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Abstract
In this paper, we study an inverse source problem for the Rayleigh–Stokes problem
for a generalized second-grade fluid with a fractional derivative model. The problem
is severely ill-posed in the sense of Hadamard. To regularize the unstable solution, we
apply the Tikhonov method regularization solution and obtain an a priori error
estimate between the exact solution and regularized solutions. We also propose
methods for both a priori and a posteriori parameter choice rules. In addition, we
verify the proposed regularized methods by numerical experiments to estimate the
errors between the regularized and exact solutions.
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1 Introduction
In this paper, we consider the Rayleigh–Stokes problem for a generalized second-grade
fluid model with fractional derivative

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu – (1 + γ ∂α
t )�u = f (x)χ (t), (x, t) ∈ Ω × (0, T),

u(x, t) = 0, x ∈ ∂Ω ,

u(x, 0) = u0(x), x ∈ Ω ,

u(x, T) = g(x), x ∈ Ω ,

(1.1)

where Ω ⊂ R
d (d = 1, 2, 3) is a smooth domain with boundary ∂Ω , and T > 0 is a given

time. Here γ > 0 is a constant, u0 is the initial data in L2(Ω), ∂t = ∂/∂t, and ∂α
t is the

Riemann–Liouville fractional derivative of order α ∈ (0, 1) defined by [1, 2]

∂α
t f (t) =

d
dt

∫ t

0
ω1–α(t – s)f (s) ds, ωα(t) =

tα–1

Γ (α)
.

Based on our search results, recently, the Rayleigh–Stokes problem is studied by many
authors with many different approaches such as
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The Rayleigh–Stokes problem (1.1) plays an important role in describing the behavior
of some non-Newtonian fluids [3]. The direct problems, i.e., initial and boundary value
problems for the Rayleigh–Stokes problem, have been studied in [3]. Numerical solutions
of Rayleigh–Stokes problem for a heated generalized second-grade fluid with fractional
derivatives have been considered and developed in some previous papers by Dehghan et
al. [4–7]. Many various numerical methods, such as the finite element method, have been
applied for solving the forward problem for Rayleigh–Stokes equation, for example, in [3,
8–10]. In [3] the authors considered a fractional derivative anomalous diffusion model.

In practical problems, most of fluid flows and transport processes are distributed param-
eters, where the parameters used in the modeling equations, such as physical parameters,
sink/source terms, initial and boundary conditions, and so on, are not easily obtained from
the observations. To deal with this matter, the inverse problem of parameter identification
has been applied.

The inverse source problem for fractional diffusion have many important applications
in physical practice. Some works on well-posedness of the inverse source problem have
been studied by Kirane et al. [11] and Tatar et al. [12]. Triet et al. [13] study the inverse
source problem for the Rayleigh–Stokes problem with a fractional derivative model. To
regularize the unstable solution, the authors apply a general filter method for constructing
regularized solution, and the convergence rate of this method also has been investigated.
The fractional derivative model is also studied by Dumitru et al. (see [14–18]).

The latter observation has been considered in many previous studies on linear inverse
problems, such as [19–21]. Consequently, the spectral method studied in [19–21] is a spe-
cial result obtained by choosing a specific filter.

To the best of our knowledge, the research results on inverse problems of the Rayleigh–
Stokes problem are still limited. The research works do not deal much with regularization
of ill-posed problems. Especially, the evaluation of a priori and a posteriori parameters
have not been considered. Problem (1.1) is the forward problem when the source function
F = F(x, t) is appropriately given whereas an inverse source problem based on problem
(1.1) is determining the source term F at a previous time from its value u(x, T) = g(x)
given at the final time T , where g ∈ H2(Ω) ∩ H1

0 (Ω).
In this work, we give another way for approaching the ill-posedness of an inverse source

problem. We deliver a Tikhonov regularization method to consider the above Gaussian
random model. The right-hand side is a function represented in the form of variable sep-
aration. To determine the source term f (x), we require the following assumptions: The
functions (g, F) are approximated by the noisy observation data (gε , Fε) such that

∥
∥g – gε

∥
∥

L2(Ω) ≤ ε,
∥
∥χ – χε

∥
∥

C[0,T] ≤ ε, (1.2)

χ0 ≤ χ (t),χε(t) ≤ χ1, ∀t ∈ [0, T]. (1.3)

This paper is organized as follows. In Sect. 2, we introduce some notations on Gaussian
random models. The main results are given in Sect. 3, including the Tikhonov regulariza-
tion method and its stability estimates under a priori and a posteriori parameters.

2 Regularization of the inverse source problem by the Tikhonov method
2.1 Preliminaries
In this section, we introduce some useful definitions and preliminary results.
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Definition 2.1 Let {λp,φp} be the eigenvalues and corresponding eigenvectors of the
Laplacian operator –� in Ω . The family of eigenvalues {λp}∞p=1 satisfy 0 < λ1 ≤ λ2 ≤ · · · ≤
λp ≤ · · · , where λp → ∞ as p → ∞:

⎧
⎨

⎩

�φp(x) = –λφp(x), x ∈ Ω ,

φp(x) = 0, x ∈ ∂Ω .

Definition 2.2 For k > 0, we define

Hk(Ω) :=

{

v ∈ L2(Ω);
∞∑

p=1

λk
p
∣
∣〈v,φp〉

∣
∣2 < +∞

}

(2.1)

equipped with the norm

‖v‖Hk (Ω) =

( ∞∑

n=1

λk
p
∣
∣〈v,φp〉

∣
∣2
) 1

2

.

Applying an eigenfunction expansion, the solution of the Rayleigh–Stokes problem is
obtain in the from

u(x, t) =
+∞∑

p=1

Hp(α, t)
〈
u0(x),φp(x)

〉
+

∞∑

p=1

(∫ t

0
Hp(α, t – s)χ (s) dsfp(x)

)

φp(x), (2.2)

where Fp(s) = χ (s)〈f (x),φp(x)〉, and Hp(α, t) satisfies the equation

⎧
⎨

⎩

d
dtHp(α, t) + λp(1 + γ ∂α

t )Hp(α, t) = 0, t ∈ (0, T),

Hp(α, 0) = 1.
(2.3)

Taking t = T and u0 = 0, we get

g(x) =
∞∑

p=1

[∫ T

0
Hp(α, T – s)Fp(s) ds

]

φp(x)

=
∞∑

p=1

[∫ T

0
Hp(α, T – s)χ (s) ds

]

fpφp(x), (2.4)

where Fp(s) = χ (s)fp. Hence the source function f is given by the Fourier series

f (x) =
∞∑

p=1

fpφp(x) =
∞∑

p=1

〈g(x),φp(x)〉
∫ T

0 Hp(α, T – s)χ (s) ds
φp(x). (2.5)

Using [22], we obtain

L
(
Hp(α, t)

)
=

1
t + γ λptα + λp

. (2.6)



Binh et al. Advances in Difference Equations        (2019) 2019:331 Page 4 of 20

Lemma 2.3 The functions Hp(α, t), p = 1, 2, . . . , are equal to

Hp(α, t) =
∫ ∞

0
e–rtKp(α, r) dr,

where

Kp(α, r) =
γ

π

λprα sinαπ

(–r + λpγ rα cosαπ + λp)2 + (λpγ rα sinαπ )2 .

Proof See [22]. �

In the following lemma, we present a useful estimate.

Lemma 2.4 Let α ∈ ( 1
2 , 1). We have the following estimate for all t ∈ [0, T]:

Hp(α, t) ≥ C(γ ,α,λ1)
λp

, (2.7)

and there exists D such that

∫ T

0

∣
∣Hp(α, t)

∣
∣2 dt ≤ D2

λ2
p

T2α–1

2α – 1
, (2.8)

where

C(γ ,α,λ1) = γ sin(απ )
∫ +∞

0

e–rT rα dr
γ 2r2α + r2

λ2
1

+ 1
. (2.9)

Proof See [23]. �

Lemma 2.5 From (2.7) of Lemma 2.4 we get

∫ T

0
Hp(α, T – s) ds ≥

∫ T

0

C(γ ,α,λ1)
λp

ds =
TC(γ ,α,λ1)

λp
. (2.10)

Next, from (2.10) by putting inft∈[0,T] |χε(t)| = χ0 we have

1
∫ T

0 Hp(α, T – s)χε(s) ds
≤ 1

χ0

1
∫ T

0 Hp(α, T – s)) ds
≤ λp

χ0TC(γ ,α,λ1)
. (2.11)

2.2 The ill-posedness of the inverse source problem
Theorem 2.6 The inverse source problem is ill-posed.

Proof Define the linear operator K : L2(Ω) → L2(Ω) by

Kf (x) =
∞∑

p=1

[∫ T

0
Hp(α, s)χ (s) ds

]
〈
f (x),φp(x)

〉
φp(x)

=
∫

Ω

k(x,ω)f (ω) dω, (2.12)
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where

k(x,ω) =
∞∑

p=1

[∫ T

0
Hp(α, s)χ (s) ds

]

φp(x)φp(ω).

Since k(x,ω) = k(ω, x), K is a self-adjoint operator. Next, we will prove its compactness.
Define the finite rank operators KN by

KN f (x) =
N∑

p=1

[∫ T

0
Hp(α, s)χ (s) ds

]
〈
f (x),φp(x)

〉
φp(x). (2.13)

Then from (2.12) and (2.13) we have

‖KN f – Kf ‖2
L2(Ω) =

∞∑

p=N+1

[∫ T

0
Hp(α, T – s)χ (s) ds

]2∣
∣
〈
f (x),φp(x)

〉∣
∣2

≤ ‖χ‖2
C([0,T])

∞∑

p=N+1

D2

λ2
p

T2α–1

2α – 1
∣
∣
〈
f (x),φp(x)

〉∣
∣2

≤ ‖χ‖2
C([0,T])

D2

λ2
N

T2α–1

2α – 1

∞∑

p=N+1

∣
∣
〈
f (x),φp(x)

〉∣
∣2.

This implies that

‖KN f – Kf ‖L2(Ω) ≤ ‖χ‖C[0,T]
DTα– 1

2

λN
√

2α – 1
‖f ‖L2(Ω). (2.14)

Therefore ‖KN – K‖ → 0 in the sense of operator norm in L(L2(Ω); L2(Ω)) as N → ∞.
Also, K is a compact operator. Next, the singular values for the linear self-adjoint compact
operator K are

ψp =
∫ T

0
Hp(α, T – s)χ (s) ds, (2.15)

and the corresponding eigenvectors φp form an orthonormal basis in L2(Ω). From (2.12),
the inverse source problem we introduced can be formulated as the operator equation

Kf (x) = g(x), (2.16)

and by Kirsch [24] we conclude that it is ill-posed. To illustrate ill-posed problems, we
present an example. Let us choose the input final data gk(x) = φk (x)√

λk
. By (2.5) the source

term corresponding to gk is

f k(x) =
∞∑

p=1

〈gk(x),φp(x)〉
∫ T

0 Hp(α, T – s)χ (s) ds
φp(x) =

∞∑

p=1

〈 φk (x)√
λk

,φp(x)〉
∫ T

0 Hp(α, T – s)χ (s) ds
φp(x)

=
φk(x)√

λk
∫ T

0 Hp(α, T – s)χ (s) ds
. (2.17)
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Let us choose the other input final data g = 0. By (2.5) the source term corresponding to g
is f = 0. The error in L2-norm between two input final data is

∥
∥gk – g

∥
∥

L2(Ω) =
1√
λk

. (2.18)

Therefore

lim
k→+∞

∥
∥gk – g

∥
∥

L2(Ω) = lim
k→+∞

1√
λk

= 0, (2.19)

and the error in L2 norm between the corresponding source terms is

∥
∥f k – f

∥
∥2

L2(Ω) =
1

λk(
∫ T

0 Hp(α, T – s)χ (s) ds)2
. (2.20)

Hence

∥
∥f k – f

∥
∥

L2(Ω) =
1√

λk
∫ T

0 Hp(α, T – s)χ (s) ds
. (2.21)

From (2.21), combined with Lemma 2.4, we have

∫ T

0
Hp(α, T – s)χ (s) ds ≤ ‖χ‖C[0,T]

D
λN

Tα– 1
2√

2α – 1
. (2.22)

We obtain

∥
∥f k – f

∥
∥

L2(Ω) ≥
√

λk

D‖χ‖C[0,T]

(√
2α – 1
Tα– 1

2

)

. (2.23)

Since α > 1
2 , this leads to

lim
k→+∞

∥
∥f k – f

∥
∥

L2(Ω) > lim
k→+∞

√
λk

D‖χ‖C[0,T]

(√
2α – 1
Tα– 1

2

)

= +∞. (2.24)

Combining (2.19) and (2.24), we conclude that the inverse source problem is ill-posed. �

2.3 Conditional stability of source term f
In this section, we introduce a conditional stability estimate of this inverse source problem.
We impose the following a priori bound on the exact solution f (x):

‖f ‖Hk (Ω) ≤ E, (2.25)

where E and k are positive constants. We have the following:

Theorem 2.7 Let f ∈ Hk(Ω) be such that ‖f ‖Hk (Ω) ≤ E for some E > 0. Then we have the
estimate

‖f ‖L2(Ω) ≤ C(k, T)E
1

k+1 ‖g‖
k

k+1
L2(Ω),
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where

C(k, T) =
1

χ
k

k+1
0 T

k
k+1 C

k
k+1 (γ ,α,λ1)

. (2.26)

Proof From (2.5), using the Hölder inequality, we have

‖f ‖2
L2(Ω) =

∞∑

p=1

∣
∣
∣
∣

〈g(x),φp(x)〉
∫ T

0 Hp(α, T – s)χ (s) ds

∣
∣
∣
∣

2

=
∞∑

p=1

|〈g(x),φp(x)〉| 2
k+1 |〈g(x),φp(x)〉| 2k

k+1

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

≤
[ ∞∑

p=1

|〈g(x),φp(x)〉|2
| ∫ T

0 Hp(α, T – s)χ (s) ds|2k+2

] 1
k+1

[ ∞∑

p=1

∣
∣
〈
g(x),φp(x)

〉∣
∣2
] k

k+1

≤
[ ∞∑

p=1

|〈f (x),φp(x)〉|2
| ∫ T

0 Hp(α, T – s)χ (s) ds|2k

] 1
k+1

‖g‖
2k

k+1
L2(Ω). (2.27)

Using Lemma 2.5, we have

∞∑

p=1

|〈f (x),φp(x)〉|2
| ∫ T

0 Hp(α, T – s)χ (s) ds|2k
≤

∞∑

p=1

λ2k
p |〈f (x),φp(x)〉|2

χ2k
0 T2kC2k(γ ,α,λ1)

=
‖f ‖2

Hk (Ω)

χ2k
0 T2kC2k(γ ,α,λ1)

. (2.28)

Combining (2.27) and (2.28), we get

‖f ‖2
L2(Ω) ≤

‖f ‖
2

k+1
Hk (Ω)

χ
2k

k+1
0 T

2k
k+1 C

2k
k+1 (γ ,α,λ1)

‖g‖
2k

k+1
L2(Ω)

≤ C2(k, T)E
2

k+1 ‖g‖
2k

k+1
L2(Ω), (2.29)

where C(k, T) = 1

χ

k
k+1

0 T
k

k+1 C
k

k+1 (γ ,α,λ1)
is a constant depending on C(γ ,α,λ1). �

2.4 The Tikhonov regularization method
Applying the Tikhonov regularization method, we solve the inverse source problem, which
minimizes the function f in the following quantity in L2(Ω):

‖Kf – g‖2
L2(Ω) + β2‖f ‖2

L2(Ω), (2.30)

and its minimized value fβ satisfies

K∗Kfβ (x) + β2fβ (x) = K∗g(x). (2.31)
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Due to singular value decomposition for compact self-adjoint operator K as in (2.15), we
have

fβ (x) =
∞∑

p=1

∫ T
0 Hp(α, T – s)χ (s) ds

β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2

〈
g(x),φp(x)

〉
φp(x). (2.32)

If the observed data (χε(t), gε(x)) of (χ (t), g(x)) are with noise level ε, that is,

∥
∥g – gε

∥
∥

L2(Ω) ≤ ε,
∥
∥χ – χε

∥
∥

C[0,T] ≤ ε, (2.33)

then we can present a regularized solution as

f ε
β (x) =

∞∑

p=1

∫ T
0 Hp(α, T – s)χε(s) ds

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

〈
gε(x),φp(x)

〉
φp(x). (2.34)

3 The choices of regularization parameter β and convergence results
In this section, we consider an a priori strategy and a posteriori choice rule to find the reg-
ularization parameter. Under each choice of the regularization parameter, we can obtain
a convergence estimate.

3.1 An a priori choice rule
Choose the regularization parameter β . The next theorem shows that the choice β is valid
under suitable assumptions.

Theorem 3.1 Let f be as in (2.5), and let the noise assumption (2.33) and the a priori con-
dition (2.25) hold. Then the error estimate between the exact solution and its regularized
solution is as follows:

(a) If 0 < k ≤ 1, then by choosing β = ( ε
E )

1
k+1 we have the convergence estimate

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω)

≤
[

5E
1

k+1

4|χ0|λk
1

+
1
2

+

√
(

1
2|χ0|TC(γ ,α,λ1)

)2

+ 1
]

E
1

k+1 ε
k

k+1 . (3.1)

(b) If k > 1, then by choosing β = ( ε
E ) 1

2 we have the convergence estimate

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω) ≤
[

5E 1
2

4|χ0|λk
1

+
1
2

+
λ1–k

1
2|χ0|TC(γ ,α,λ1)

]

E
1
2 ε

1
2 . (3.2)

We first give two lemmas.

Lemma 3.2 Assume that (2.33) holds. Then we have the estimate

∥
∥fβ (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ 5ε‖f ‖L2(Ω)

4|χ0| +
ε

2β
. (3.3)
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Proof From (2.32) and (2.34) we have

fβ (x) – f ε
β (x) =

∞∑

p=1

( ∫ T
0 Hp(α, T – s)χ (s) ds

β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2

–
∫ T

0 Hp(α, T – s)χε(s) ds

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)
〈
g(x),φp(x)

〉
φp(x)

+
∞∑

p=1

∫ T
0 Hp(α, T – s)χε(s) ds

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

〈
g(x) – gε(x),φp(x)

〉
φp(x)

=
∞∑

p=1

β2 ∫ T
0 Hp(α, T – s)(χ (s) – χε(s)) ds

(β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2)(β2 + | ∫ T

0 Hp(α, T – s)χε(s) ds|2)

× 〈
g(x),φp(x)

〉
φp(x)

+
∞∑

p=1

∫ T
0 Hp(α, T – s)(χ (s) – χε(s)) ds| ∫ T

0 Hp(α, T – s)χ (s) ds|
β2 + | ∫ T

0 Hp(α, T – s)χ (s) ds|2

× | ∫ T
0 Hp(α, T – s)χε(s) ds|

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

〈
g(x),φp(x)

〉
φp(x)

+
∞∑

p=1

∫ T
0 Hp(α, T – s)χε(s) ds

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

〈
g(x) – gε(x),φp(x)

〉
φp(x)

≤Q1 + Q2 + Q3, (3.4)

where

Q1 =
∞∑

p=1

β2 ∫ T
0 Hp(α, T – s)(χ (s) – χε(s)) ds

(β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2)(β2 + | ∫ T

0 Hp(α, T – s)χε(s) ds|2)

× 〈
g(x),φp(x)

〉
φp(x),

Q2 =
∞∑

p=1

∫ T
0 Hp(α, T – s)(χ (s) – χε(s)) ds| ∫ T

0 Hp(α, T – s)χ (s) ds|
β2 + | ∫ T

0 Hp(α, T – s)χ (s) ds|2

× | ∫ T
0 Hp(α, T – s)χε(s) ds|

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

〈
g(x),φp(x)

〉
φp(x),

Q3 =
∞∑

p=1

∫ T
0 Hp(α, T – s)χε(s) ds

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

〈
g(x) – gε(x),φp(x)

〉
φp(x).

We continue estimating the error in three steps.
Step 1. Estimate of ‖Q1‖L2(Ω). Using the inequality a2 + b2 ≥ 2ab, a, b ≥ 0, we get

‖Q1‖2
L2(Ω)

≤
∞∑

p=1

[
β2 ∫ T

0 Hp(α, T – s)(χ (s) – χε(s)) ds

(β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2)(β2 + | ∫ T

0 Hp(α, T – s)χε(s) ds|2)

]2

× ∣
∣
〈
g(x),φp(x)

〉∣
∣2
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≤
∞∑

p=1

|β2 ∫ T
0 Hp(α, T – s)(χ (s) – χε(s)) ds|2

16β4| ∫ T
0 Hp(α, T – s)χ (s) ds|2| ∫ T

0 Hp(α, T – s)χε(s) ds|2
∣
∣
〈
g(x),φp(x)

〉∣
∣2

≤
∞∑

p=1

‖χ – χε‖2
C[0,T]|

∫ T
0 Hp(α, T – s) ds|2

16|χ0|2|
∫ T

0 Hp(α, T – s) ds|2
|〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

≤ ‖χ – χε‖2
C[0,T]

16|χ0|2
∞∑

p=1

∣
∣
〈
f (x),φp(x)

〉∣
∣2 =

‖χ – χε‖2
C[0,T]

16|χ0|2 ‖f ‖2
L2(Ω). (3.5)

Hence

‖Q1‖L2(Ω) ≤ ‖χ – χε‖C[0,T]‖f ‖L2(Ω)

4|χ0| ≤ ε‖f ‖L2(Ω)

4|χ0| . (3.6)

Step 2. Estimate of ‖Q2‖L2(Ω). We have

‖Q2‖2
L2(Ω)

≤
∞∑

p=1

[∫ T
0 Hp(α, T – s)(χ (s) – χε(s)) ds| ∫ T

0 Hp(α, T – s)χ (s) ds|
β2 + | ∫ T

0 Hp(α, T – s)χ (s) ds|2

× | ∫ T
0 Hp(α, T – s)χε(s) ds|

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

]2∣
∣
〈
g(x),φp(x)

〉∣
∣2

≤
∞∑

p=1

(
∫ T

0 Hp(α, T – s)(χ (s) – χε(s)) ds)2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2| ∫ T

0 Hp(α, T – s)χε(s) ds|2
∣
∣
〈
g(x),φp(x)

〉∣
∣2

≤
∞∑

p=1

‖χ – χε‖2
C[0,T](

∫ T
0 Hp(α, T – s) ds)2

| ∫ T
0 Hp(α, T – s)χε(s) ds|2

|〈g(x),φp(x)〉|2
| ∫ T

0 Hp(α, T – s)χ (s) ds|2

≤
∞∑

p=1

‖χ – χε‖2
C[0,T]

|χ0|2
|〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

≤ ‖χ – χε‖2
C[0,T]

|χ0|2
∞∑

p=1

∣
∣
〈
f (x),φp(x)

〉∣
∣2 =

‖χ – χε‖2
C[0,T]

|χ0|2 ‖f ‖2
L2(Ω).

Hence

‖Q2‖L2(Ω) ≤ ‖χ – χε‖C[0,T]

|χ0| ‖f ‖L2(Ω) ≤ ε‖f ‖L2(Ω)

|χ0| . (3.7)

Step 3. Estimate of ‖Q3‖L2(Ω).

‖Q3‖2
L2(Ω) ≤

∞∑

p=1

( ∫ T
0 Hp(α, T – s)χε(s) ds

β2 + (
∫ T

0 Hp(α, T – s)χε(s) ds)2

〈
g(x) – gε(x),φp(x)

〉
)2

≤ 1
4β2

∞∑

p=1

∣
∣
〈
g(x) – gε(x),φp(x)

〉∣
∣2

=
1

4β2

∥
∥g – gε

∥
∥2

L2(Ω) ≤ ε2

4β2 . (3.8)
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Hence

‖Q3‖L2(Ω) ≤ ε

2β
. (3.9)

Combining (3.6), (3.7), and (3.9), we get

∥
∥fβ (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ ‖Q1‖L2(Ω) + ‖Q2‖L2(Ω) + ‖Q3‖L2(Ω)

≤ ε‖f ‖L2(Ω)

4|χ0| +
ε‖f ‖L2(Ω)

|χ0| +
ε

2β

=
5ε‖f ‖L2(Ω)

4|χ0| +
ε

2β
. (3.10)

The proof of Lemma 3.2 is completed. �

To obtain the boundedness of bias, we usually need some a priori condition. By
Tikhonov’s theorem we can restrict L–1 to the continuous image of a compact set M.
Thus we assume that f is in a compact subset of L2(Ω). From now on, we assume that
‖f ‖H2(Ω) ≤ E for k > 0.

Lemma 3.3 Let f ∈ Hk(Ω) and suppose that ‖f ‖Hk (Ω) ≤ E for some E > 0. Then we have
the estimate

∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) ≤
⎧
⎨

⎩

Eβk
√

( 1
2|χ0|TC(γ ,α,λ1) )2 + 1, 0 < k < 1,

Eλ1–k
1

2|χ0|TC(γ ,α,λ1)β , k ≥ 1.
(3.11)

Proof From (2.32) and (2.5), using the Parseval identity, we get

∥
∥f (x) – fβ (x)

∥
∥2

L2(Ω)

=
+∞∑

p=1

β4|〈g(x),φp(x)〉|2
| ∫ T

0 Hp(α, T – s)χ (s) ds|2[β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2]2

=
+∞∑

p=1

β4λ–2k
p λ2k

p |〈g(x),φp(x)〉|2
| ∫ T

0 Hp(α, T – s)χ (s) ds|2[β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2]2

≤ sup
p∈N

∣
∣M(p)

∣
∣2

+∞∑

p=1

λ2k
p |〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

= sup
p∈N

∣
∣M(p)

∣
∣2‖f ‖2

Hk (Ω). (3.12)

Hence

M(p) =
β2λ–k

p

β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2 . (3.13)
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Next, we estimate M(p). Applying the Cauchy inequality and Lemma 2.5, for χ ≥ χ0, we
get

M(p) ≤ β2λ–k
p

2β
∫ T

0 H(p, T – s)χ (s) ds
≤ βλ1–k

p

2|χ0|TC(γ ,α,λ1)
. (3.14)

We consider two cases.
Case 1. If k ≥ 1, then

λ1–k
p =

1
λk–1

p
≤ 1

λk–1
1

= λ1–k
1 . (3.15)

Combining (3.12), (3.13), and (3.14), we obtain

∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) ≤ βλ1–k
1

2|χ0|TC(γ ,α,λ1)
‖f ‖Hk (Ω) ≤ Eλ1–k

1
2|χ0|TC(γ ,α,λ1)

β . (3.16)

Case 2. 0 < k < 1. Choose any q ∈ (0, 1). We N = L1 ∪L2, where

L1 =
{

p ∈N,λ1–k
p ≤ β–q}, L2 =

{
p ∈N,λ1–k

p > β–q}. (3.17)

From (3.12) and (3.17) we have:

∥
∥f (x) – fβ (x)

∥
∥2

L2(Ω)

= sup
p∈L1

[
βλ1–k

p

2|χ0|TC(γ ,α,λ1)

]2 ∑

p∈L1

λ2k
p
∣
∣
〈
f (x),φp(x)

〉∣
∣2

+
∑

p∈L2

[
β2λ–k

p

β2 + | ∫ T
0 H(p, T – s)χ (s) ds|2

]2

λ2k
p
∣
∣
〈
f (x),φp(x)

〉∣
∣2

≤
[

1
2|χ0|TC(γ ,α,λ1)

]2

β2–2q‖f ‖2
Hk (Ω) + sup

p∈L2

λ–2k
p

L2∑

p=1

λ2k
p
∣
∣
〈
f (x),φp(x)

〉∣
∣2

≤
[

1
2|χ0|TC(γ ,α,λ1)

]2

β2–2q‖f ‖2
Hk (Ω) + β

2qk
1–k ‖f ‖2

Hk (Ω). (3.18)

Choosing q = 1 – k, from ‖f (x)‖Hk (Ω) ≤ E we have

∥
∥f (x) – fβ (x)

∥
∥2

L2(Ω) ≤
(

1
2|χ0|TC(γ ,α,λ1)

)2

β2kE2 + β2kE2

= β2kE2
((

1
2|χ0|TC(γ ,α,λ1)

)2

+ 1
)

. (3.19)

This implies that

∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) ≤ βkE

√
(

1
2|χ0|TC(γ ,α,λ1)

)2

+ 1. (3.20)
�

Now we continue to prove Theorem 3.1.



Binh et al. Advances in Difference Equations        (2019) 2019:331 Page 13 of 20

If 0 ≤ k ≤ 1, then from Lemmas 3.2 and 3.3 we have

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω)

≤ ∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) +
∥
∥fβ (x) – f ε

β (x)
∥
∥

L2(Ω)

≤ 5ε‖f ‖L2(Ω)

4|χ0| +
ε

2β
+ βkE

√
(

1
2|χ0|TC(γ ,α,λ1)

)2

+ 1. (3.21)

By choosing the parameter regularization

β =
(

ε

E

) 1
k+1

and ‖f ‖L2(Ω) ≤ 1
λk

1
‖f ‖Hk (Ω) ≤ E

λk
1

we obtain

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω)

≤ 5E
4|χ0|λk

1
ε +

1
2

E
1

k+1 ε
k

k+1 + E
1

k+1 ε
k

k+1

√
(

1
2|χ0|TC(γ ,α,λ1)

)2

+ 1

≤
[

5E
k

k+1 ε
1

k+1

4|χ0|λk
1

+
1
2

+

√
(

1
2|χ0|TC(γ ,α,λ1)

)2

+ 1
]

E
1

k+1 ε
k

k+1 . (3.22)

If k > 1, then from Lemmas 3.2 and 3.3 we have the estimate

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ ∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) +
∥
∥fβ (x) – f ε

β (x)
∥
∥

L2(Ω)

≤ 5ε‖f ‖L2(Ω)

4|χ0| +
1
2

ε

β
+

βλ1–k
1

2|χ0|TC(γ ,α,λ1)
E. (3.23)

Since β = ( ε
E ) 1

2 and ‖f ‖L2(Ω) ≤ 1
λk

1
‖f ‖Hk (Ω) ≤ E

λk
1

, we have

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ 5E
4|χ0|λk

1
ε +

1
2

E
1
2 ε

1
2 +

λ1–k
1

2|χ0|TC(γ ,α,λ1)
E

1
2 ε

1
2

≤
[

5E 1
2 ε

1
2

4|χ0|λγ
1

+
1
2

+
λ1–k

1
2|χ0|TC(γ ,α,λ1)

]

E
1
2 ε

1
2 . (3.24)

3.2 An a posteriori parameter choice
In this section, we consider the choice of the a posteriori regularization parameter in Mo-
rozov’s discrepancy principle (see in [1]). Suppose τ > 1 is a given fixed constant.

Choose the regularization parameter β = β(ε) as the solution of the equation

∥
∥Kf ε

β – gε
∥
∥

L2(Ω) = τε, (3.25)

where 0 < τε ≤ ‖gε‖L2(Ω).

Lemma 3.4 Set P(β) = ‖Kf ε
β – gε‖L2(Ω). Then we have:

(a) P(β) is a continuous function.
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(b) P(β) → 0 as β → 0.
(c) P(β) → ‖gε‖L2(Ω) as β → ∞.
(d) P(β) is a strictly decreasing function for any m ∈ (0, +∞).

Lemma 3.4 shows that there exists a unique solution of equation (3.25).

Lemma 3.5 If (3.25) holds, then the regularization parameter β satisfies

β ≥ 2λk
1|χ0|(τ – 1)ε

|χ1|E . (3.26)

Proof By (2.34), for every gε ∈ H2(Ω) ∩ H1
0 (Ω), we have

∥
∥Kf ε

β – gε
∥
∥2

L2(Ω) =
∞∑

p=1

(
β2

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)2∥
∥gε

∥
∥2

L2(Ω). (3.27)

Using (3.25), we obtain

τε =
∞∑

p=1

(
β2

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)
∥
∥gε

∥
∥

L2(Ω). (3.28)

We have

∥
∥gε

∥
∥

L2(Ω) ≤ ∥
∥gε – g

∥
∥

L2(Ω) + ‖g‖L2(Ω). (3.29)

Combining (3.28), (3.29), and β2

β2+| ∫ T
0 Hp(α,T–s)χ (s) ds|2 < 1, we obtain

τε ≤ ∥
∥gε – g

∥
∥

L2(Ω) +
∞∑

p=1

(
β2

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)

‖g‖L2(Ω). (3.30)

Because τ > 1, by (1.2) we get

(τ – 1)ε ≤
∞∑

p=1

(
β2

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)

‖g‖L2(Ω). (3.31)

On the other hand, we have

∞∑

p=1

(
β2

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)2

‖g‖2
L2(Ω)

≤
∞∑

p=1

(
β2 ∫ T

0 Hp(α, T – s)χ (s) ds

[β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2]λk

p

)2 λ2k
p |〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

≤
∞∑

p=1

(
β2 ∫ T

0 Hp(α, T – s)χ (s) ds

[β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2]λk

p

)2 λ2k
p |〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

≤
∞∑

p=1

E(p)2 λ2k
p |〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2 , (3.32)
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where E(p) = β2 ∫ T
0 Hp(α,T–s)χ (s) ds

(β2+| ∫ T
0 Hp(α,T–s)χε (s) ds|2)λk

p
. We estimate E(p) as follows:

E(p) =
β2 ∫ T

0 Hp(α, T – s)χ (s) ds

(β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2)λk

p

≤ β2 ∫ T
0 Hp(α, T – s)χ (s) ds

2λk
pβ

∫ T
0 Hp(α, T – s)χε(s) ds

≤ β|χ1|
2λk

1|χ0|
. (3.33)

Therefore, combining (3.31), (3.32), and (3.33), we conclude that

(τ – 1)ε ≤ β|χ1|
2λk

1|χ0|
‖f ‖Hk (Ω) ≤ β|χ1|E

2λk
1|χ0|

. (3.34)

Hence we obtain

β ≥ 2λk
1|χ0|(τ – 1)ε

|χ1|E (3.35)

which gives the required result. �

Theorem 3.6 Suppose the a priori conditions (1.2) and (2.25) hold and the regularization
parameter β is given by (3.25). Then we have the error estimate

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω)

≤ C(k, T)E
1

k+1 (τ + 1)
k

k+1 ε
k

k+1 +
5εE

4|χ0|λk
1

+
|χ1|E

4λk
1|χ0|(τ – 1)

. (3.36)

Proof By the triangle inequality we have

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ ∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) +
∥
∥fβ (x) – f ε

β (x)
∥
∥

L2(Ω). (3.37)

Using ‖f ‖L2(Ω) ≤ 1
λk

1
‖f ‖Hk (Ω) ≤ E

λk
1

, from Lemmas 3.2 and 3.5 we obtain

∥
∥fβ (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ 5ε‖f ‖L2(Ω)

4|χ0| +
ε

2β
(3.38)

≤ 5εE
4|χ0|λk

1
+

|χ1|E
4λk

1|χ0|(τ – 1)
. (3.39)

For the first part of the right-hand side of (3.37), we have

Kf (x) – Kfβ (x)

=
∞∑

p=1

β2

β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2

〈
g(x),φp(x)

〉
φp(x)

=
∞∑

p=1

β2

β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2

〈
g(x) – gε(x),φp(x)

〉
φp(x)

+
∞∑

p=1

β2

β2 + | ∫ T
0 Hp(α, T – s)χ (s) ds|2

〈
gε(x),φp(x)

〉
φp(x).
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Using (1.2) and (3.25), we get

∥
∥Kf (x) – Kfβ (x)

∥
∥

L2(Ω) ≤ (τ + 1)ε. (3.40)

We also have

∥
∥f (x) – fβ (x)

∥
∥2

Hk (Ω)

=
+∞∑

p=1

(
β2

β2 + | ∫ T
0 Hp(α, T – s)χε(s) ds|2

)2 λ2k
p |〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2

≤
+∞∑

p=1

λ2k
p |〈g(x),φp(x)〉|2

| ∫ T
0 Hp(α, T – s)χ (s) ds|2 = E2.

From Theorem 2.7 we have

∥
∥f (x) – fβ (x)

∥
∥

L2(Ω) ≤ C(k, T)E
1

k+1 (τ + 1)
k

k+1 ε
k

k+1 . (3.41)

Therefore

∥
∥f (x) – f ε

β (x)
∥
∥

L2(Ω) ≤ C(k, T)E
1

k+1 (τ + 1)
k

k+1 ε
k

k+1 +
5εE

4|χ0|λk
1

+
|χ1|E

4λk
1|χ0|(τ – 1)

. �

4 Numerical experiment
In this section, we present a numerical result with Ω = (0, 1). Recall that the problem is
given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu – (1 + γ ∂α
t )�u = f (x)χ (t), (x, t) ∈ Ω × (0, T),

u(x, t) = 0, x ∈ ∂Ω ,

u(x, 0) = u0(x), x ∈ Ω ,

u(x, T) = g(x), x ∈ Ω .

(4.1)

Fix the parameter γ = 1. The couple (gε ,χε) determined below plays the role of measured
data with random noise:

gε(·) = g(·) + ε rand(·),
χε(·) = χ (·) + ε rand(·),

(4.2)

where rand() ∈ (–1, 1) is a random number. We can easily verify the validity of the inequal-
ity

∥
∥g – gε

∥
∥

L2(Ω) ≤ ε,
∥
∥χ – χε

∥
∥

C[0,T] ≤ ε. (4.3)

In (4.1), we have u(x, t) = sin(πx)tα+1. By a simple calculation we get f (x) = sin(πx) and
χ (t) = (α + 1)tα + π2tα+1 + π2(α+1)

Γ (2) t. Combining this with (4.2), we get

χε(s) = (α + 1)sα + π2sα+1 +
π2(α + 1)

Γ (2)
s + ε rand(·),

gε(x) = sin(πx) + ε rand(·).
(4.4)
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Following (2.32), f can be rewritten as

f (x) =
∞∑

p=1

〈g(x),φp(x)〉
∫ T

0 H(p, T – s)χ (s) ds
φp(x). (4.5)

Next, we can rewrite the term H(p, T – s) as follows:

H(p, T – s) =
∫ ∞

0
e–r(T–s)Kp(r) dr = lim

M→∞

∫ M

0
e–r(T–s)Kp(r) dr. (4.6)

Combining (4.5) and (4.6), we get

f (x) =
∞∑

p=1

〈g(x),φp(x)〉
∫ T

0 H(p, T – s)χ (s) ds
φp(x)

=
∞∑

p=1

〈g(x),φp(x)〉
limM→∞

∫ T
0 (

∫ M
0 e–r(T–s)Kp(r) dr)χ (s) ds

φp(x)

with M large enough. However, to be able to calculate, we choose M = 300. Using the
composite Simpson rule of numerical integration in Matlab, we have the following ap-
proximates of f ∈ L2(0, 1):

∫ 1

0
G(x) dx ≈ 1

3Nx

Nx/2∑

k=1

[
G(x2k–2) + 4G(x2k–1) + G(x2k))

]
,

where xk = k
Nx

, x0 = 0, xNx = 1.
Similarly, we have the approximates of f ε

β ∈ L2(0, 1). In practice, it is very difficult to
obtain the value of M for the a priori parameter choice rule without having an exact so-
lution. We thus try taking ‖f ‖H2(Ω) ≤ M with E ≈ 10, leading to βpri = ( ε

E ) 1
2 for the a pri-

ori parameter choice rule and βpos = ε
E(τ ,|χ0|,|χ1|,α) for the a posteriori parameter choice

rule based on τ . Of course, choosing τ and α different, we have different βpos with
E(τ , |χ0|, |χ1|,α) = |χ1|√

2λk
1(τ2–2)|χ0| ‖f ‖H2(Ω).

In general, the whole numerical procedure is summarized in the following steps.
Step 1. As the discretization level, a uniform grid of mesh-point (xi, tj) is used to dis-

cretize the space and time intervals:

xi = i�x, �x =
1

Nx
, i = 0, Nx, tj = j�t, �t =

1
Nt

, j = 0, Nt . (4.7)

Of course, higher values of Nx and Nt will provide more accurate and stable numerical
results. In this example, we take Nx = Nt = 512.

Step 2. Setting f ε
β (xi) = f ε

β ,i and f (xi) = fi, we construct two vectors containing all discrete
values of f ε

β and f , denoted by Λε
β and Ψ , respectively:

Λε
β =

[

f ε
β ,0 f ε

β ,1 · · · f ε
β ,Nx

]
∈R

Nx+1,

Ψ =
[

f0 f1 · · · fNx–1 fNx

]
∈R

Nx+1.
(4.8)
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Table 1 Error estimates between the exact and regularized solutions for τ = 1.6,
α ∈ {0.65, 0.75, 0.85, 0.95}

ε

0.1 0.01 0.001

α = 0.65

Errβpri 0.067015108159255 0.047468902109316 0.041441591914833
Errβpos 0.098997404519191 0.044495631182970 0.040535488144887

α = 0.75

Errβpri 0.084761583230752 0.028602688042509 0.024458932308338
Errβpos 0.053156432449751 0.028231628315379 0.024378712621981

α = 0.85

Errβpri 0.130209694916768 0.021179319121018 0.015465349519243
Errβpos 0.122475577340357 0.024601414585993 0.015239026338959

α = 0.95

Errβpri 0.037276991722023 0.010256764619097 0.008742004875893
Errβpos 0.134846446943958 0.010076794618172 0.009621545639896

Table 2 Error estimates between the exact and regularized solutions for τ = 1.7,
α ∈ {0.65, 0.75, 0.85, 0.95}

ε

0.1 0.01 0.001

α = 0.65

Errβpri 0.111131774567399 0.047840847429863 0.040796403046666
Errβpos 0.104219494973211 0.047373969253811 0.040704667266564

α = 0.75

Errβpri 0.042292184968334 0.032976631468816 0.025075858532616
Errβpos 0.118817648652812 0.028123860184860 0.024430674882777

α = 0.85

Errβpri 0.130527372052525 0.022400766773086 0.014919116713563
Errβpos 0.082465125249822 0.020184320450563 0.014652593632991

α = 0.95

Errβpri 0.045333767253358 0.011699213808191 0.008763429831879
Errβpos 0.044277712631869 0.008651113194266 0.008905712655202

Step 3. Error estimate between the exact and regularized solutions:

E =

√∑Nx
i=0 |f ε

β (xi) – f (xi)|2L2(0,1)
√∑Nx

i=0 |f (xi)|2L2(0,1)

. (4.9)

The numerical results are summarized in Tables 1, 2, 3.
Table 1 show the relative error estimates between the exact solution and its regularized

solution, both a priori and a posteriori, at τ = 1.6 with α = 0.65, α = 0.75, α = 0.85, and
α = 0.95. Table 2 show the relative error estimates between the exact solution and its reg-
ularized solution, both a priori and a posteriori at τ = 1.7 with α = 0.65, α = 0.75, α = 0.85,
and α = 0.95. In Tables 1 and 2, we calculate with values of ε = 10–1, 10–2 and ε = 10–3.
In Table 3, with two values ε = 10–4 and ε = 10–5, τ = 1.8, we choose α = 0.52, α = 0.62,
α = 0.72, α = 0.82, and α = 0.92. In general, we see that the posterior parameter choice
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Table 3 Error estimates between the exact and regularized solutions for τ = 1.8,
α ∈ {0.52, 0.62, 0.72, 0.82, 0.92}

α Errβpri Errβpos

ε = 0.0001

0.52 0.077602462311104 0.077544342977239
0.62 0.047271805697450 0.047192018901400
0.72 0.028296574111022 0.028307819519103
0.82 0.016920298564528 0.016962577259079
0.92 0.010151270279964 0.010110524205060

ε = 0.00001

0.52 0.077472454648553 0.077480496522115
0.62 0.047159886813125 0.047166399068891
0.72 0.028302374036182 0.028294614661429
0.82 0.016904097025631 0.016899494878404
0.92 0.010096298360581 0.010097434555097

rule method converges to the exact solution faster than the prior parameter choice rule
method. We also see that our proposed regularized methods have very good convergence
rates to the exact solution as ε tends to 0.

5 Concluding remarks
In this work, we have studied the inverse source problem for the Rayleigh–Stokes equa-
tion in a second-grade generalized flow. We introduce a Tikhonov regularized method to
establish an approximate solution. Then we prove an upper bound on the rate of conver-
gence of the mean integrated squared error under some a priori condition of the sought
solution. In the future work, we will try to study a numerical method for solving the ill-
posedness of our inverse source problem.
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