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Abstract
In this paper, we study the existence of positive solutions for boundary value
problems of high-order conformable differential equations involving the p-Laplacian
operator. By applying properties of the Green’s function and the Guo–Krasnosel’skii
fixed point theorem, some sufficient conditions for the existence of at least one
positive solution are established. In addition, we demonstrate the effectiveness of the
main result by using an example.
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1 Introduction
In this paper, we study the high-order conformable differential equations with p-Laplacian
operator as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T0+
α (ϕp(T0+

α u(t))) = f (t, u(t), T0+
α u(t)), 0 ≤ t ≤ 1;

u(i)(0) = 0, [ϕp(T0+
α u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[T0+
β u(t)]t=1 = 0, m – 1 < β ≤ m;

[T0+
β (ϕp(T0+

α u(t)))]t=1 = 0, 1 ≤ m ≤ n – 1;

(1.1)

where n – 1 < α ≤ n, ϕp is the p-Laplacian operator, p > 1, and ϕp(s) = |s|p–2s, ϕ–1
p = ϕq,

1
p + 1

q = 1, f ∈ C([0, 1]× [0, +∞)× (–∞, 0], [0, +∞)), Tα is a new fractional derivative called
“the conformable fractional derivative”, it was defined by Khalil in 2014 (see [1]). Namely,
for a function f : (0,∞) → R, the conformable fraction derivative of order 0 < α < 1 of f at
t > 0 was defined by Tαf (t) = limε→0

f (t+εt1–α )–f (t)
ε

, and the fraction derivative at 0 is defined
as (Tf )(0) = limε→0+ (Tαf )(t). The new definition satisfies the major properties of the usual
derivative. By means of the properties of the Green’s function and fixed point theorems on
cone, we establish conditions that ensure the existence of positive solutions for boundary
value problems (1.1).
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In general, two types of fractional derivatives, namely Riemann–Liouville and Caputo,
are famous. Mathematicians prefer the Riemann–Liouville fractional derivative because
it is amenable to many mathematical manipulations, while physicists and engineers prefer
the Caputo fractional derivative. In addition, there are also two discrete definitions called
Grunwald–Letnikov fractional derivative and Riesz fractional derivative which are used
in numerical mathematics. We know that all fractional derivative definitions satisfy the
property that the fractional derivative is linear, this is the only property inherited from
the first derivative by all of the fractional derivative definitions. However, the Riemann–
Liouville derivative and the Caputo derivative do not obey the Leibniz rule and chain rule,
which sometimes prevents us from applying these derivatives to the ordinary physical
system with standard Newton derivative. The following are some of the setbacks of the
Riemann –Liouville and Caputo fractional derivative definitions:

(i) The Riemann–Liouville derivative does not satisfy R
aDα

t (1) = 0 (C
a Dα

t (1) = 0 for the
Caputo derivative) if α is not a natural number;

(ii) The Riemann–Liouville and Caputo derivatives do not satisfy the known formula of
the derivative of the product of two functions: R(C)

a Dα
t (fg) = f R(C)

a Dα
t (g) + gR(C)

a Dα
t (f );

(iii) The Riemann–Liouville and Caputo derivatives do not satisfy the known formula

of the derivative of the quotient of two functions: R(C)
a Dα

t ( f
g ) = gR(C)

a Dα
t (f )–f R(C)

a Dα
t (g)

g2 ;
(iv) The Riemann–Liouville and Caputo derivatives do not satisfy the chain rule:

R(C)
a Dα

t (f ◦ g) = f (α)(g(t))g(α)(t);
(v) The Riemann–Liouville and Caputo derivatives do not satisfy:

R(C)
a Dα

t
R(C)
a Dβ

t = R(C)
a Dα+β

t in general;
(vi) The Caputo derivative definition assumes that the function is differentiable.

On the contrary, the conformable fractional derivative is a well-behaved simple fractional
derivative definition depending just on the basic limit definition of the derivative. The new
definition seems to be a natural extension of the usual derivative, and it satisfies the first
four properties mentioned above and the mean value theorem. Recently, in [2], the author
pointed out a major flaw of “the conformable fractional derivative” defined in [3] and un-
covered the real source of this conformability, that is, the conformable α-derivative is not
a fractional derivative, the term “conformable” is supposedly attributed to the properties
this proposed definition provides.

Fractional calculus has been applied to various areas of engineering, physics, chemistry,
and biology. There are a large number of literature works and monographs that deal with
all sorts of problems in fractional calculus (see [4–12]). On the other hand, for studying the
turbulent flow in a porous medium, Leibenson [13] introduced the differential equation
models with p-Laplacian operator. So, differential equations with p-Laplacian operator
have since been applied in many fields of physics and natural phenomena, see [14–20]
and the references therein.

Lu et al. [16] studied the following Riemann–Liouville fractional differential equations
boundary problems with p-Laplacian operator:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
0+(ϕp(Dα

0+u(t))) = f (t, u(t)), 0 ≤ t ≤ 1;

u(0) = u′(0) = u′(1) = 0;

Dα
0+u(0) = Dα

0+u(1) = 0,
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where 2 < α ≤ 3, ϕp(s) = |s|p–2s, p > 1, ϕ–1
p = ϕq, 1

p + 1
q = 1, Dα

0+, Dβ
0+ are standard

Riemann–Liouville fractional derivatives. By the properties of Green’s function, the Guo–
Krasnosel’skii fixed-point theorem on cone, and the upper and lower solutions method,
some new results on the existence of positive solutions were obtained.

Chen et al. [17] investigated the Caputo fractional differential equation boundary value
problems with p-Laplacian operator at resonance:

⎧
⎨

⎩

Dβ
0+(ϕp(Dα

0+x(t))) = f (t, x(t), Dα
0+x(t)), t ∈ [0, 1];

Dα
0+x(0) = Dα

0+x(1) = 0,

where 0 < α, β ≤ 1, 1 < α + β ≤ 2, Dα
0+ and Dβ

0+ are standard Caputo fractional derivatives.
By using the coincidence degree theory, the existence of solutions for the boundary value
problem was obtained.

In [20], Liu and Jia studied the following integral boundary value problems of fractional
p-Laplacian equation with mixed fractional derivatives:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+(ϕp(CDβ

0+u(t))) + f (t, u(t), CDβ
0+u(t)) = 0, 0 ≤ t ≤ 1;

CDβ
0+(0) = u′(0) = 0, u(0) =

∫ 1
0 g0(s)u(s) ds;

Dα–1
0+ (ϕp(CDβ

0+u(1))) =
∫ 1

0 g1(s)u(s)ϕp(CDβ
0+u(s)) ds,

where ϕp is the p-Laplacian operator, 1 < α,β ≤ 2, CDβ is the standard Caputo fractional
derivative operator and Dα is the standard Riemann–Liouville fractional derivative op-
erator. By using the generalization of Leggett–Williams fixed point theorem, some new
results on the existence of multiple positive solutions to the boundary value problems
were obtained.

To the best of our knowledge, there are few studies that consider the existence of positive
solutions on high-order fractional differential equations with p-Laplacian operator, espe-
cially for conformable differential equations. In this paper, we investigate the existence
of positive solutions for boundary value problem of conformable differential p-Laplacian
equation systems on n – 1 < α ≤ n by using the Guo–Krasnosel’skii fixed point theorem.
Our work established novel results which contribute to the existing literature and knowl-
edge by improving on existing equations. At the end of this paper, we demonstrate the
effectiveness of the main results by one example.

2 Preliminaries
Definition 2.1 ([1]) The conformable fractional derivative starting from a of a function
f : [a,∞) → R of order 0 < α < 1 is defined by

(
Ta

α f
)
(t) = lim

ε→0

f (t + ε(t – a)1–α) – f (t)
ε

,

when a = 0, we write Tα . If (Tαf )(t) exists on [a, b], then (Ta
α f )(a) = limt→a+ (Ta

α f )(t).
The conformable fractional integral starting from a of a function f : [a,∞) → R is de-

fined by

(
Ia
α f

)
(t) = Ia

1
(
(t – a)α–1f (t)

)
=

∫ t

a

f (x)
(x – a)1–α

dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1).
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Definition 2.2 ([3]) Let α ∈ (n, n + 1), the conformable fractional derivative starting from
a of a function f : [a, +∞) → R of order α, where f (n)(t) exists, is defined by

(
Ta

α f
)
(t) =

(
Ta

α–nf (n)(t)
)
.

Let α ∈ (n, n + 1), the conformable fractional integral of order α starting at a is defined
by

(
Ia
α f

)
(t) = Ia

n+1
(
(t – a)α–n–1f (t)

)

=
1
n!

∫ t

a
(t – x)n(x – a)α–n–1f (x) dx.

Definition 2.3 ([14]) Let p > 1, the p-Laplacian operator is given by

ϕp(x) = |x|p–2x.

Obviously, ϕp is continuous, increasing, invertible and its inverse operator is ϕq, where
q > 1 is a constant such that 1

p + 1
q = 1.

Lemma 2.1 ([1]) Let α ∈ (n, n + 1] and f be a continuous function defined in [a, +∞), one
has TαIαf (t) = f (t) for t > a.

Lemma 2.2 ([3]) Let α ∈ (n, n + 1] and f : [a, +∞) be (n + 1) times differentiable for t > a,
we have

Ia
αTa

α f (t) = f (t) –
n∑

k=0

f (k)(a)(t – a)k

k!
.

Lemma 2.3 Let g ∈ C[0, 1] be given, then the conformable fractional boundary value prob-
lem

⎧
⎪⎪⎨

⎪⎪⎩

T0+
α u(t) + g(t) = 0, n – 1 < α ≤ n;

u(i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[T0+
β u(t)]t=1 = 0, m – 1 < β ≤ m, 1 ≤ m ≤ n – 1;

(2.1)

has a unique positive solution

u(t) =
∫ 1

0
G(t, s)g(s) ds, (2.2)

where

G(t, s) =
1

Γ (n)

⎧
⎨

⎩

sα–n[(1 – s)n–m–1tn–1 – (t – s)n–1], 0 ≤ s ≤ t ≤ 1;

(1 – s)n–m–1sα–ntn–1, 0 ≤ t ≤ s ≤ 1;
(2.3)

is the Green’s function for this problem.
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Proof In view of Lemma 2.2, Definition 2.2, and the boundary values, we have

I0+
α T0+

α u(t) = u(t) – u(0) – u′(0)t –
u′′(0)

2!
t2 – · · ·

–
u(n–2)(0)
(n – 2)!

tn–2 –
u(n–1)(0)
(n – 1)!

tn–1

= u(t) –
u(n–1)(0)
(n – 1)!

tn–1,

I0+
α g(t) =

1
(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds,

so we have

u(t) =
u(n–1)(0)
(n – 1)!

tn–1 –
1

(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds.

Assume 1 < β ≤ 2, from the above equation, we have

T0+
β u(t) = T0+

β–1

[
d
dt

u(n–1)(0)
(n – 1)!

tn–1 –
d
dt

1
(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds

]

=
u(n–1)(0)
(n – 3)!

tn–β–1 –
t2–β

(n – 3)!

∫ t

0
(t – s)n–3sα–ng(s) ds.

Let t = 1 in the above equation, by the condition [T0+
β u(t)]t=1 = 0, we can get

1
(n – 3)!

u(n–1)(0) –
1

(n – 3)!

∫ 1

0
(1 – s)n–3sα–ng(s) ds = 0,

u(n–1)(0) =
∫ 1

0
(1 – s)n–3sα–ng(s) ds.

So, by implication,

u(t) =
1

(n – 1)!

∫ 1

0
(1 – s)n–3sα–ntn–1g(s) ds –

1
(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds.

Through the same logical deduction, when 2 < β ≤ 3, we have

u(t) =
1

(n – 1)!

∫ 1

0
(1 – s)n–4sα–ntn–1g(s) ds –

1
(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds.

If m – 1 < β ≤ m, it is easy to know that

u(t) =
1

(n – 1)!

∫ 1

0
(1 – s)n–m–1sα–ntn–1g(s) ds –

1
(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds

=
∫ 1

0
G(t, s)g(s) ds,
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where

G(t, s) =
1

Γ (n)

⎧
⎨

⎩

sα–n[(1 – s)n–m–1tn–1 – (t – s)n–1], 0 ≤ s ≤ t ≤ 1;

(1 – s)n–m–1sα–ntn–1, 0 ≤ t ≤ s ≤ 1;

is the Green’s function for this problem. �

Lemma 2.4 If g ∈ C[0, 1] is given, then the conformable fractional boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T0+
α (ϕp(T0+

α u(t))) = g(t), n – 1 < α ≤ n;

u(i)(0) = 0, [ϕp(T0+
α u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[T0+
β u(t)]t=1 = 0, m – 1 < β ≤ m;

[T0+
β (ϕp(T0+

α u(t)))]t=1 = 0, 1 ≤ m ≤ n – 1;

(2.4)

has a unique positive solution

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g(τ ) dτ

)

ds, (2.5)

where G(t, s) is given in (2.3).

Proof Applying the operator I0+
α on both sides of (2.4), we have

I0+
α T0+

α

(
ϕp

(
T0+

α u(t)
))

= ϕp
(
T0+

α u(t)
)

–
(
ϕp

(
T0+

α u
))

(0) –
(
ϕp

(
T0+

α u
))′(0)t –

(ϕp(T0+
α u))′′(0)
2!

t2

– · · · –
(ϕp(T0+

α u))(n–2)(0)
(n – 2)!

tn–2 –
(ϕp(T0+

α u))(n–1)(0)
(n – 1)!

tn–1

= ϕp
(
T0+

α u(t)
)

–
(ϕp(T0+

α u))(n–1)(0)
(n – 1)!

tn–1

=
1

(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds,

so we have

ϕp
(
T0+

α u(t)
)

=
(ϕp(T0+

α u))(n–1)(0)
(n – 1)!

tn–1 +
1

(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds.

Assume 1 < β ≤ 2, applying the operator T0+
β on both sides of the equation above, we

have

T0+
β

(
ϕp

(
T0+

α u(t)
))

= T0+
β–1

[
d
dt

(ϕp(T0+
α u))(n–1)(0)
(n – 1)!

tn–1 +
d
dt

1
(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds

]

=
(ϕp(T0+

α u))(n–1)(0)
(n – 3)!

tn–β–1 +
t2–β

(n – 3)!

∫ t

0
(t – s)n–3sα–ng(s) ds.
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Letting t = 1 in the above equation, by the condition [T0+
β (ϕp(T0+

α u(t)))]t=1 = 0, we can get

1
(n – 3)!

(
ϕp

(
T0+

α u
))(n–1)(0) +

1
(n – 3)!

∫ 1

0
(1 – s)n–3sα–ng(s) ds = 0,

(
ϕp

(
T0+

α u
))(n–1)(0) = –

∫ 1

0
(1 – s)n–3sα–ng(s) ds.

By implication, we know

ϕp
(
T0+

α u(t)
)

= –
1

(n – 1)!

∫ 1

0
(1 – s)n–3sα–ntn–1g(s) ds

+
1

(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds.

Through the same logical deduction, if 2 < β ≤ 3, we have

ϕp
(
T0+

α u(t)
)

= –
1

(n – 1)!

∫ 1

0
(1 – s)n–4sα–ntn–1g(s) ds

+
1

(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds.

If m – 1 < β ≤ m, it is easy to know that

ϕp
(
T0+

α u(t)
)

= –
1

(n – 1)!

∫ 1

0
(1 – s)n–m–1sα–ntn–1g(s) ds

+
1

(n – 1)!

∫ t

0
(t – s)n–1sα–ng(s) ds

= –
∫ 1

0
G(t, s)g(s) ds.

Applying the operator ϕq on both sides of the equation above, we get

T0+
α u(t) + ϕq

∫ 1

0
G(t, s)g(s) ds = 0.

Letting g̃(t) = ϕq
∫ 1

0 G(t, s)g(s) ds, thus, the conformable fractional differential equation
boundary value problem (2.4) is equivalent to the problem

⎧
⎪⎪⎨

⎪⎪⎩

T0+
α u(t) + g̃(t) = 0, n – 1 < α ≤ n;

u(i)(0) = 0, 0 ≤ i ≤ n – 2;

[T0+
β u(t)]t=1 = 0, m – 1 < β ≤ m, 1 ≤ m ≤ n – 1.

(2.6)

By using Lemma 2.3, we know that the conformable fractional differential equation bound-
ary value problem (2.6) has a unique solution

u(t) =
∫ 1

0
G(t, s)̃g(s) ds =

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g(τ ) dτ

)

ds. (2.7)

This constitutes the complete proof.
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By Lemma 2.4, we can easily know that

T0+
α u(t) = –ϕq

(∫ 1

0
G(t, s)g(s) ds

)

. (2.8)
�

Lemma 2.5 The Green’s function (2.3) has the following properties:

(1 – s)n–m–1[1 – (1 – s)m]
sα–ntn–1 ≤ Γ (n)G(t, s) ≤ (1 – s)n–m–1sα–ntn–1.

Proof Evidently, the right inequality holds. So, we only need to prove the left inequality.
For convenience, let us put

G1(t, s) =
1

Γ (n)
[
sα–n(1 – s)n–m–1tn–1 – sα–n(t – s)n–1], 0 ≤ s ≤ t ≤ 1;

and

G2(t, s) =
1

Γ (n)
sα–n(1 – s)n–m–1tn–1, 0 ≤ t ≤ s ≤ 1.

If 0 ≤ s ≤ t ≤ 1, then we have 0 ≤ t – s ≤ t – ts = (1 – s)t, and thus (t – s)n–1 ≤ (1 – s)n–1tn–1.
Hence, if 0 ≤ s ≤ t ≤ 1,

Γ (n)G1(t, s) = sα–n[(1 – s)n–m–1tn–1 – (t – s)n–1]

≥ sα–n[(1 – s)n–m–1tn–1 – (1 – s)n–1tn–1]

= (1 – s)n–m–1[1 – (1 – s)m]
sα–ntn–1.

If 0 ≤ t ≤ s ≤ 1, we have

Γ (n)G2(t, s) = sα–n(1 – s)n–m–1tn–1

≥ sα–n[(1 – s)n–m–1 – (1 – s)n–1]tn–1

= (1 – s)n–m–1[1 – (1 – s)m]
sα–ntn–1.

Therefore, the proof is done. �

Lemma 2.6 Let G(t, s) be as given in the statement of Lemma 2.2. Then we find that:
(i) G(t, s) is a continuous function on the unit square [0, 1] × [0, 1];

(ii) G(t, s) ≥ 0 for each (t, s) ∈ [0, 1] × [0, 1].

Proof That property (i) holds is trivial, it is clear that G1(t, s) and G2(t, s) are continuous
on their domains and that G1(s, s) = G2(s, s), whence (i) follows.

By Lemma 2.3, we can know that

G(t, s) ≥ 1
Γ (n)

(1 – s)n–m–1[1 – (1 – s)m]
sα–ntn–1 ≥ 0 ∀s, t ∈ [0, 1].

Thus, (ii) holds, and the proof is completed. �
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Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
that is, x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. θ

denotes the zero element of E.
A nonempty closed convex set P ⊂ E is a cone if it satisfies:
(I1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(I2) x ∈ P, –x ∈ P ⇒ x = θ .
Putting Ṗ := {x ∈ P | x is an interior point of P}, a cone P is said to be solid if its interior

Ṗ is nonempty. Moreover, P is called normal if there exists a constant M such that, for all
x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ M‖y‖; in this case M is called the normality constant of
P. If x1, x2 ∈ E, the set [x1, x2] = {x ∈ E | x1 < x < x2} is called the order interval between x1

and x2.

Lemma 2.7 ([21]) Let P be a normal cone in a real Banach space E, 〈v0, u0〉 ∈ E, and T :
〈v0, u0〉 → 〈v0, u0〉 be an increasing operator. If T is completely continuous, then T has a
fixed point u∗ ∈ 〈v0, u0〉.

Lemma 2.8 ([22]) Let E be an ordered Banach space, P ⊂ E is a cone, and suppose that
Ω1, Ω2 are bounded open sunsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let Φ : P → P be a
completely continuous operator such that either

(i) ‖Φu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Φu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2 or
(ii) ‖Φu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Φu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then Φ has a fixed point in P ∩ Ω2 \ Ω1.

3 Main results
We denote that E = Cα[0, 1] := {u | u ∈ C[0, 1], T0+

α u ∈ C[0, 1]} and endowed with
the norm ‖u‖α = max{‖u‖∞,‖T0+

α u‖∞}, where ‖u‖∞ = max0≤t≤1 |u(t)| and ‖T0+
α u‖∞ =

max0≤t≤1 |T0+
α u(t)|. Then (E,‖ · ‖α) is a Banach space. Let P = {u ∈ E | u(t) ≥ 0, T0+

α u(t) ≤
0}, then P is a cone on the space E.

Define the operator Φ : P → E by

(Φu)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds. (3.1)

For any u ∈ E, it is easy to show that Φu ∈ E and

T0+
α (Φu)(t) = –ϕq

(∫ 1

0
G(t, s)f

(
s, u(s), T0+

α u(s)
)

ds
)

. (3.2)

Obviously, the function u is a positive solution of the boundary value problem (1.1) if
and only if u is a fixed point of the operator Φ in P.

Lemma 3.1 Assume that f ∈ C([0, 1] × [0, +∞) × [–∞, 0), [0, +∞)), then the operator Φ :
P → P is completely continuous.

Proof For given u ∈ P, by (3.1), (3.2), and Lemma 2.6, we can easily obtain (Φu)(t) ∈ P,
which implies that Φ : P → P. Let {uj} ⊂ P and limj→∞ uj = u ∈ P. Then there exists a
constant γ0 > 0 such that ‖uj‖α ≤ γ0 and ‖u‖α ≤ γ0 for j = 1, 2, . . . .
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Since f ∈ C([0, 1] × [0, +∞) × [–∞, 0), [0, +∞)), we can show that, for (t, u, v) ∈ [0, 1] ×
[–γ0,γ0] × [–γ0,γ0],

0 ≤ f (t, u, v) ≤ M0,

where M0 = max(t,u,v)∈[0,1]×[–γ0,γ0]×[–γ0,γ0] f (t, u, v) and

lim
j→∞ f

(
t, uj, T0+

α uj(t)
)

= f
(
t, u, T0+

α u(t)
)

for t ∈ [0, 1].

From Lemma 2.5 and Lemma 2.6, we can get that, for (t, s) ∈ [0, 1] × [0, 1],

0 ≤ 1
Γ (n)

(1 – s)n–m–1[1 – (1 – s)m]
sα–ntn–1 ≤ G(t, s) ≤ 1

Γ (n)
(1 – s)n–m–1sα–ntn–1.

It follows from the Lebesgue dominated convergence theorem, and we have

lim
j→∞(Φuj)(t) = lim

j→∞

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , uj(τ ), T0+

α uj(τ )
)

dτ

)

ds

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
lim

j→∞ G(s, τ )f
(
τ , uj(τ ), T0+

α uj(τ )
)

dτ

)

ds

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds

= (Φu)(t) (3.3)

and

lim
j→∞ T0+

α (Φuj)(t) = –ϕq

(

lim
j→∞

∫ 1

0
G(t, s)f

(
τ , uj(s), T0+

α uj(s)
)

ds
)

= –ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), T0+

α u(s)
)

ds
)

= T0+
α (Φu)(t). (3.4)

Equations (3.3) and (3.4) imply that limj→∞(Φuj)(t) = (Φu)(t) is uniform on [0, 1]. Hence,
Φ is continuous.

Let A ⊂ P be any bounded set, then there exists a constant γ1 > 0 such that ‖u‖α ≤ γ1

for each u ∈ A, which implies that |u(t)| ≤ γ1 and |T0+
α u(t)| ≤ γ1 for t ∈ [0, 1]. Because f is

continuous, there exists M1 > 0 such that 0 ≤ f (t, u(t), T0+
α u(t)) ≤ M1 for t ∈ [0, 1].

Let L = M1
Γ (n)

∫ 1
0 (1 – s)n–m–1sα–n ds, then

0 ≤ ∣
∣(Φu)(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds
∣
∣
∣
∣

≤ ϕq

(
M1

Γ (n)

∫ 1

0
(1 – s)n–m–1sα–n ds

)∫ 1

0
G(t, s) ds

≤
∫ 1

0 (1 – s)n–m–1sα–n ds
Γ (n)

ϕq(L)
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and

0 ≤ ∣
∣T0+

α (Φu)(t)
∣
∣ =

∣
∣
∣
∣–ϕq

(∫ 1

0
G(t, s)f

(
s, u(s), T0+

α u(s)
)

ds
)∣

∣
∣
∣

≤
∣
∣
∣
∣–ϕq

(
M1

Γ (n)

∫ 1

0
(1 – s)n–m–1sα–n ds

)∣
∣
∣
∣

= ϕq(L), (3.5)

which implies that Φ(A) is uniformly bounded in P.
Because G(t, s) is continuous on [0, 1] × [0, 1], then G(t, s) is uniformly continuous.

Hence, for any ε > 0, there exists δ1 > 0, whenever t1, t2 ∈ [0, 1] and |t2 – t1| < δ1,

∣
∣G(t2, s) – G(t1, s)

∣
∣ <

ε

ϕq(L) + 1
.

For any u ∈ P, we have

∣
∣(Φu)(t2) – (Φu)(t1)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t2, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds

–
∫ 1

0
G(t1, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣G(t2, s) – G(t1, s)

∣
∣ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds

≤ ϕq(L)
∫ 1

0

∣
∣G(t2, s) – G(t1, s)

∣
∣ds

< ε.

Let F : P → P, by (Fu)(t) =
∫ 1

0 G(t, s)f (s, u(s), T0+
α u(s)) ds, we have

0 ≤ (Fu)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), T0+

α u(s)
)

ds ≤ L.

In view of the fact that ϕq(x) is continuous on [0, L], we can get ϕq(x) is uniformly contin-
uous on [0, L], and for ε > 0 above, there exists η > 0,

∣
∣ϕq(x2) – ϕq(x1)

∣
∣ < ε, whenever x1, x2 ∈ [0, L] and |x2 – x1| < η. (3.6)

Because G(t, s) is uniformly continuous, so for η > 0, there exists δ2 > 0, whenever t1, t2 ∈
[0, 1], s ∈ [0, 1], and |t2 – t1| < δ2, we have |G(t2, s) – G(t1, s)| < η

M+1 . Hence,

∣
∣(Fu)(t2) – (Fu)(t1)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t2, s)f

(
s, u(s), T0+

α u(s)
)

ds

–
∫ 1

0
G(t1, s)f

(
s, u(s), T0+

α u(s)
)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣G(t2, s) – G(t1, s)

∣
∣f

(
s, u(s), T0+

α u(s)
)

ds

≤ M1
η

M1 + 1
< η. (3.7)



Zhou and Zhang Advances in Difference Equations        (2019) 2019:351 Page 12 of 17

By (3.6) and (3.7), it is easy to see that

∣
∣
(
T0+

α Φu
)
(t2) –

(
T0+

α Φu
)
(t1)

∣
∣ =

∣
∣
∣
∣ϕq

(∫ 1

0
G(t2, s)f

(
s, u(s), T0+

α u(s)
)

ds
)

– ϕq

(∫ 1

0
G(t1, s)f

(
s, u(s), T0+

α u(s)
)

ds
)∣

∣
∣
∣

=
∣
∣ϕq

(
Fu(t2)

)
– ϕq

(
Fu(t1)

)∣
∣

< ε.

Thus, Φ(A) is equicontinuous. By Arzela–Ascoli theorem, we can show that Φ is relatively
compact. Therefore, Φ is completely continuous. �

For the convenience, we introduce the following notations:

A–1 = max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1sα–ntn–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds,

B–1 = max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1[1 – (1 – s)m]

sα–ntn–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds.

Theorem 3.1 Assume that the following assumptions hold:
(H1) f ∈ C([0, 1] × [0, +∞) × [–∞, 0), [0, +∞));
(H2) There exist two positive constants a > b such that φ(a) ≤ ϕp(aA), ψ(b) ≥ ϕp(bB) for

any t ∈ [0, 1], where

φ(l) = max
{

f (t, u, v), (t, u, v) ∈ [0, 1] × [0, l] × [–l, 0]
}

,

ψ(l) = min
{

f (t, u, v), (t, u, v) ∈ [0, 1] × [0, l] × [–l, 0]
}

;

(H3) B–1 ≤ max0≤t≤1 |ϕq(
∫ 1

0 G(t, s) ds)| ≤ A–1 for ∀t ∈ [0, 1].
Then problem (1.1) has at least one positive solution u ∈ P such that b ≤ ‖u‖ ≤ a.

Proof By Lemma 3.1, we know Φ : P → P is completely continuous, and we only need to
consider the existence of a fixed point of the operator Φ in P. Now, we separate the proof
into the following two steps.

Step 1. Let Ωa := {u ∈ P | ‖u‖α < a}. For any u ∈ ∂Ωa, we have ‖u‖α = a and f (t, u(t),
T0+

α u(t)) ≤ φ(a) ≤ ϕp(aA) for (t, u, v) ∈ [0, 1] × [0, a] × [–a, 0]. Hence, we have

‖Φu‖∞ = max
0≤t≤1

∣
∣(Φu)(t)

∣
∣ ≤ max

0≤t≤1

∫ 1

0

∣
∣
∣
∣G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)∣
∣
∣
∣ds

≤ max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1sα–ntn–1ϕq

(∫ 1

0
G(s, τ )ϕp(aA) dτ

)

ds

= aA max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1sα–ntn–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

= a
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and

∥
∥T0+

α Φu
∥
∥∞ = max

0≤t≤1

∣
∣
(
T0+

α Φu
)
(t)

∣
∣ = max

0≤t≤1

∣
∣
∣
∣ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), T0+

α u(s)
)

ds
)∣

∣
∣
∣

≤ max
0≤t≤1

∣
∣
∣
∣ϕq

(∫ 1

0
G(t, s)φp(aA) ds

)∣
∣
∣
∣

= aA max
0≤t≤1

∣
∣
∣
∣ϕq

(∫ 1

0
G(t, s) ds

)∣
∣
∣
∣

≤ a.

So

‖Φu‖α ≤ ‖u‖α , ∀u ∈ ∂Ωa.

Step 2. Let Ωb := {u ∈ P | ‖u‖α < b}. For any u ∈ ∂Ωb, we have ‖u‖α = b and f (t, u(t),
T0+

α u(t)) ≥ ψ(b) ≥ ϕp(bB) for (t, u, v) ∈ [0, 1] × [0, b] × [–b, 0]. Hence, we have

‖Φu‖∞ = max
0≤t≤1

∣
∣(Φu)(t)

∣
∣ = max

0≤t≤1

∣
∣
∣
∣

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), T0+

α u(τ )
)

dτ

)

ds
∣
∣
∣
∣

≥ max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1[1 – (1 – s)m]

sα–ntn–1

× ϕq

(∫ 1

0
G(s, τ )ϕp(bB) dτ

)

ds

= bB max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1[1 – (1 – s)m]

sα–ntn–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

= b

and

∥
∥T0+

α Φu
∥
∥∞ = max

0≤t≤1

∣
∣
(
T0+

α Φu
)
(t)

∣
∣ = max

0≤t≤1

∣
∣
∣
∣ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), T0+

α u(s)
)

ds
)∣

∣
∣
∣

≥ max
0≤t≤1

∣
∣
∣
∣ϕq

(∫ 1

0
G(t, s)ϕp(bB) ds

)∣
∣
∣
∣

= bB max
0≤t≤1

∣
∣
∣
∣ϕq

(∫ 1

0
G(t, s) ds

)∣
∣
∣
∣

≥ b.

So

‖Φu‖α ≥ ‖u‖α , ∀u ∈ ∂Ωb.

By Lemma 2.8, Φ has a fixed point in P ∩Ωa \Ωb, i.e., problem (1.1) has a positive solution
u such that b ≤ ‖u‖ ≤ a. �
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Theorem 3.2 Let f ∈ C([0, 1] × [0, +∞) × (–∞, 0]), f (t, x, y) is increasing in x and y. Let
there exist v0, ω0 satisfying Φv0 ≥ v0, Φω0 ≤ ω0 for 0 ≤ v0 ≤ ω0, 0 ≤ t ≤ 1. Then problem
(1.1) has a positive solution u∗ such that v0 ≤ u∗ ≤ ω0.

Proof We only need to consider the fixed point of the operator Φ . Let v, ω ∈ P be such
that v ≤ ω and T0+

α v ≤ T0+
α ω, then f (t, v(t), T0+

α v(t)) ≤ f (t,ω(t), T0+
α ω(t)) for t ∈ [0, 1], we

have

(Φv)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , v(τ ), T0+

α v(τ )
)

dτ

)

ds

≤
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ ,ω(τ ), T0+

α ω(τ )
)

dτ

)

ds

= (Φω)(t).

Hence Φ is an increasing operator. By the assumption Φv0 ≥ v0, Φω0 ≤ ω0, we have
T : 〈v0,ω0〉 → 〈v0,ω0〉. Since P is a normal cone and Φ : P → P is completely continu-
ous in view of Lemma 3.1, by Lemma 2.7, Φ has one fixed point u∗ ∈ 〈v0,ω0〉, which is the
required positive solution. �

Theorem 3.3 Let f ∈ C([0, 1] × [0, +∞) × (–∞, 0]), f (t, x, y) is increasing in x and y for
each t ∈ [0, 1]. Further, if 0 < lim‖u‖α→∞ f (t, u, T0+

α u) < ∞ for each t ∈ [0, 1], then problem
(1.1) has a positive solution.

Proof As 0 < lim‖u‖α→∞ f (t, u, T0+
α u) < ∞, there exist positive constants H and R such that,

for ‖u‖α ≥ R, f (t, u, T0+
α u) ≤ H for ∀t ∈ [0, 1]. Let c = max{f (t, u, T0+

α u) | 0 ≤ ‖u‖α ≤ R, 0 ≤
t ≤ 1}, then we can know f ≤ c + H .

Consider the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

T0+
α (ϕp(T0+

α u(t))) – (c + H) = 0, 0 ≤ t ≤ 1

u(i)(0) = 0, [ϕp(T0+
α u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[T0+
β u(t)]t=1 = 0, [T0+

β (ϕp(T0+
α u(t)))]t=1 = 0.

(3.8)

By using Lemma 2.4, the solution of problem (3.8) is equivalent to the following integral
equation:

ω(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )(c + H) dτ

)

ds.

Hence,

ω(t) ≥
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ ,ω(τ ), T0+

α ω(τ )
)

dτ

)

ds = (Φω)(t),

we have ω ≥ Φω.
On the other hand, for v = 0,

(Φv)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , v(τ ), T0+

α v(τ )
)

dτ

)

ds ≥ 0.
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Hence, we have Φv ≥ v, and as a consequence of Theorem 3.2, problem (1.1) has a positive
solution. �

4 Applications
To testify our results established in the previous section, we provide an adequate problem.

Example 4.1

⎧
⎪⎪⎨

⎪⎪⎩

T0+
1.5(ϕ2(T0+

1.5u(t))) = 2 +
√

u + t2

2 , 0 ≤ t ≤ 1,

u(0) = [ϕ2(T0+
1.5u)](0) = 0,

[T0+
1.5u](1) = (ϕ2(T0+

1.5u))′(1) = 0.

(4.1)

In system (4.1), we see that α = 1.5, β = 1, p = 2, q = 2, m = 1, n = 2. In addition, we have

A–1 = max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1sα–ntn–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

= max
0≤t≤1

1
Γ (2)

∫ 1

0
s– 1

2 tϕ2

(∫ 1

0
G(s, τ ) dτ

)

ds

= max
0≤t≤1

1
Γ (2)

∫ 1

0
s– 1

2 tϕ2

(∫ s

0
τ

1
2 dτ + s

∫ 1

s
τ– 1

2 dτ

)

ds

= max
0≤t≤1

t
∫ 1

0

(

2s
1
2 –

4
3

s
)

ds

= 0.67,

B–1 = max
0≤t≤1

1
Γ (n)

∫ 1

0
(1 – s)n–m–1[1 – (1 – s)m]

sα–ntn–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

= max
0≤t≤1

1
Γ (2)

∫ 1

0

[
1 – (1 – s)

]
s–0.5tϕ2

(∫ 1

0
G(s, τ ) dτ

)

ds

= max
0≤t≤1

∫ 1

0
s

1
2 t

(

2s –
4
3

s
3
2

)

ds

= 0.356,

and

ϕq

(∫ 1

0
G(t, s) ds

)

= ϕ2

(∫ t

0
s

1
2 ds + t

∫ 1

t
s– 1

2 ds
)

= 2t –
4
3

t
3
2 .

From d
dt ϕq(

∫ 1
0 G(t, s) ds) = 2 – 2

√
t ≥ 0, ∀t ∈ [0, 1], we know that ϕq(

∫ 1
0 G(t, s) ds) is increas-

ing on t, then we get max0≤t≤1 ϕq(
∫ 1

0 G(t, s) ds) = 0.67. So, we get B–1 ≤ max0≤t≤1 ϕq(
∫ 1

0 G(t,
s) ds) ≤ A–1 and A = 1.5, B = 2.8.

Besides, let f (t, u) = 2 +
√

u + t2

2 and choose a = 3, b = 1
2 , we get

f (t, u) = 2 +
√

u +
t2

2
≤ 3.5 ≤ ϕ2(aA) = 4.5, ∀(t, u) ∈ [0, 1] × [0, 3];
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f (t, u) = 2 +
√

u +
t2

2
≥ 2 ≥ ϕ2(bB) = 1.4, ∀(t, u) ∈ [0, 1] ×

[

0,
1
2

]

.

From the definitions of φ and ψ , we get φ(a) ≤ ϕ2(aA) and ψ(b) ≥ ϕ2(bB). So, all the
conditions of Theorem 3.1 are satisfied, then system (4.1) has at least one positive solution
u such that 1

2 ≤ ‖u‖α ≤ 3.
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