is defined in terms of the Riemann–Liouville fractional integral, i.e.,
CDq

af (t) = RLJm–q
a f (m)(t), or it can be expressed as

CDq
af (t) =

⎧
⎨

⎩

1
Γ (m–q)

∫ t
a

f (m)(τ )
(t–τ )q–m+1 dτ , m – 1 < q < m,

dm

dtm f (t), q = m,
(5)

where t ≥ a, f ∈ Cm
–1, and m ∈N. In particular, when 0 < q ≤ 1, we have

CDq
af (t) =

1
Γ (1 – q)

∫ t

a

f ′(τ )
(t – τ )q dτ . (6)

Corollary 2.1 ([39]) Let 0 < q ≤ 1. Suppose f ∈ C[a, b] and CDq
af ∈ (a, b]. If CDq

af (t) ≥ 0
for all t ∈ (a, b), then the function f is non-decreasing, and if CDq

af (t) ≤ 0 for all t ∈ (a, b),
then the function f is non-increasing.

Lemma 2.1 (Fractional comparison principle in [40]) Let x(0) = y(0) and CDq
ax(t) ≤

CDq
ay(t), where 0 < q ≤ 1. Then x(t) ≤ y(t).



Lekdee et al. Advances in Difference Equations        (2019) 2019:318 Page 6 of 22

The Laplace transforms of the Caputo fractional derivative and some types of the
Mittag-Leffler functions are as follows.

Lemma 2.2 ([17]) The Laplace transform of the Caputo fractional derivative of order m –
1 < q < m is

L
{

CDq
af (t)

}
= sqF(s) –

m–1∑

k=0

sq–k–1f (k)(a), (7)

where F(s) = L {f (t)}.

Definition 2.3 ([17]) The single parameter Mittag-Leffler function is defined by

Eq(t) =
∞∑

k=0

tk

Γ (qk + 1)
, q > 0, (8)

and the two parameter Mittag-Leffler function can be defined by

Eq,β (t) =
∞∑

k=0

tk

Γ (qk + β)
, q,β > 0. (9)

It is not difficult to see that Eq,1(t) = Eq(t).

Lemma 2.3 ([17]) The Laplace transforms for several Mittag-Leffler functions are given by

L
{

Eq
(
–λtq)} =

sq–1

sq + λ
, (10)

L
{

tβ–1Eq,β
(
–λtq)} =

sq–β

sq + λ
, (11)

provided that s > |λ|1/q, where λ is a constant parameter.

Definition 2.4 Consider the following fractional-order system:

CDq
aX(t) = F

(
X(t)

)
, (12)

where X(t) = (x1(t), x2(t), . . . , xn(t))T , F(t) = (f1(t), f2(t), . . . , fn(t))T , and q = (q1, q2, . . . , qn)T

with qi > 0, i = 1, 2, . . . , n. The equilibrium solution X∗ = (x∗
1, x∗

2, . . . , x∗
n)T of the system is

defined by F(X∗) = 0, i.e., fi(X∗) = 0, i = 1, 2, . . . , n.

Consider a general delayed fractional-order system

CDq
aX(t) = F

(
X(t), X(t – τ )

)
, (13)

where τ > 0 is a time delay and X(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n. The equilibrium point

X∗ of system (13) is the solution of the equation F(X, X) = 0. The associated linearized
system of system (13) at an equilibrium point X∗ can be written as

CDq
aU(t) = AU(t) + BU(t – τ ), (14)
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where A, B ∈R
n×n. The characteristic equation of system (14) is

�(s) = det
(
sqI – A – Be–sτ ) = 0, (15)

where I ∈R
n×n is the identity matrix. If τ = 0, the linearized system (14) is reduced to

CDq
aU(t) = MU(t), (16)

where the coefficient matrix M = A + B.
In [23, 41], the Hopf bifurcation conditions were investigated for the general delayed

fractional-order system (13). Suppose that the following conditions hold, then system (13)
encounters a Hopf bifurcation at the equilibrium X∗ when τ = τ0.

(1) All the eigenvalues λi, i = 1, 2, 3, . . . , n, of the coefficient matrix M of the linearized
system of Eq. (13) satisfy the condition | arg(λi)| > qπ

2 , i = 1, 2, 3, . . . , n.
(2) The characteristic equation �(s) = 0 in Eq. (15) has a pair of purely imaginary roots

±iω0 when τ = τ0.
(3) Re[ ds

dτ
]τ=τ0 	= 0, where Re(·) denotes the real part of a complex number.

Next the algorithm for solving a delayed fractional-order differential equation is briefly
discussed as follows. Bhalekar and Daftardar-Gejji have modified the Adams–Bashforth
method to solve delay differential equations of fractional order (FDDE) [42]. The method
is described below. Consider the FDDE

CDq
ay(t) = f

(
t, y(t), y(t – τ )

)
, t ∈ [0, T], 0 < q ≤ 1, (17)

y(t) = g(t), t ∈ [–τ , 0]. (18)

For convenience, we use the starting point a = 0. Then the Volterra integral equation of
(17) can be written as

y(t) = g(0) +
1

Γ (α)

∫ t

0
(t – ξ )α–1f

(
ξ , y(ξ ), y(ξ – τ )

)
dξ . (19)

Similarly, we obtain a uniform grid for the delayed problem as {tn = nh : n = –k, –k +
1, . . . , –1, 0, 1, . . . , N}, where k and N are integers such that h = T/N and h = τ /k. For the
sake of simplicity, we let

yh(tj) = g(tj), j = –k, –k + 1, . . . , –1, 0, (20)

and note that

yh(t – τ ) = yh(jh – kh) = yh(tj–k), j = 0, 1, . . . , N . (21)

We assume that the approximations yh(tj) ≈ y(tj) for j = –k, –k + 1, . . . , –1, 0, 1, . . . , n have
been calculated, and we want to calculate yh(tn+1) using the formula

y(tn+1) = g(0) +
1

Γ (α)

∫ t+1

0
(tn+1 – ξ )α–1f

(
ξ , y(ξ ), y(ξ – τ )

)
dξ . (22)
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Applying the product trapezoidal quadrature formula to approximate the integral in (22),
by substituting approximations yh(tn) for y(tn), we obtain

yh(tn+1) = g(0) +
hα

Γ (α + 2)
f
(
tn+1, yh(tn+1), yh(tn+1 – τ )

)

+
hα

Γ (α + 2)

n∑

j=0

aj,n+1f
(
tj, yh(tj), yh(tj – τ )

)

= g(0) +
hα

Γ (α + 2)
f
(
tn+1, yh(tn+1), yh(tn+1–k)

)

+
hα

Γ (α + 2)

n∑

j=0

aj,n+1f
(
tj, yh(tj), yh(tj–k)

)
, (23)

where

aj,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nα+1 – (n – α)(n + 1)α if j = 0,

(n – j + 2)α+1 + (n – j)α+1 – 2(n – j + 1)α+1, if 1 ≤ j ≤ n,

1, if j = n + 1.

(24)

The product rectangle rule is then applied in (23) to evaluate the following predictor term:

yP
h(tn+1) = g(0) +

1
Γ (α)

n∑

j=0

bj,n+1f
(
tj, yh(tj), yh(tj – τ )

)

= g(0) +
1

Γ (α)

n∑

j=0

bj,n+1f
(
tj, yh(tj), yh(tj–k)

)
, (25)

where

bj,n+1 =
hα

α

(
(n + 1 – j)α – (n – j)α

)
. (26)

3 Fractional-order model description
In this section, we develop a delayed fractional-order glucose–insulin interaction model,
which is based on the generalized dynamical model (3), using the Caputo fractional deriva-
tive. Since model (3) is the delay differential system in which the derivative of I(t) at time
t is given in terms of the value of glucose concentration in the τ minutes preceding time
t, i.e., G(t – τ ). The Caputo fractional-order derivative, which will be inserted into each
equation of Eq. (3), contains the accumulated information of weighted ordinary derivatives
from the starting point to the present time depending upon the value of its fractional or-
der. Replacing the integer-order derivative in a classical delay differential system with the
Caputo fractional-order derivative, we can utilize accumulative information of the rate
of change of unknown functions appearing in the system besides only the values of the
unknown functions at the current and previous times. Hence, the mathematical models
constructed using fractional-order derivatives can express memory, history, or nonlocal
effects. Furthermore, the theoretical and numerical results contained in [9] confirmed that
the first-order model (3) can perform the following behaviors: asymptotically stable steady
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state, oscillatory solutions converging to the steady state, and sustainable oscillatory so-
lutions when the values of the parameter a4 and the delay τ are adjusted. In particular, if
a4 > 0 and τ is small, then the positive steady state becomes stable, while if a4 is relatively
small but τ is large, then oscillatory solutions, i.e., periodic solutions, may occur. This
consequently invites us to study a fractional-order version of the generalized dynamical
model (3) so that we can investigate whether fractional orders of the new model are an
additional factor affecting the appropriate delays, which are required for the existence of a
stable equilibrium or periodic solutions of the fractional model. If stability regions of the
fractional-order model can be changed by its fractional orders, then by a mathematical
point of view we can utilize this benefit for certain purposes. For example, calculating the
suitable time delay τ depending on fractional orders of the system such that the concen-
trations of glucose and insulin in diabetic patients exhibit their asymptotically stable or
sustainable oscillatory behaviors. In terms of physiological aspects, the fractional-order
model of (3) could influence the delay action between insulin in plasma and its effect on
the hepatic glucose production and also on a period range of oscillation in human insulin
secretion. These cannot be obtained from using the first-order system (3). Therefore, this
motivates us to develop a fractional-order version of the generalized dynamical model.

Replacing the first-order derivatives in Eq. (3) by the Caputo fractional derivatives of
orders q1, q2 ∈ (0, 1], respectively, the resulting equations still have the problem in which
the units of the left-hand side and the right-hand side of the resulting system mismatch, i.e.,
the units of the left-hand side are timeq1 and timeq2 while the units of the right-hand side of
the system have the dimension time–1. Hence, we must preserve units as described in [21,
43] on both sides of each equation in the resulting system by adjusting some of the original
parameters or multiplying some original parameters by a fractional time constant β . After
taking care of the units for both sides of the equations, we obtain the delayed fractional-
order model of glucose–insulin interaction with incommensurate orders as follows:

CDq1
a G(t) = –aq1

1 G(t) –
β1–q1 a3I(t)G(t)

(a4G(t) + 1)
+ β1–q1 a6,

CDq2
a I(t) = –aq2

2 I(t) + β1–q2 a5G(t – τ ).
(27)

For convenience, we set

α1 = aq1
1 , α2 = aq2

2 , α3 = β1–q1 a3,

α4 = a4, α5 = β1–q2 a5, α6 = β1–q1 a6.
(28)

Then system (27) becomes

CDq1
a G(t) = –α1G(t) –

α3I(t)G(t)
(α4G(t) + 1)

+ α6,

CDq2
a I(t) = –α2I(t) + α5G(t – τ ),

(29)

where t ∈ [–τ , T), τ ≥ 0 and T is some positive number. The initial conditions of system
(29) are the same as those of system (3). It can be noticed that all new parameters, except
α4, depend significantly on the fractional orders q1, q2 and the fractional time constant β .
These new parameters maintain the biological meaning of the old parameters which they
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are associated with. However, their values can be varied via the values of q1, q2, and β as
set above. Especially, we call the parameters α1 and α2 the fractional tissue glucose uptake
rate and the fractional disappearance rate constant for insulin, respectively. As mentioned
in the generalized MINMOD Millennium model [21], the terms β1–q1 and β1–q2 can be
physiologically considered as the parameters describing the rheological behavior in en-
hancing the muscular and liver sensibility to the action of insulin. Roughly speaking, the
new fractional-order model (29) is the generalization of the first-order system (3).

The fractional-order system (29) will be used as our model for analysis and simulation in
the following sections. In order to find equilibrium points of system (29), we set CDq1

a G(t) =
0 and CDq2

a I(t) = 0 and then solve the obtained equations for an equilibrium point. It is
not difficult to figure out that system (29) has a unique positive equilibrium point (G∗, I∗),
where

G∗ =
(α4α6 – α1 +

√
(α4α6 – α1)2 + 4(α4α1 + α3α5

α2
)α6)

2(α4α1 + α3α5
α2

)
,

I∗ =
α5

α2
G∗.

(30)

In the following sections, the investigation of non-negative and bounded solutions of sys-
tem (29) will be provided. Furthermore, the issue of a Hopf bifurcation for the proposed
fractional-order system will be carried out when the time delay τ is used as a bifurcation
parameter.

4 Non-negative and bounded solutions
In this section, we show the non-negativity and boundedness of the solutions of system
(29) with some initial conditions. Denoting R2

+ = {(x, y) ∈ R2|x, y ≥ 0}, we have the follow-
ing theorem.

Theorem 4.1 All solutions of the initial value problem, which is given by system (29) and
the initial conditions G(t) ≡ G0 for t ∈ [–τ , 0] and I(0) = I0, exist for t > 0. The solutions
remain in R2

+ and are bounded.

Proof Let (G(t), I(t)) be a solution of system (29). Assume that there exists a first time t1

such that G(t1) = 0 and CDq1
a G(t1) ≤ 0. However, from the first equation of system (29), we

have

CDq1
a G(t1) = –α1G(t1) –

α3I(t1)G(t1)
(α4G(t1) + 1)

+ α6 = α6 > 0.

This contradiction shows that G(t) > 0 for all t > t1 by Corollary 2.1.
Similarly, we assume that there exists a first time t2 such that I(t2) = 0 and CDq2

a I(t2) ≤ 0.
From the second equation of system (29), we then obtain

CDq2
a I(t2) = –α2I(t2) + α5G(t2 – τ ) = α5G(t2 – τ ).

Since G(t2 – τ ) > 0, this contradiction shows that I(t) > 0 for all t > t2 using Corollary 2.1.
Hence, the solution of system (29) stays in R2

+.
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As for the boundedness of G(t), by the first equation of model (29), we have

CDq1
a G(t) ≤ –α1G(t) + α6. (31)

Let CDq1
a G1(t) = –α1G1(t) + α6 and G1(0) = G(0). Consider the following fractional dif-

ferential equation:

CDq1
a G1(t) = –α1G1(t) + α6. (32)

Taking the Laplace transform of Eq. (32) by using Eq. (7), we then obtain

sq1G1(s) – sq1–1G1(0) = –α1G1(s) +
α6

s
,

(
sq1 + α1

)
G1(s) =

α6

s
+ sq1–1G1(0), (33)

G1(s) =
α6

s(sq1 + α1)
+ G1(0)

sq1–1

sq1 + α1
,

where G1(s) = L {G1(t)}. Taking the inverse Laplace transform of Eq. (33), we then have

G1(t) = α6L
–1

{
1

s(sq1 + α1)

}
+ G1(0)L –1

{
sq1–1

sq1 + α1

}

= α6L
–1

{
s–1

(sq1 + α1)

}
+ G1(0)L –1

{
sq1–1

sq1 + α1

}

= α6L
–1

{
sq1–(q1+1)

(sq1 + α1)

}
+ G1(0)L –1

{
sq1–1

sq1 + α1

}
. (34)

Applying Eqs. (10) and (11) to Eq. (34), we have

G1(t) = α6tq1 Eq1,q1+1
(
–α1tq1

)
+ G0Eq1,1

(
–α1tq1

)
, (35)

where Eq1,β (z) is the two-parameter Mittag-Leffler function defined in Eq. (9). By Lem-
ma 2.1, we now have

0 ≤ G(t) ≤ G1(t) = α6tq1 Eq1,q1+1
(
–α1tq1

)
+ G0Eq1,1

(
–α1tq1

)
, ∀t > 0. (36)

Next we consider the terms Eq1,1(–α1tq1 ) and tq1 Eq1,q1+1(–α1tq1 ) in Eq. (35) as t → ∞. We
must then consider the asymptotic behavior of the Mittag-Leffler functions Eq1,1(–α1tq1 )
and Eq1,q1+1(–α1tq1 ). If t is large enough, then we have the following approximations:

Eq1

(
–α1tq1

)
= Eq1,1

(
–α1tq1

) ∼ –
∞∑

k=1

α–k
1 (–t)–q1k

Γ (1 – q1k)
, (37)

tq1 Eq1,q1+1
(
–α1tq

1
) ∼ –tq1

∞∑

k=1

α–k
1 (–t)–q1k

Γ (q1 + 1 – q1k)
. (38)

It is not difficult to see that as t → ∞, Eq1 (–α1tq1 ) in Eq. (37) and tq1 Eq1,q1+1(–α1tq1 ) in
Eq. (38) tend to 0 and 1

α1
, respectively. Therefore, G1(t) → α6

α1
as t → ∞. Applying this
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result to inequality (36), we have the following consequence:

G(t) → α6

α1
as t → ∞, (39)

and it follows that there exists a constant M > 0 such that ||G(t)|| ≤ M. From the second
equation of model (29), we have

CDq2
a I(t) = –α2I(t) + α5G(t – τ ) ≤ –α2I(t) + α5M. (40)

Let CDq2
a I1(t) = –α2I1(t) + α5M and I1(0) = I(0). Applying the same approach as used

above to the resulting fractional differential equation, we then obtain

0 ≤ I(t) ≤ I1(t) = α5Mtq2 Eq2,q2+1
(
–α2tq2

)
+ I0Eq2,1

(
–α2tq2

)
, ∀t > 0, (41)

and

I(t) → α5M
α2

as t → ∞. (42)

The boundedness statements for G(t) and I(t) imply that the solution (G(t), I(t)) exists for
all t > 0. This completes the proof. �

5 Main results
In this section, some explicit conditions for the occurrence of a Hopf bifurcation for
Eq. (29) will be established. Using the transformation x(t) = G(t) – G∗, y(t) = I(t) – I∗,
Eq. (29) can be converted to

CDq1
a x(t) = –α1

(
x(t) + G∗) –

α3(y(t) + I∗)(x(t) + G∗)
(α4(x(t) + G∗) + 1)

+ α6,

CDq2
a y(t) = –α2

(
y(t) + I∗) + α5

(
x(t – τ ) + G∗).

(43)

Then the linearization of system (43) at the origin leads to

CDq1
a x(t) = –m1x(t) – m2y(t),

CDq2
a y(t) = –α2y(t) + α5x(t – τ ),

(44)

where

m1 = α1 +
α3I∗

(α4G∗ + 1)2 , m2 =
α3G∗

(α4G∗ + 1)
. (45)

The characteristic equation of system (44) can be obtained as

∣∣
∣∣∣
sq1 + m1 m2

–α5e–sτ sq2 + α2

∣∣
∣∣∣

= 0, (46)

or equivalently as

sq1+q2 + α2sq1 + m1sq2 + m1α2 + m2α5e–sτ = 0. (47)
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Assume that s = iω = ω(cos π
2 + i sin π

2 ) is a root of Eq. (47) when ω > 0. Substituting s into
Eq. (47) and then separating the real and imaginary parts of it, we obtain

m2α5 cos(ωτ ) + ωq1+q2 cos

(
(q1 + q2)π

2

)

+ ωq1α2 cos

(
q1π

2

)
+ m1ω

q2 cos

(
q2π

2

)
+ m1α2 = 0,

–m2α5 sin(ωτ ) + ωq1+q2 sin

(
(q1 + q2)π

2

)

+ ωq1α2 sin

(
q1π

2

)
+ m1ω

q2 sin

(
q2π

2

)
= 0.

(48)

Utilizing Eq. (48) and through direct calculation, we get the following relations:

cosωτ = –
ωq1α2 cos( q1π

2 ) + m1ω
q2 cos( q2π

2 ) + ωq1+q2 cos( (q1+q2)π
2 ) + m1α2

m2α5

= G1(ω),

sinωτ =
ωq1α2 sin( q1π

2 ) + m1ω
q2 sin( q2π

2 ) + ωq1+q2 sin( (q1+q2)π
2 )

m2α5
= G2(ω).

(49)

Using Eq. (49) with the fact that cos2 ωτ + sin2 ωτ = 1, we then have

G2
1(ω) + G2

2(ω) = 1. (50)

It is assumed that Eq. (50) admits at least one positive real root, denoted by ω0, and we
call it the critical frequency. From cosωτ = G1(ω), we define

τj =
1
ω0

(
arccos G1(ω0) + 2jπ

)
, j = 0, 1, 2, . . . . (51)

Therefore, the bifurcation point of the system, associated with ω0, is

τ0 = min{τj}, j = 0, 1, 2, . . . . (52)

To derive the condition for the occurrence of a Hopf bifurcation, we announce the fol-
lowing hypothesis:

(H1)
R1R2 + I1I2

R2
2 + I2

2
	= 0,

where

R1 = m2α5ω
2
0 cos(ω0τ0), I1 = –m2α5ω

2
0 sin(ω0τ0),

R2 = ω0τ0m2α5 sin(ω0τ0) – ω
q1
0 q1α2 cos

(
q1π

2

)
– ω

q2
0 q2m1 cos

(
q2π

2

)

– ω
q1+q2
0 q1 cos

(
(q1 + q2)π

2

)
– ω

q1+q2
0 q2 cos

(
(q1 + q2)π

2

)
, (53)
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I2 = ω0τ0m2α5 cos(ω0τ0) – ω
q1
0 q1α2 sin

(
q1π

2

)
– ω

q2
0 q2m1 sin

(
q2π

2

)

– ω
q1+q2
0 q1 sin

(
(q1 + q2)π

2

)
– ωq1+q2 q2 sin

(
(q1 + q2)π

2

)
.

Lemma 5.1 Let s(τ ) = γ (τ ) + iω(τ ) be the root of Eq. (47). It is obvious to see that γ (τk) = 0,
ω(τk) = ω0 when τ = τk , then the condition holds

Re

[
ds
dτ

]

τ=τ0,ω=ω0

	= 0. (54)

Proof Differentiating both sides of Eq. (47) with respect to τ , we attain

sq1+q2–1(q1 + q2)
ds
dτ

+ sq1–1q1α2
ds
dτ

+ sq2–1q2m1
ds
dτ

+ m2α5e–sτ
(

–
ds
dτ

τ – s
)

= 0.

Then we have

ds
dτ

=
e–sτ s2m2α5

–e–sτ sτm2α5 + sq1 q1α2 + sq2 q2m1 + sq1+q2 q1 + sq1+q2 q2
=

M(s)
N(s)

. (55)

By straightforward computation, we can deduce

Re

[
ds
dτ

]

τ=τ0,ω=ω0

=
R1R2 + I1I2

R2
2 + I2

2
, (56)

where R1, I1 are the real and imaginary parts of M(s) evaluated at τ = τ0, ω = ω0 and
R2, I2 are the real and imaginary parts of N(s) evaluated at τ = τ0, ω = ω0 as defined in
Eq. (53). Obviously, hypothesis (H1) indicates that the transversality condition is satisfied.
This completes the proof. �

Lemma 5.2 The positive equilibrium point (G∗, I∗) of the fractional-order system (29) is
locally asymptotically stable when τ = 0.

Proof If there is no delay, i.e., τ = 0, Eq. (47) becomes

λ2 + (α2 + m1)λ + (α2m1 + α5m2) = 0. (57)

The roots of the above characteristic equation are

λ+ =
–(α2 + m1) +

√
(α2 + m1)2 – 4(α2m1 + α5m2)

2
,

λ– =
–(α2 + m1) –

√
(α2 + m1)2 – 4(α2m1 + α5m2)

2
.

It is not difficult to see that Re(λ±) < 0. Hence, the positive equilibrium point (G∗, I∗) of
fractional-order system (29) is locally asymptotically stable when τ = 0. �

Remark 5.1 In agreement with the theory of stability for fractional-order systems, the real
parts of all roots of the characteristic equation in Eq. (57) are negative, which can assure
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that all the roots of Eq. (57) satisfy | arg(λi)| > qiπ
2 (i = 1, 2), and so Lemma 5.2 may still hold

for system (29).

Next we can establish the existence of a Hopf bifurcation of fractional-order system (29)
as follows.

Theorem 5.1 Suppose that (H1) holds for system (29), then the following results hold:
(i) The equilibrium point (G∗, I∗) of system (29) is locally asymptotically stable for

τ ∈ [0, τ0), and unstable when τ > τ0.
(ii) System (29) displays a Hopf bifurcation at the equilibrium point (G∗, I∗) when τ = τ0.

In other words, near τ = τ0, there is a branch of periodic solutions bifurcating from
the equilibrium point (G∗, I∗).

6 Numerical results
In this section, we will provide four numerical examples to verify our theoretical results
obtained in Sect. 5. The numerical solutions for system (29) presented in this section are
simulated using the Adams–Bashforth–Moulton type predictor–corrector scheme de-
scribed in Sect. 2 with the step-size h = 0.01. In addition, the parameter values and the
initial conditions [8, 9] used in the simulations are as follows: a1 = 0.0001, a2 = 0.1262,
a3 = 5.64×10–5, a4 = 0.01, a5 = 0.074, a6 = 1.93 and G(0) = 87, I(0) = 60. Using the relation
expressed in (28) and the fractional time constant β = 1, we have the following information
for our simulations:

α3 = 5.64 × 10–5, α4 = 0.01, α5 = 0.074,

α6 = 1.93, G(0) = 87, I(0) = 60,
(58)

but the values of α1 and α2, which depend upon the fractional orders q1 and q2, will be
computed later.

In order to see the impact of the time delay τ on the dynamics of system (29), the bifur-
cation point τ0 is required to be calculated. We employ four sets of the fractional orders q1

and q2 as shown in Table 2 to perform the dynamics of the system. Also, the values of α1,
α2, ω0, and τ0, which can be computed using Eqs. (28), (50), (51), and the values of q1, q2

from the mentioned sets are included in Table 2. The following four numerical simulations
using the information in Table 2 are discussed below.

Case I: We use the values of q1, q2, α1, and α2 from Set 1 in Table 2 and the infor-
mation (58) to simulate system (29). The system is reduced into the regular integer-
order system. From (30), the positive equilibrium point of the system for this case is
(G∗, I∗) = (650.592, 381.488). From Table 2, we have ω0 = 0.002825 and τ0 = 607.919.
This value of τ0 for this integer-order case is in the acceptable range for obtaining

Table 2 The values of the fractional orders q1, q2 and the computed values of α1, α2, ω0, τ0 for the
numerical simulations of system (29)

Set number q1 q2 α1 α2 ω0 τ0

Set 1 1 1 0.0001 0.1262 0.002825 607.919
Set 2 0.92 0.92 0.0002 0.1489 0.001382 1365.600
Set 3 0.92 0.95 0.0002 0.1399 0.001469 1285.910
Set 4 0.92 0.72 0.0002 0.2253 0.000903 2089.425
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Figure 1 Time series and phase portrait of fractional-order model (29) generated using the information from
Set 1, the parameter values in Eq. (58), and τ = 400 < τ0 = 607.919. The positive equilibrium
(G∗ , I∗) = (650.592, 381.488) of the system is asymptotically stable

Figure 2 Time series and phase portrait of fractional-order model (29) generated using the information from
Set 1, the parameter values in Eq. (58), and τ = 700 > τ0 = 607.919. A periodic oscillation bifurcates from the
equilibrium point (G∗ , I∗) = (650.592, 381.488)

sustainable oscillatory solutions as mentioned in [9]. Using Eq. (56), we easily obtain
Re[ ds

dτ
]τ=τ0,ω=ω0 = 0.000001695 	= 0. Hence, by means of Theorem 5.1, the positive equi-

librium point (G∗, I∗) is asymptotically stable when τ = 400 < τ0, which is demonstrated in
Fig. 1 for t ∈ [0, 12,000]. While τ = 700 > τ0, this equilibrium point is unstable, and there
occurs a Hopf bifurcation at the equilibrium point as illustrated in Fig. 2 for t ∈ [0, 12,000].

Case II: We utilize the values of q1, q2, α1, and α2 from Set 2 in Table 2 and the informa-
tion (58) to numerically solve system (29). The system is reduced into the commensurate
one with q1 = q2 = 0.92. From (30), the positive equilibrium point of the system for this case
is (G∗, I∗) = (722.65, 359.07), and from Table 2, we have ω0 = 0.001382 and τ0 = 1365.60.
Using Eq. (56), we easily obtain Re[ ds

dτ
]τ=τ0,ω=ω0 = 3.238532623 × 10–7 	= 0. Hence, by The-

orem 5.1, the equilibrium point for this case is asymptotically stable when τ = 1000 < τ0,
which is illustrated in Fig. 3 for t ∈ [0, 40,000]. While it is unstable and a Hopf bifurcation
emerges when τ = 1600 > τ0, as simulated in Fig. 4 for t ∈ [0, 40,000].

Case III: In this case, we utilize the values of q1, q2, α1, and α2 from Set 3 in Table 2
and the parameter values and the initial conditions expressed in Eq. (58) to numerically
simulate system (29). From (30), the positive equilibrium point of the incommensurate
fractional-order model with q1 = 0.92q2 = 0.95 is (G∗, I∗) = (686.41, 362.92), and from Ta-
ble 2, we have ω0 = 0.001469 and τ0 = 1285.910. Using Eq. (56), it is not difficult to ob-
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Figure 3 Time series and phase portrait of fractional-order model (29) generated using the information from
Set 2, the parameter values in Eq. (58), and τ = 1000 < τ0 = 1365.60. The positive equilibrium
(G∗ , I∗) = (722.65, 359.07) of the system is asymptotically stable

Figure 4 Time series and phase portrait of fractional-order model (29) generated using the information from
Set 2, the parameter values in Eq. (58), and τ = 1600 > τ0 = 1365.60. A periodic oscillation bifurcates from the
equilibrium point (G∗ , I∗) = (722.65, 359.07)

Figure 5 Time series and phase portrait of fractional-order model (29) generated using the information from
Set 3, the parameter values in Eq. (58), and τ = 900 < τ0 = 1285.91. The positive equilibrium
(G∗ , I∗) = (686.41, 362.92) of the system is asymptotically stable

tain Re[ ds
dτ

]τ=τ0,ω=ω0 = 3.650184×10–7 	= 0. Thus, by Theorem 5.1, the positive equilibrium
point for this case is asymptotically stable when τ = 900 < τ0, which is shown in Fig. 5 for
t ∈ [0, 40,000]. However,it is unstable and a Hopf bifurcation occurs when τ = 1500 > τ0,
as displayed in Fig. 6 for t ∈ [0, 40,000].
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Figure 6 Time series and phase portrait of fractional-order model (29) generated using the information from
Set 3, the parameter values in Eq. (58), and τ = 1500 > τ0 = 1285.910. A periodic oscillation bifurcates from the
equilibrium point (G∗ , I∗) = (686.41, 362.92)

Figure 7 Time series of fractional-order model (29) generated using the information from Set 4, the
parameter values in Eq. (58), and τ = 1400 < τ0 = 2089.425. The positive equilibrium (G∗ , I∗) = (1018.09, 334.39)
of the system is asymptotically stable

Case IV: Employing the values of q1, q2, α1, and α2 from Set 4 in Table 2 and the
information (58) for system (29), we perform numerical solutions of the obtained in-
commensurate fractional-order system with q1 = 0.92q2 = 0.72. From (30), the positive
equilibrium point of the system for this case is (G∗, I∗) = (1018.09, 334.39), and we ob-
tain ω0 = 0.000903 and τ0 = 2089.425 as expressed in Table 2. Using Eq. (56), we obtain
Re[ ds

dτ
]τ=τ0,ω=ω0 = 1.373511 × 10–7 	= 0. According to Theorem 5.1, the positive equilib-

rium point for this case is asymptotically stable when τ = 1400 < τ0. The graphical result
is shown in Fig. 7 for t ∈ [0, 40,000]. Actually, this equilibrium point is asymptotically sta-
ble when τ ∈ [0, 2089.425). However,it is unstable and a Hopf bifurcation emerges when
τ = 2400 > τ0, as displayed in Fig. 8 for t ∈ [0, 40,000].

In the following part, we will discuss the different effects of each of the fractional orders
on bifurcation for system (29). The parameter values, which are used in our experiments,
can be calculated using relation (28) with the fractional time constant β = 1. For the sake
of convenience, we fix one of the fractional orders and vary the other one to investigate
the effects of the altered one on the bifurcation of the system. Here the experiments are
as follows.

Experiment I: We set q1 = 0.92, then we observe the effects of q2 on bifurcation for sys-
tem (29). In this case, we easily calculate the corresponding critical frequency ω0 and bi-
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Figure 8 Time series of fractional-order model (29) generated using the information from Set 4, the
parameter values in Eq. (58), and τ = 2400 > τ0 = 2089.425. A periodic oscillation bifurcates from the
equilibrium point (G∗ , I∗) = (1018.09, 334.39)

Table 3 The effect of q2 on the values of ω0 and τ0 for system (29) when q1 = 0.92

Fractional order q2 Critical frequency ω0 Bifurcation point τ0

0.65 0.000770 2454.599
0.7 0.000863 2186.146
0.72 0.000903 2089.425
0.75 0.000964 1954.355
0.79 0.001052 1790.990
0.83 0.001146 1644.418
0.85 0.001195 1576.753
0.88 0.001272 1481.622
0.92 0.001382 1365.600
0.95 0.001469 1285.910
1 0.001624 1165.495

Figure 9 Graph of bifurcation point τ0 versus the order q2 for system (29) when q1 is fixed at 0.92

furcation point τ0 as q2 is varied. The computed values of ω0, τ0 are listed in Table 3. It
can be easily concluded from Table 3 and Fig. 9 that the bifurcation occurs in advance as
q2 increases.

Experiment II: We set q2 = 0.95, then we study the effects of q1 on bifurcation for system
(29). In this case, we can compute the corresponding critical frequency ω0 and bifurcation
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Table 4 The effect of q1 on the values of ω0 and τ0 for system (29) when q2 = 0.95

Fractional order q1 Critical frequency ω0 Bifurcation point τ0

0.73 0.000119 21,921.541
0.75 0.000193 12,916.565
0.76 0.000235 10,368.426
0.78 0.000330 7083.487
0.81 0.000502 4416.125
0.85 0.000789 2639.034
0.88 0.001050 1897.274
0.92 0.001469 1285.910
0.95 0.001839 988.433
0.98 0.002261 774.341
1 0.002574 663.853

Figure 10 Graph of bifurcation point τ0 versus the order q1 for system (29) when q2 is fixed at 0.95

point τ0 as q1 is changed. The obtained values of ω0, τ0 are described in Table 4. It can be
easily observed from Table 4 and Fig. 10 that the bifurcation emerges ahead of time as q1

increases.

7 Conclusion
In this article, we have proposed the delayed fractional differential equation model for
glucose–insulin interaction using the Caputo fractional derivative with incommensurate
orders. The unique positive equilibrium point of the system has been discovered. We have
also established the conditions for stability of the equilibrium point and Hopf bifurcation.
It has been found from the stability analysis that the time delay τ in the system has signif-
icant influence on the stability. In fact, stability regions of fractional-order model (29) can
be adjusted by varying the fractional orders of the model as simulated in experiments I
and II of Sect. 6. Furthermore, the Hopf bifurcation has occurred prematurely as one of
the fractional orders increases while the other is fixed. The numerical examples obtained
using the Adams–Bashforth–Moulton type predictor–corrector scheme have verified our
main theoretical results.
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