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Abstract
Givenm ≥ 1, 0 ≤ λ ≤ 1, and a discrete vector-valued function �f = (f1, . . . , fm) with each
fj : Zd → R, we consider the discrete multilinear fractional nontangential maximal
operator

Mλ
α,B(�f )(�n) = sup

r>0,�x∈Rd

|�n–�x|≤λr

1

N(Br(�x))m– α
d

m∏

j=1

∑

�k∈Br (�x)∩Zd

∣∣fj(�k)
∣∣,

where B is the collection of all open balls B ⊂ R
d , Br(�x) is the open ball in R

d centered
at �x ∈R

d with radius r, and N(Br(�x)) is the number of lattice points in the set Br(�x). We
show that the operator �f 	→ |∇Mλ

α,B(
�f )| is bounded and continuous from

�1(Zd)× �1(Zd)× · · · × �1(Zd) to �q(Zd) if 0≤ α <md and q≥ 1 such that q > d
md–α+1 .

We also prove that the same result also holds for the discrete multilinear fractional
nontangential maximal operators associated with cubes. These results we obtained
represent significant and natural extensions of what was known previously.

Keywords: Discrete multilinear fractional nontangential maximal operator; Discrete
multilinear fractional maximal operator; Bounded variation; Continuity

1 Introduction
The regularity theory of maximal operators has been the subject of many recent articles
in harmonic analysis. The first work was due to Kinnunen [12] who observed that the
centered Hardy–Littlewood maximal operator M is bounded on the first order Sobolev
space W 1,p(Rd) for 1 < p ≤ ∞. Since then, the regularity properties of the various kinds of
maximal operators have been studied by many authors. See [8, 11, 13–16, 19, 20, 24, 25, 28,
30, 31] for example. Since M : L1(Rd) → L1(Rd) is not bounded, the endpoint regularity
of maximal operators seems to be a deeper issue. A crucial question was posed by Hajłasz
and Onninen in [11].

Problem 1.1 ([11]) Is the operator f 	→ |∇Mf | bounded from W 1,1(Rd) to L1(Rd)?

In 2002, Tanaka [35] first proved that the uncentered Hardy–Littlewood maximal func-
tion M̃f is weakly differentiable and satisfies

∥∥(M̃f )′
∥∥

L1(R) ≤ 2
∥∥f ′∥∥

L1(R) (1)
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if f ∈ W 1,1(R). Later on, Tanaka’s result was refined by Aldaz and Pérez Lázaro [1] who
showed that if f is of bounded variation on R, then M̃f is absolutely continuous and

Var(M̃f ) ≤ Var(f ), (2)

where Var(f ) denotes the total variation of f . The above result directly implies that

∥∥(M̃f )′
∥∥

L1(R) ≤ ∥∥f ′∥∥
L1(R) (3)

if f ∈ W 1,1(R) (see also [23] for a new proof). Notice that inequalities (2) and (3) are sharp.
In the centered case, Kurka [17] showed that if f is of bounded variation on R, then

Var(Mf ) ≤ 240,004 Var(f ).

It was also shown in [17] that if f ∈ W 1,1(R), then Mf is weakly differentiable and in-
equality (3) also holds for M with constant C = 240,004. It is currently unknown whether
inequalities (2) and (3) also hold for M. Recently, Carneiro and Madrid [7] extended in-
equalities (2) and (3) to a fractional setting. Very recently, we [26] extended the result of
[7] to a multisublinear setting. Other interesting works related to this theory are [4, 9, 10,
22, 33].

On the other hand, the investigation of the regularity of discrete maximal operators has
also attracted the attention of many authors (cf. [2, 5, 7, 18, 21, 24, 27, 29, 32, 36, 37]).
Let us recall some definitions and background. For d ≥ 1 and �n = (n1, n2, . . . , nd) ∈ Z

d , we
set |�n| = (

∑d
i=1 |ni|2)1/2 and ‖�n‖∞ = sup1≤i≤d |ni|. For a discrete function f : Zd → R and

1 ≤ p ≤ ∞, we define its �p(Zd)-norm by ‖f ‖�p(Zd) = (
∑

�n∈Zd |f (�n)|p)1/p if 1 ≤ p < ∞ and
‖f ‖�∞(Zd) = sup�n∈Zd |f (�n)|. Formally, define the discrete analogue of the Sobolev spaces by

W 1,p(
Z

d) :=
{

f : Zd → R | ‖f ‖1,p = ‖f ‖�p(Zd) + ‖∇f ‖�p(Zd) < ∞}
,

where ∇f is the gradient of a discrete function f and is defined by

∇f (�n) =
(
D1f (�n), D2f (�n), . . . , Ddf (�n)

)
,

and Dlf (�n) is the partial derivative of f denoted by

Dlf (�n) = f (�n + �el) – f (�n),

and �el = (0, . . . , 0, 1, 0, . . . , 0) is the canonical lth base vector, l = 1, 2, . . . , d. Observe that

‖f ‖�p(Zd) ≤ ‖f ‖1,p ≤ (2d + 1)‖f ‖�p(Zd) ∀1 ≤ p ≤ ∞. (4)

It follows that

W 1,p(
Z

d) = �p(
R

d) ∀1 ≤ p ≤ ∞. (5)
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We denote by BV(Zd) the set of all functions of bounded variation defined on Z
d , where

the total variation of f : Zd →R is defined by

Var(f ) =
d∑

l=1

‖Dlf ‖�1(Zd).

It is clear that

‖∇f ‖�1(Zd) ≤ Var(f ) ≤ d‖∇f ‖�1(Zd), (6)

W 1,1(
R

d) = �1(
Z

d)
� BV

(
Z

d). (7)

Let m ≥ 1 and 0 ≤ α < md. For a vector-valued function �f = (f1, . . . , fm) with each fj :
Z

d → R being a discrete function, we define the discrete centered m-sublinear fractional
maximal operator Mα by

Mα(�f )(�n) = sup
r>0

1
N(Br(�n))m– α

d

m∏

j=1

∑

�k∈Br (�n)∩Zd

∣∣fj(�k)
∣∣,

where Br(�n) is the open ball in R
d centered at �n with radius r and N(Br(�n)) is the number

of lattice points in the set Br(�n). The uncentered version of Mα is given by

M̃α(�f )(�n) = sup
r>0,�n∈Br

1
N(Br)m– α

d

m∏

j=1

∑

�k∈Br∩Zd

∣∣fj(�k)
∣∣,

where the supremum is taken over all open balls Br in R
d containing the point �n with

radius r. When m = 1, the operator Mα (resp., M̃α) reduces to the discrete centered (resp.,
uncentered) fractional maximal operator Mα (resp., M̃α). Particularly, when α = 0, the
operator Mα (resp., M̃α) is just the discrete centered (resp., uncentered) Hardy–Littlewood
maximal operator M (resp., M̃).

The study of the regularity properties of discrete maximal operators was initiated by
Bober et al. [2] in 2012 when they observed that

Var(M̃f ) ≤ Var(f ) (8)

and

Var(Mf ) ≤
(

2 +
146
315

)
‖f ‖�1(Z). (9)

It was noticed that inequality (8) is sharp and (9) is not sharp. Inequality (9) with the sharp
constant C = 2 was proved by Madrid in [32] (see [32, Theorem 1]). It was known that in-
equality (8) for M was established by Temur in [36] (with constant C = 294,912,004). It
is unknown whether inequality (8) also holds for M. Recently, Carneiro and Madrid [7]
and Liu [18] extended (8) and [32, Theorem 1] to the fractional setting, respectively. More
recently, in the remarkable paper [6], Carneiro et al. established the BV(Z)-continuity of
the discrete centered and uncentered Hardy–Littlewood maximal operator. For general



Zhang Advances in Difference Equations        (2019) 2019:403 Page 4 of 18

dimension d ≥ 1, Carneiro and Hughes [5] showed that both M and M̃ map �1(Zd) into
BV(Zd) boundedly and continuously. Recently, Carneiro and Madrid [7] extended the re-
sult of [5] to a fractional setting. Very recently, we [27] extended the result of [5] to a
multisublinear fractional setting.

Let us recall the main result of [27], which can be stated as follows.

Theorem 1.2 ([27]) Let 0 ≤ α < (m–1)d +1. Then both Mα and M̃α map �1(Zd)×�1(Zd)×
· · · × �1(Zd) into BV(Zd) boundedly and continuously.

The aim of this paper is to investigate the endpoint regularity of the discrete multilinear
fractional nontangential maximal operator associated with balls or cubes.

Definition 1.3 Let 0 ≤ α < md and 0 ≤ λ ≤ 1. For a vector-valued function �f = (f1, . . . , fm)
with each fj : Zd → R being a discrete function, we define the discrete multilinear frac-
tional nontangential maximal operator associated with balls Mγ

α,B by

Mγ

α,B(�f )(�n) = sup
r>0,�x∈Rd

|�n–�x|≤λr

1
N(Br(�x))m– α

d

m∏

j=1

∑

�k∈Br(�x)∩Zd

∣∣fj(�k)
∣∣,

where B is the collection of all open balls B ⊂R
d . The discrete multilinear fractional non-

tangential maximal operator associated with cubes Mλ
α,R is defined by

Mλ
α,R(�f )(�n) = sup

r>0,�x∈Rd

‖�n–�x‖∞≤λr,Rr(�x)∈R

1
N(Rr(�x))m– α

d

m∏

j=1

∑

�k∈Rr(�x)∩Zd

∣∣fj(�k)
∣∣,

where R is the collection of all open cubes R ⊂ R
d with sides parallel to the coordinate

axes and Rr(�x) is the open cube in R
d centered at �x with length of side 2r.

One can easily check that

Mα(�f )(�n) = M0
α,B(�f )(�n) ≤ Mλ

α,B(�f )(�n) ≤ M1
α,B(�f )(�n) = M̃α(�f )(�n) ∀�n ∈ Z

d; (10)

Mλ
α,B(�f )(�n) ∼α,m,d,λ Mλ

α,R(�f )(�n) ∀�n ∈ Z
d. (11)

By relationships (10)–(11) and the bounds for M̃α , we obtain

∥∥Mλ
α,R(�f )

∥∥
�q(Zd) �α,m,d,λ

∥∥Mλ
α,B(�f )

∥∥
�q(Zd) �α,m,d,p1,...,pd ,q

m∏

j=1

‖fj‖�
pj (Zd), (12)

if 1 < pi ≤ ∞ (i = 1, . . . , d), 1 ≤ q ≤ ∞ for α = 0, and 1 < pi < ∞ (i = 1, . . . , d), 1 ≤ q < ∞ for
0 < α < md and 1

q ≤ 1
p1

+ · · · + 1
pm

– α
d . One can easily check that

∣∣Mλ
α,B(�f )(�n) – Mλ

α,B(�g)(�n)
∣∣ ≤

m∑

j=1

Mλ
α,B(�Fj)(�n) ∀�n ∈ Z

d, (13)

where �f = (f1, . . . , fm), �g = (g1, . . . , gm) and �Fj = (f1, . . . , fj–1, fj – gj, gj+1, . . . , gm). It follows from
(4) and (12)–(13) that both Mλ

α,B and Mλ
α,R are bounded and continuous from W 1,p1 (Zd)×
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W 1,p2 (Zd) × · · · × W 1,pm (Zd) → W 1,q(Zd) provided that 1 < pi ≤ ∞ (i = 1, . . . , m), 1 ≤ q ≤
∞ for α = 0, and 1 < pi ≤ ∞ (i = 1, . . . , m), 1 ≤ q < ∞ for 0 < α < md, and 1

q ≤ 1
p1

+ · · · +
1

pm
– α

d . In addition, it is clear that both Mλ
α,B and Mλ

α,R are not bounded from �1(Zd) ×
�1(Zd) × · · · × �1(Zd) to �1(Zd).

Based on the above bounds for Mλ
α,B and Mλ

α,R, Theorem 1.2, (7), and (10)–(11), a ques-
tion that arises naturally is the following.

Problem 1.4 Are both the operators Mλ
α,B and Mλ

α,R bounded and continuous from
�1(Zd) × �1(Zd) × · · · × �1(Zd) to BV(Zd)?

We would like to point out that Problem 1.4 seems to be affirmative and expected. How-
ever, we will present a positive answer to Problem 1.4 by the following more general con-
clusion.

Theorem 1.5 Let 0 ≤ α < md, 0 ≤ λ ≤ 1, and 0 ≤ β ≤ 1. Let q ≥ 1 such that q > d
md–α+β

.
Then the operator �f 	→ |∇Mλ

α,B(�f )| is bounded and continuous from �1(Zd)×�1(Zd)×· · ·×
�1(Zd) to �q(Zd). Moreover,

∥∥∇Mλ
α,B(�f )

∥∥
�q(Zd) �α,m,d,q,β ,λ

m∑

μ=1

(‖fμ‖β

�1(Zd)‖∇fμ‖1–β

�1(Zd)

) ∏

1≤j �=μ≤m

‖fj‖�1(Zd) (14)

for all �f = (f1, . . . , fm) with each fj ∈ �1(Zd). The same results hold for the operator Mλ
α,R.

Remark 1.6 It should be pointed out that inequality (14) holds only if q ≥ d
md–α+β

. To see
this, let l be an integer such that l ≥ 8

√
d. Taking fj(�n) = χ{|�n|≤l}(�n) for all 1 ≤ j ≤ m, one can

verify that ‖fj‖�1(Zd) ∼d ld , ‖∇fj‖�1(Zd) ∼d ld–1 and ‖∇Mλ
α,B(�f )‖�q(Zd) �d l

d
q +α–1. It follows

that

‖∇Mλ
α,B(�f )‖�q(Zd)∑m

μ=1(‖fμ‖β

�1(Zd)‖∇fμ‖1–β

�1(Zd))
∏

1≤j �=μ≤m ‖fj‖�1(Zd)
�α,m,d,β ,q l

d
q +α–md–β .

This yields our claim by letting l → ∞.

As several direct corollaries of Theorem 1.5, we obtain the following.

Corollary 1.7 Let m ≥ 1, 0 ≤ λ ≤ 1, and 0 ≤ α < (m – 1)d + 1. Then both Mλ
α,B and Mλ

α,R
are bounded and continuous from �1(Zd) × �1(Zd) × · · · × �1(Zd) to BV(Zd).

Corollary 1.8 Let m > 1, 0 ≤ λ ≤ 1, and 0 ≤ α < (m – 1)d. Then both Mλ
α,B and Mλ

α,R are
bounded from BV(Zd) × �1(Zd) × · · · × �1(Zd) to BV(Zd).

Remark 1.9 When β = 1 (resp., β = 0) and 0 ≤ α < (m – 1)d + 1 (resp., 0 ≤ α < (m – 1)d),
then d

md–α+β
< 1. Thus Theorem 1.5 yields Corollaries 1.7 and 1.8. On the other hand,

Corollary 1.7 extends Theorem B, which corresponds to the case λ = 0 and λ = 1.

Remark 1.10 Our main results are new even in the special case m = 1 and α = 0.
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The paper is organized as follows. Section 2 contains some preliminary notation and a
useful subtle summability lemma. The proof of Theorem 1.5 will be given in Sect. 3. We
would like to remark that our arguments are motivated by [7], but our methods and tech-
niques are more simple and direct than those of [7]. It is worth mentioning that there are
three virtues: (i) In the previous papers [5, 7, 27], the authors established the endpoint
regularities of the discrete maximal operator and its fractional version and multilinear
fractional version by dealing with their centered case and uncentered case individually.
Here, we give a uniform handling method of proving the regularity properties of discrete
centered and uncentered maximal operators. (ii) In the precise papers [5, 7, 27], the proofs
of the corresponding continuity results are highly dependent on the Brezis–Lieb lemma
[3]. Moreover, the discrete versions of Luiro’s lemma (see [5, Lemmas 3–4] and [7, Lem-
mas 4–5] played key roles in the proofs of the corresponding continuity results in [5, 7].
However, these useful lemmas are unnecessary in our proofs. (iii) Although our main re-
sult greatly improves the main result of [27], our methods and techniques are more simple
than those of [27].

Throughout this paper, if there exists a constant c > 0 depending only on ϑ such that
A ≤ cB, we then write A �ϑ B or B �ϑ A; and if A �ϑ B �ϑ A, we then write A ∼ϑ B. In
what follows, for a set E ⊂ R

d , we set Ec = {x ∈ R
d; x /∈ E}. We shall use the conventions∏

i∈∅ ai = 1 and
∑

i∈∅ ai = 0.

2 Preliminaries
We start by presenting some preliminary notation. It was shown in [34] that

cd(r –
√

d/2)d ≤ N
(
Br(�n)

) ≤ cd(r +
√

d/2)d ∀�n ∈ Z
d and r >

√
d/2, (15)

where cd = 2πd/2

Γ (d/2)d . It is clear that

χ{0<r≤1}(r) +
(
2[r – 1] + 1

)d
χ{r>1}(r) ≤ N

(
Rr(�n)

) ≤ (
2[r] + 1

)d ∀r > 0 and �n ∈ Z
d. (16)

Here [x] = {k ∈ Z; k ≤ x}. Fix �x ∈R
d\Zd , there exist two lattice points �n1 ∈ Z

d and �n2 ∈ Z
d

such that | �n1 – �x| ≤ √
d/2 and ‖ �n2 – �x‖∞ ≤ 1/2 and

Br–
√

d/2( �n1) ⊂ Br(�x) ⊂ Br+
√

d/2( �n1) ∀r >
√

d/2;

Rr–1/2( �n2) ⊂ Rr(�x) ⊂ Rr+1/2( �n2) ∀r > 1/2.

Consequently,

cd(r –
√

d)d ≤ N
(
Br(�x)

) ≤ cd(r +
√

d)d ∀x ∈ R
d and r >

√
d; (17)

(
2[r – 3/2] + 1

)d ≤ N
(
Rr(�x)

) ≤ (
2[r + 1/2] + 1

)d ∀x ∈ R
d and r > 3/2. (18)

It follows from (18) that

2d(r – 2)d ≤ N
(
Rr(�x)

) ≤ 2d(r + 1)d ∀x ∈R
d and r ≥ 5/2. (19)

Define the functions F(r) and G(r) on (0,∞) by

F(r) = cd(r –
√

d)dχ{r≥4
√

d}(r) + χ{0<r<4
√

d}(r);
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G(r) = 2d(r – 2)dχ{r≥4}(r) + χ{0<r<4}(r).

Observe from (17) and (19) that

N
(
Br(�x)

) ≥ F(r) and N
(
Rr(�x)

) ≥ G(r) ∀�x ∈R
d and r > 0. (20)

We can claim that

N
(
Br+1(�x)

)γ – N
(
Br(�x)

)γ �γ ,d F(r)γ –1/d ∀r > 0,γ ≥ 1 and �x ∈R
d. (21)

To see this, fix �x ∈R
d , when r ≥ 4

√
d, by (17) and the differential mean value theorem,

N
(
Br+1(�x)

)γ – N
(
Br(�x)

)γ ≤ cγ

d
(
(r + 1 +

√
d)γ d – (r –

√
d)γ d) �γ ,d (r –

√
d)γ d–1. (22)

When 0 < r < 4
√

d, we get from (15) that

N
(
Br+1(�x)

)γ – N
(
Br(�x)

)γ ≤ N
(
B4

√
d+1(�x)

)γ ≤ cγ

d (5
√

d)d.

This together with (22) yields (21).
Fix r > 0 and �x ∈R

d , if there exists �n ∈ Z
d such that �n ∈ Rr(�x). It follows easily from (16)

and (19) that

N
(
Rr+1(�x)

)γ – N
(
Rr(�x)

)γ �γ ,d G(r)γ –1/d. (23)

The following lemma is two refined summability estimates, which play key roles in our
proofs.

Lemma 2.1 Let R >
√

d and γ > d. Then

max

{∑

|�n|≥R
�n∈Zd

|�n|–γ ,
∑

‖�n‖∞≥R
�n∈Zd

‖�n‖–γ
∞

}
�d,γ Rd–γ .

Proof For any �n ∈ Z
d , let Q(�n) = {x ∈ R

d : –1/2 < xi – ni ≤ 1/2, 1 ≤ i ≤ d}. Clearly, Q(�n) ∩
Q(�l) = ∅ for �n �= �l and

⋃
|�n|≥R,�n∈Zd Q(�n) ⊂ {x ∈ R

d : |x| ≥ R/2}. When �x ∈ Q(�n) and |�n| ≥ R,
we have

|�x| ≤ |�x – �n| + |�n| ≤ √
d/2 + |�n| ≤ 2|�n|.

It follows that

∑

|�n|≥R
�n∈Zd

|�n|–γ ≤
∑

|�n|≥R
�n∈Zd

∫

Q(�n)

∣∣∣∣
x
2

∣∣∣∣
–γ

dx ≤
∫

|x|≥R/2

∣∣∣∣
x
2

∣∣∣∣
–γ

dx �d,γ Rd–γ . (24)

Note that |�n|√
d

≤ ‖�n‖∞ ≤ |�n|. Then (24) leads to

∑

‖�n‖∞≥R
�n∈Zd

‖�n‖–γ
∞ ≤ √

d
γ ∑

|�n|≥R
�n∈Zd

|�n|–γ �d,γ Rd–γ .

�
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3 Proof of Theorem 1.5
3.1 Proof of Theorem 1.5 for Mλ

α,B
The proof will be divided into two parts.

Step 1. Proof of the boundedness part. Let 0 ≤ β ≤ 1 and q ≥ 1 such that q > d
md–α+β

.
Let �f = (f1, . . . , fm) with each fj ∈ �1(Zd). Without loss of generality we may assume that all
fj ≥ 0. We want to show that

∥∥DlMλ
α,B(�f )

∥∥q
�q(Zd)

�α,m,d,q,β

m∑

μ=1

( ∏

1≤j �=μ≤m

‖fj‖q
�1(Zd)

)(‖Dlfμ‖q(1–β)
�1(Zd)‖fμ‖qβ

�1(Zd)

)
(25)

for all 1 ≤ l ≤ d. We shall prove (25) for l = d, and other cases are analogous. In what
follows, we set �n = (n′, nd) ∈ Z

d with n′ = (n1, . . . , nd–1) ∈ Z
d–1. Then

∥∥DdMλ
α,B(�f )

∥∥q
�q(Zd) =

∑

n′∈Zd–1

∑

nd∈Z

∣∣Mλ
α,B(�f )

(
n′, nd + 1

)
– Mλ

α,B(�f )
(
n′, nd

)∣∣q.

For each n′ ∈ Z
d–1, let

X+
n′ =

{
nd ∈ Z : Mλ

α,B(�f )
(
n′, nd + 1

)
< Mλ

α,B(�f )
(
n′, nd

)}
,

X–
n′ =

{
nd ∈ Z : Mλ

α,B(�f )
(
n′, nd + 1

)
> Mλ

α,B(�f )
(
n′, nd

)}
,

Xn′ =
{

nd ∈ Z : Mλ
α,B(�f )

(
n′, nd + 1

)
= Mλ

α,B(�f )
(
n′, nd

)}
.

Hence,

∥∥DdMλ
α,B(�f )

∥∥q
�q(Zd)

=
∑

n′∈Zd–1

∑

nd∈X+
n′

(
Mλ

α,B(�f )
(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

))q

+
∑

n′∈Zd–1

∑

nd∈X–
n′

(
Mλ

α,B(�f )
(
n′, nd + 1

)
– Mλ

α,B(�f )
(
n′, nd

))q.

Thus, to prove (25), it suffices to prove that

∑

n′∈Zd–1

∑

nd∈X+
n′

(
Mλ

α,B(�f )
(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

))q

�α,m,d,q,β ,λ

m∑

μ=1

( ∏

1≤j �=μ≤m

‖fj‖q
�1(Zd)

)(‖Ddfμ‖q(1–β)
�1(Zd)‖fμ‖qβ

�1(Zd)

)
; (26)

∑

n′∈Zd–1

∑

nd∈X–
n′

(
Mλ

α,B(�f )
(
n′, nd + 1

)
– Mλ

α,B(�f )
(
n′, nd

))q

�α,m,d,q,β ,λ

m∑

μ=1

( ∏

1≤j �=μ≤m

‖fj‖q
�1(Zd)

)(‖Ddfμ‖q(1–β)
�1(Zd)‖fμ‖qβ

�1(Zd)

)
. (27)
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We only prove (26) since (27) is analogous. For r > 0, we define the function Ar(�f ) : Rd →
R by

Ar(�f )(�x) =
1

N(Br(�x))m– α
d

m∏

j=1

∑

�k∈Br (�x)∩Zd

fj(�k) ∀�x ∈R
d.

Since all fj ∈ �1(Zd), then, for any �x ∈ R
d , limr→∞ Ar(�f )(�x) = 0. It follows that, for any

(n′, nd) ∈ Z
d with X+

n′ , there exist �x ∈R
d and r(n′, nd) > 0 such that |(n′, nd) – �x| ≤ λr(n′, nd)

and Mλ
α,B(�f )(n′, nd) = Ar(n′ ,nd)(�f )(�x). Note that |(n′, nd + 1) – (�x + �ed)| ≤ λr(n′, nd). Conse-

quently,

Mλ
α,B(�f )

(
n′, nd + 1

)

≥ 1
N(Br(n′ ,nd)+1(�x + �ed))m– α

d

m∏

j=1

∑

�k∈Br(n′ ,nd )+1(�x+�ed)∩Zd

fj(�k)

≥ 1
N(Br(n′ ,nd)+1(�x + �ed))m– α

d

m∏

j=1

∑

�k∈Br(n′ ,nd )(�x)∩Zd

fj(�k)

≥ N(Br(n′ ,nd)(�x))m– α
d

N(Br(n′ ,nd)+1(�x))m– α
d

Ar(n′ ,nd)(�f )(�x)

≥ N(Br(n′ ,nd)(�x))m

N(Br(n′ ,nd)+1(�x))m Mλ
α,B(�f )

(
n′, nd

)
.

This together with (20) and (21) implies that

Mλ
α,B(�f )

(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

)

≤
(

1 –
N(Br(n′ ,nd)(�x))m

N(Br(n′ ,nd)+1(�x))m

)
1

N(Br(n′ ,nd)(�x))m– α
d

m∏

j=1

∑

�k∈Br(n′ ,nd )(�x)∩Zd

fj(�k)

�m,d F
(
r
(
n′, nd

)) α–1
d –m

m∏

j=1

∑

�k∈Br(n′ ,nd )(�x)∩Zd

fj(�k). (28)

On the other hand, (20) yields that

Mλ
α,B(�f )

(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

)

≤ Ar(n′ ,nd)(�f )(�x) – Ar(n′ ,nd)(�f )(�x + �ed)

=
1

N(Br(n′ ,nd)(�x))m– α
d

m∏

j=1

∑

�k∈Br(n′ ,nd )(�x)∩Zd

fj(�k)

–
1

N(Br(n′ ,nd)(�x + �ed))m– α
d

m∏

j=1

∑

�k∈Br(n′ ,nd )(�x+�ed)∩Zd

fj(�k)

≤ F
(
r
(
n′, nd

)) α
d –m

m∑

μ=1

∑

�k∈Br(n′ ,nd )(�x)∩Zd

∣∣Ddfμ(�k)
∣∣ ∏

1≤j �=μ≤m

‖fj‖�1(Zd). (29)
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Note that B�r(n′ ,nd)(�x) ⊂ B(λ+1)�r(n′ ,nd)(n′, nd). It follows from (28) and (29) that

(
Mλ

α,B(�f )
(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

))q

�m,d

(
F
(
r
(
n′, nd

)) α
d –m

m∑

μ=1

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddfμ(�k)
∣∣

×
∏

1≤j �=μ≤m

‖fj‖�1(Zd)

)q(1–β)

×
(

F
(
r
(
n′, nd

)) α–1
d –m

m∏

j=1

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

fj(�k)

)qβ

. (30)

For convenience, fix 1 ≤ μ ≤ m, we set

Aμ :=
( ∏

1≤j �=μ≤m

‖fj‖q
�1(Zd)

)(‖Ddfμ‖(q–1)(1–β)
�1(Zd) ‖fμ‖(q–1)β

�1(Zd)

)
.

Then (30) leads to

(
Mλ

α,B(�f )
(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

))q

�m,d

m∑

μ=1

Aμ

(
F
(
r
(
n′, nd

)))– q(md–α+β)
d

×
( ∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddfμ(�k)
∣∣
)(1–β)

×
( ∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

fμ(�k)
)β

. (31)

By (31) and Hölder’s inequality with exponents p = 1
1–β

and p′ = 1
β

,

∑

n′∈Zd–1

∑

nd∈X+
n′

(
Mλ

α,B(�f )
(
n′, nd

)
– Mλ

α,B(�f )
(
n′, nd + 1

))q

�m,d

m∑

μ=1

Aμ

( ∑

n′∈Zd–1

∑

nd∈X+
n′

(
F
(
r
(
n′, nd

)))– q(md–α+β)
d

×
∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddfμ(�k)
∣∣
)1–β

×
( ∑

n′∈Zd–1

∑

nd∈X+
n′

(
F
(
r
(
n′, nd

)))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

fμ(�k)
)β

. (32)
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Note that

∑

n′∈Zd–1

∑

nd∈X+
n′

(
F
(
r
(
n′, nd

)))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddfμ(�k)
∣∣

≤
∑

�k∈Zd

∣∣Ddfμ(�k)
∣∣
∑

�n∈Zd

(
F
(
r(�n)

))– q(md–α+β)
d χ{|�k–�n|≤(λ+1)r(�n)}. (33)

Fix �k ∈ Z
d . By (15) we have

∑

�n∈Zd

χ{|�k–�n|<4
√

d(λ+1)} ≤ cd
(
4
√

d(λ + 1) +
√

d/2
)d. (34)

Since q(md – α + β) > d. Invoking Lemma 2.1, we have

∑

�n∈Zd

( |�k – �n|
λ + 1

–
√

d
)–q(md–α+β)

χ{|�k–�n|≥4
√

d(λ+1)}

�α,m,d,β ,q,λ
∑

|�n|≥4
√

d(λ+1)
�n∈Zd

|�n|–q(md–α+β) �α,m,d,β ,q,λ
(
4
√

d(λ + 1)
)d–q(md–α+β). (35)

Combining (35) with (34) yields that

∑

�n∈Zd

(
F
(
r(�n)

))– q(md–α+β)
d χ{|�k–�n|≤(λ+1)r(�n)}

≤
∑

�n∈Zd

(
F
(
r(�n)

))– q(md–α+β)
d χ{|�k–�n|<4

√
d(λ+1)}

+
∑

�n∈Zd

(
F
(
r(�n)

))– q(md–α+β)
d χ{4√

d(λ+1)≤|�k–�n|≤(λ+1)r(�n)}

≤
∑

�n∈Zd

χ{|�k–�n|<4
√

d(λ+1)}

+
∑

�n∈Zd

cd

( |�k – �n|
λ + 1

–
√

d
)–q(md–α+β)

χ{|�k–�n|≥4
√

d(λ+1)}

�α,m,d,β ,q,λ 1. (36)

(36) together with (33) yields that

∑

n′∈Zd–1

∑

nd∈X+
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddfμ(�k)
∣∣

�α,m,d,β ,q,λ ‖Ddfμ‖�1(Rd). (37)

Similarly,

∑

n′∈Zd–1

∑

nd∈X+
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣fμ(�k)
∣∣
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�α,m,d,β ,q,λ ‖fμ‖�1(Rd). (38)

Then (26) follows from (32) and (37)–(38).
Step 2. Proof of the continuity part. Let �f = (f1, . . . , fm) with each fj ∈ �1(Zd) and gi,j → fj in

�1(Zd) for any 1 ≤ j ≤ m as i → ∞. Let �gi = (gi,1, . . . , gi,m) for i ∈ Z. Since ||gi,j|–|fj|| ≤ |gi,j – fj|
for all 1 ≤ j ≤ d, we may assume without loss of generality that all gi,j ≥ 0 and fj ≥ 0. It
suffices to show that

lim
i→∞

∥∥DlMλ
α,B(�gi) – DlMλ

α,B(�f )
∥∥

�q(Zd) = 0 (39)

for each l = 1, 2, . . . , d.
We only prove (39) for l = d (since other cases are analogous). By the boundedness part,

we see that DdMλ
α,B(�f ) ∈ �q(Zd). Then, fix ε ∈ (0, 1), there exist N1 = N1(ε, �f ) > 0 and Λ >

8
√

d(λ + 1) such that

‖gi,j – fj‖�1(Zd) < ε and ‖gi,j‖�1(Zd) ≤ ‖fj‖�1(Zd) + 1 ∀i ≥ N1 and 1 ≤ j ≤ m; (40)

max
{∥∥DdMλ

α,B(�f )χ(B3Λ(�0))c
∥∥

�q(Zd), sup
1≤j≤m

‖fjχ(BΛ(�0))c‖�1(Zd),Λd–q(md–α+β)
}

< ε. (41)

Combining (41) with (40) yields that

sup
1≤j≤m

‖Ddgi,jχ(BΛ(�0))c‖�1(Zd)

≤ 2 sup
1≤j≤m

‖gi,jχ(BΛ(�0))c‖�1(Zd)

≤ 2 sup
1≤j≤m

(‖gi,j – fj‖�1(Zd) + ‖fjχ(BΛ(�0))c‖�1(Zd)
) ≤ 4ε ∀i ≥ N1. (42)

For any �n ∈ Z
d and i ≥ N1, we can write

∣∣Mλ
α,B(�gi)(�n) – Mλ

α,B(�f )(�n)
∣∣

≤ sup
r>0,�x∈Rd

|�n–�x|≤λr

1
N(Br(�x))m– α

d

∣∣∣∣∣

m∏

j=1

∑

�k∈Br (�x)∩Zd

gi,j(�k) –
m∏

j=1

∑

�k∈Br(�x)∩Zd

fj(�k)

∣∣∣∣∣

≤
m∑

l=1

( l–1∏

j=1

‖fj‖�1(Zd)

)( m∏

μ=l+1

‖gi,μ‖�1(Zd)

)
‖gi,l – fl‖�1(Zd),

which together with (40) implies that Mλ
α,B(�gi)(�n) → Mλ

α,B(�f )(�n) as i → ∞ for any �n ∈ Z
d .

Consequently,

DdMλ
α,B(�gi)(�n) → DdMλ

α,B(�f )(�n) as i → ∞ ∀�n ∈ Z
d. (43)

By (43), there exists N2 = N2(ε,Λ) > 0 such that

∣∣DdMλ
α,B(�gi)(�n) – DdMλ

α,B(�f )(�n)
∣∣ ≤ ε

(N(B3Λ(�0)))1/q
∀i ≥ N2 and |�n| < 3Λ. (44)
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It follows from (44) that

∥∥DlMλ
α,B(�gi) – DlMλ

α,B(�f )
∥∥

�q(Zd)

≤ ∥∥(
DlMλ

α,B(�gi) – DlMλ
α,B(�f )

)
χB3Λ(�0)

∥∥
�q(Zd)

+
∥∥(

DlMλ
α,B(�gi) – DlMλ

α,B(�f )
)
χ(B3Λ(�0))c

∥∥
�q(Zd)

≤ ε +
∥∥(

DlMλ
α,B(�gi) – DlMλ

α,B(�f )
)
χ(B3Λ(�0))c

∥∥
�q(Zd) ∀i ≥ N2. (45)

Fix i ≥ max{N1, N2}. We can write

∥∥(
DlMλ

α,B(�gi) – DlMλ
α,B(�f )

)
χ(B3Λ(�0))c

∥∥
�q(Zd)

≤
∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Z

∣∣DdMλ
α,B(�gi)(�n)

∣∣q +
∑

n′∈Zd

∑

|nd |≥2Λ

nd∈Z

∣∣DdMλ
α,B(�gi)(�n)

∣∣q

=: A1 + A2. (46)

We first estimate A1. For each n′ ∈ Z
d–1 with |n′| ≥ 2Λ, let

Y +
n′ =

{
nd ∈ Z : Mλ

α,B(�gi)
(
n′, nd + 1

)
< Mλ

α,B(�gi)
(
n′, nd

)}
,

Y –
n′ =

{
nd ∈ Z : Mλ

α,B(�gi)
(
n′, nd + 1

)
> Mλ

α,B(�gi)
(
n′, nd

)}
,

Yn′ =
{

nd ∈ Z : Mλ
α,B(�gi)

(
n′, nd + 1

)
= Mλ

α,B(�gi)
(
n′, nd

)}
.

Then

A1 ≤
∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(
Mλ

α,B(�gi)
(
n′, nd

)
– Mλ

α,B(�gi)
(
n′, nd + 1

))q

+
∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y –
n′

(
Mλ

α,B(�gi)
(
n′, nd + 1

)
– Mλ

α,B(�gi)
(
n′, nd

))q. (47)

We now prove that

∑

|n′|≥2Λ

nZd–1

∑

nd∈Y +
n′

(
Mλ

α,B(�gi)
(
n′, nd

)
– Mλ

α,B(�gi)
(
n′, nd + 1

))q �α,m,d,β ,q,λ,�f ε; (48)

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y –
n′

(
Mλ

α,B(�gi)
(
n′, nd + 1

)
– Mλ

α,B(�gi)
(
n′, nd

))q �α,m,d,β ,q,λ,�f ε. (49)

We only prove (48), and (49) is analogous. Since all gi,j ∈ �1(Zd), then for any (n′, nd) ∈ Z
d

with nd ∈ Y +
n′ , there exist �x ∈ R

d and r(n′, nd) > 0 such that |(n′, nd) – �x| ≤ λr(n′, nd) and
Mλ

α,B(�gi)(n′, nd) = Ar(n′ ,nd)(�gi)(�x). By the argument similar to those used in deriving (32),

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(
Mλ

α,B(�gi)
(
n′, nd

)
– Mλ

α,B(�gi)
(
n′, nd + 1

))q
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�m,d

m∑

μ=1

( ∏

1≤j �=μ≤m

‖gi,j‖q
�1(Zd)

)(‖Ddgi,μ‖(q–1)(1–β)
�1(Zd) ‖gi,μ‖(q–1)β

�1(Zd)

)

×
( ∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

×
∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddgi,μ(�k)
∣∣
)1–β

×
( ∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

gi,μ(�k)
)β

. (50)

Note that

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddgi,μ(�k)
∣∣

=
∑

�k∈Zd

∣∣Ddgi,μ(�k)
∣∣

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

× χ{|�k–(n′ ,nd)|≤(λ+1)r(n′ ,nd)}. (51)

Fix �k = (k′, kd). When |k′| ≥ Λ, we get from (36) that

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d χ{|(k′–n′ ,kd–nd)|≤(λ+1)r(n′ ,nd)} �α,m,d,β ,q,λ 1. (52)

When |k′| < Λ, note that |n′ – k′| > Λ > 8
√

d(λ + 1) and q(md – α + β) > d. Then by Lemma
2.1 and (41) we have

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d χ{|(k′–n′ ,kd–nd)|≤(λ+1)r(n′ ,nd)}

≤ c–q(md–α+β)
d

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

( |(k′ – n′, kd – nd)|
λ + 1

–
√

d
)–q(md–α+β)

�α,m,d,β ,q,λ
∑

|�n|≥Λ

�n∈Zd

|�n|–q(md–α+β) �α,m,d,β ,q,λ Λd–q(md–α+β) �α,m,d,β ,q,λ ε. (53)

It follows from (40), (42), and (51)–(53) that

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddgi,μ(�k)
∣∣
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�α,β ,q,m,d,λ
∑

|k′|≥Λ

k′∈Zd–1

∣∣Ddgi,μ(�k)
∣∣ +

∑

|k′|<Λ

k′∈Zd–1

∣∣Ddgi,μ(�k)
∣∣ε

�α,m,d,β ,q,λ ‖Ddgi,μχ(BΛ(�0))c‖�1(Zd) + 2‖gi,μ‖�1(Zd)ε

�α,m,d,β ,q,λ,�f ε. (54)

Similarly,

∑

|n′|≥2Λ

n′∈Zd–1

∑

nd∈Y +
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

gi,μ(�k)

�α,m,d,β ,q,λ,�f ε. (55)

Then (48) follows from (40), (50), and (54)–(55). It follows from (47)–(49) that

A1 �α,m,d,β ,q,λ,�f ε. (56)

It remains to estimate A2. For each n′ ∈ Z
d–1, let

Z+
n′ =

{|nd| ≥ 2Λ : Mλ
α,B(�gi)

(
n′, nd + 1

)
< Mλ

α,B(�gi)
(
n′, nd

)}
,

Z–
n′ =

{|nd| ≥ 2Λ : Mλ
α,B(�gi)

(
n′, nd + 1

)
> Mλ

α,B(�gi)
(
n′, nd

)}
,

Z–
n′ =

{|nd| ≥ 2Λ : Mλ
α,B(�gi)

(
n′, nd + 1

)
= Mλ

α,B(�gi)
(
n′, nd

)}
.

Then we have

A2 ≤
∑

n′∈Zd–1

∑

nd∈Z+
n′

(
Mλ

α,B(�gi)
(
n′, nd

)
– Mλ

α,B(�gi)
(
n′, nd + 1

))q

+
∑

n′∈Zd–1

∑

nd∈Z–
n′

(
Mλ

α,B(�gi)
(
n′, nd + 1

)
– Mλ

α,B(�gi)
(
n′, nd

))q. (57)

We want to show that

∑

n′∈Zd–1

∑

nd∈Z+
n′

(
Mλ

α,B(�gi)
(
n′, nd

)
– Mλ

α,B(�gi)
(
n′, nd + 1

))q �α,m,d,β ,q,λ,�f ε; (58)

∑

n′∈Zd–1

∑

nd∈Z–
n′

(
Mλ

α,B(�gi)
(
n′, nd + 1

)
– Mλ

α,B(�gi)
(
n′, nd

))q �α,m,d,β ,q,λ,�f ε. (59)

We only prove (58), and (59) is analogous. Since all gi,j ∈ �1(Zd), then for any (n′, nd) ∈ Z
d

with nd ∈ Z+
n′ , there exist �x ∈ R

d and r(n′, nd) > 0 such that |(n′, nd) – �x| ≤ λr(n′, nd) and
Mλ

α,B(�gi)(n′, nd) = Ar(n′ ,nd)(�gi)(�x). By the arguments similar to those used to derived (32),

∑

n′∈Zd–1

∑

nd∈Z+
n′

(Mα
α,B

(�gi
(
n′, nd

)
– Mα

α,B(�gi)
(
n′, nd + 1

))q

�m,d

m∑

μ=1

( ∏

1≤j �=μ≤m

‖gi,j‖q
�1(Zd)

)(‖Ddgi,μ‖(q–1)(1–β)
�1(Zd) ‖gi,μ‖(q–1)β

�1(Zd)

)
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× (
∑

n′∈Zd–1

∑

nd∈Z+
n′

(
F
(
r
(
n′, nd

))– q(md–α+β)
d

×
∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddgi,μ(�k)
∣∣
)1–β

×
( ∑

n′∈Zd–1

∑

nd∈Z+
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

gi,μ(�k)
)β

. (60)

Note that

∑

n′∈Zd–1

∑

nd∈Z+
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddgi,μ(�k)
∣∣

=
∑

�k∈Zd

∣∣Ddgi,μ(�k)
∣∣

∑

n′∈Zd–1

∑

|nd |≥2Λ

nd∈Z

(F
(
r
(
n′, nd

))– q(md–α+β)
d

× χ{|�k–(n′ ,nd)|≤(λ+1)r(n′ ,nd)}. (61)

Fix �k = (k′, kd). When |kd| < Λ, note that |nd – kd| > Λ > 8
√

d(λ + 1) and q(md – α + β) > d.
Invoking Lemma 2.1, we have

∑

n′∈Zd–1

∑

|nd |≥2Λ

nd∈Z

(F
(
r
(
n′, nd

))– q(md–α+β)
d χ{|�k–(n′ ,nd)|≤(λ+1)r(n′ ,nd)}

=
∑

n′∈Zd–1

∑

|nd |≥2Λ

nd∈Z

(F
(
r
(
n′, nd

))– q(md–α+β)
d χ{4√

d(λ+1)≤|�k–(n′ ,nd)|≤(λ+1)r(n′ ,nd)}

≤ c
– q(md–α+β)

d
d

∑

n′∈Zd–1

∑

|nd |≥2Λ

nd∈Z

( |(k′ – n′, kd – nd)|
λ + 1

–
√

d
)–q(md–α+β)

�α,m,d,β ,q,λ
∑

|�n|≥Λ

�n∈Zd

|�n|–q(md–α+β) �α,m,d,β ,q,λ Λd–q(md–α+β) �α,m,d,β ,q,λ ε. (62)

When |kd| ≥ Λ, we get easily from (36) that

∑

n′∈Zd–1

∑

|nd |≥2Λ

nd∈Z

(F
(
r
(
n′, nd

))– q(md–α+β)
d χ{|�k–(n′ ,nd)|≤(λ+1)r(n′ ,nd)} �α,m,d,β ,q,λ 1. (63)

It follows from (40) and (61)–(63) that

∑

n′∈Zd–1

∑

nd∈Z+
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

∣∣Ddgi,μ(�k)
∣∣

�α,m,d,β ,q,λ,�f ε. (64)
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Similarly,

∑

n′∈Zd–1

∑

nd∈Z+
n′

(F
(
r
(
n′, nd

))– q(md–α+β)
d

∑

�k∈B(λ+1)r(n′ ,nd )(n′ ,nd)∩Zd

gi,d(�k)

�α,m,d,β ,q,λ,�f ε. (65)

Combining (60) with (40) and (64)–(65) yields (58). We get from (57)–(59) that

A2 �α,m,d,β ,q,λ,�f ε. (66)

It follows from (45)–(46), (56), and (66) that

∥∥DlMλ
α,B(�gi) – DlMλ

α,B(�f )
∥∥

�q(Zd) �α,m,d,β ,q,λ,�f ε ∀i ≥ max{N1, N2}.

This yields (39) for l = d.

3.2 Proof of Theorem 1.5 for Mλ
α,R

The proof of Theorem 1.5 for Mλ
α,R is similar as for Mλ

α,B . We only replace the norm | · |
with ‖ · ‖∞. The details are left to the interested reader.
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