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Abstract

Givenm > 1,0 < A <1, and a discrete vector-valued function f = (f4,...,f,) with each
f 79 — R, we consider the discrete multilinear fractional nontangential maximal
operator

. 1 di -
M, sOA) = sup ———= ] |£(K),
rlz?xﬁiﬂii NEG™7 1 tes o

where B is the collection of all open balls B C RY, B.(x) is the open ballin RY centered
atx € RY with radius r, aqnd N(B, (X)) is the number of lattice points in the set B,(x). We
show that the operator f +> |VM<);,B(?)| is bounded and continuous from

CNZ9) x £1(Z9) x -+ x £1(Z% to £9(Z) if 0 < e < md and g > 1 such that g > —2—

md-o+1"
We also prove that the same result also holds for the discrete multilinear fractional
nontangential maximal operators associated with cubes. These results we obtained

represent significant and natural extensions of what was known previously.

Keywords: Discrete multilinear fractional nontangential maximal operator; Discrete
multilinear fractional maximal operator; Bounded variation; Continuity

1 Introduction

The regularity theory of maximal operators has been the subject of many recent articles
in harmonic analysis. The first work was due to Kinnunen [12] who observed that the
centered Hardy-Littlewood maximal operator M is bounded on the first order Sobolev
space W'?(R?) for 1 < p < oo. Since then, the regularity properties of the various kinds of
maximal operators have been studied by many authors. See [8, 11, 13-16, 19, 20, 24, 25, 28,
30, 31] for example. Since M : L}(RY) — L}(R%) is not bounded, the endpoint regularity
of maximal operators seems to be a deeper issue. A crucial question was posed by Hajtasz

and Onninen in [11].
Problem 1.1 ([11]) Is the operator f > |V M| bounded from W1 (R%) to L*(R%)?

In 2002, Tanaka [35] first proved that the uncentered Hardy—Littlewood maximal func-
tion MY is weakly differentiable and satisfies

[ |1y =< 20 ey .
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if f € WLL(R). Later on, Tanaka’s result was refined by Aldaz and Pérez Lazaro [1] who

showed that if f is of bounded variation on R, then /\7f is absolutely continuous and
Var(Mf) < Var(f), )
where Var(f) denotes the total variation of f. The above result directly implies that

[ iy < I |y g

if f € WHL(R) (see also [23] for a new proof). Notice that inequalities (2) and (3) are sharp.
In the centered case, Kurka [17] showed that if f is of bounded variation on R, then

Var(Mf) < 240,004 Var(f).

It was also shown in [17] that if f € WL1(R), then Mf is weakly differentiable and in-
equality (3) also holds for M with constant C = 240,004. It is currently unknown whether
inequalities (2) and (3) also hold for M. Recently, Carneiro and Madrid [7] extended in-
equalities (2) and (3) to a fractional setting. Very recently, we [26] extended the result of
[7] to a multisublinear setting. Other interesting works related to this theory are [4, 9, 10,
22, 33].

On the other hand, the investigation of the regularity of discrete maximal operators has
also attracted the attention of many authors (cf. [2, 5, 7, 18, 21, 24, 27, 29, 32, 36, 37]).
Let us recall some definitions and background. For d > 1 and 7 = (13, 1y, ..., 1) € 72, we
set |#| = (Zfl=1 n;1*)""* and ||71]loc = sup; ;4 |n;]. For a discrete function f : Z¢ — R and
1 < p < oo, we define its £7(Z?)-norm by ||f | p(za) = (X jieza [F(@)P)7 if 1 < p < 00 and
If I g0 (z4) = SUP;czd |f (71)]. Formally, define the discrete analogue of the Sobolev spaces by

WH(Z4) = {f : 2% = R If Il = I lonzay + 1S lewizy < 00},
where Vf is the gradient of a discrete function f and is defined by
Vf(#) = (D1f (1), Dof (1), ..., Daf (1)),
and Df (#) is the partial derivative of f denoted by
Dif(n) =f(n + &)~ f(n),
and ¢ =(0,...,0,1,0,...,0) is the canonical /th base vector, [ = 1,2,...,d. Observe that
fllerzeay < W llp < @2+ DIfllpzay V1 <p <o0. 4
It follows that

wir(z?) = e#(R?) V1<p<oco. (5)
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We denote by BV(Z9) the set of all functions of bounded variation defined on Z%, where
the total variation of f : Z¢ — R is defined by

d
Var(f) = Y 1D [l 1 za)-

I=1

It is clear that

VANl zay < Var(f) < dIVfl o zay, (6)
wh(RY) = ¢1(27) < BV(Z9). 7)

Let m > 1 and 0 < a < md. For a vector-valued function_)? = (f1,...,fm) with each f; :
74 - R being a discrete function, we define the discrete centered m-sublinear fractional
maximal operator M, by

. 1 “
M =3 S L]

IAGI
J=1 keB,(mnzd
where B, (7) is the open ball in R? centered at # with radius  and N(B,(7)) is the number

of lattice points in the set B, (7). The uncentered version of M, is given by

YN I p— S/}

~ m-9
r>0,n€B, N(Br) d j=1 Fe,nzd

where the supremum is taken over all open balls B, in R? containing the point 7 with
radius r. When m = 1, the operator M,, (resp., 1\7[a) reduces to the discrete centered (resp.,
uncentered) fractional maximal operator M, (resp., M,). Particularly, when « = 0, the
operator M, (resp., M,)is just the discrete centered (resp., uncentered) Hardy—Littlewood
maximal operator M (resp., ZT/[).

The study of the regularity properties of discrete maximal operators was initiated by
Bober et al. [2] in 2012 when they observed that

Var(Mf) < Var(f) (8)
and
146
Var(Mf) < <2 + E) 1 ller(z)- )

It was noticed that inequality (8) is sharp and (9) is not sharp. Inequality (9) with the sharp
constant C = 2 was proved by Madrid in [32] (see [32, Theorem 1]). It was known that in-
equality (8) for M was established by Temur in [36] (with constant C = 294,912,004). It
is unknown whether inequality (8) also holds for M. Recently, Carneiro and Madrid [7]
and Liu [18] extended (8) and [32, Theorem 1] to the fractional setting, respectively. More
recently, in the remarkable paper [6], Carneiro et al. established the BV(Z)-continuity of
the discrete centered and uncentered Hardy-Littlewood maximal operator. For general
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dimension d > 1, Carneiro and Hughes [5] showed that both M and M map €'(Z4) into
BV(Z?) boundedly and continuously. Recently, Carneiro and Madrid [7] extended the re-
sult of [5] to a fractional setting. Very recently, we [27] extended the result of [5] to a
multisublinear fractional setting.

Let us recall the main result of [27], which can be stated as follows.

Theorem 1.2 ([27]) Let0 <« < (m—1)d+ 1. Then both My, and My map €1(Z%) x 1(Z4) x
- x £YZ%) into BV(Z?) boundedly and continuously.

The aim of this paper is to investigate the endpoint regularity of the discrete multilinear
fractional nontangential maximal operator associated with balls or cubes.

Definition 1.3 Let 0 < o < md and 0 < A < 1. For a vector-valued function]? =(fl,.-rfon)
with each f; : 74 > R being a discrete function, we define the discrete multilinear frac-
tional nontangential maximal operator associated with balls MZ g by

M 5(f)() = sup H Z

4 N(B m-g
oz N g

where B is the collection of all open balls B C R?. The discrete multilinear fractional non-
tangential maximal operator associated with cubes MQR is defined by

U

A (A7) —
M; »(f)(n) = sup NE, ( o — H Z

YcRd
| r0xeRe J=1 keR, (x>mzd
[|n=%loo <AFRr(X)eR

where R is the collection of all open cubes R C R? with sides parallel to the coordinate
axes and R, (X) is the open cube in R? centered at X with length of side 2r.

One can easily check that

M. (f)(7) = M s (D) < M2 5 (N(7) < ML () () = Mo (F)(7) Vi € 2% (10)
M3 5(F)0) ~amar M (F)) Vit € Z1. a

By relationships (10)—(11) and the bounds for M,, we obtain

”M R(f)”zq 74) Samd ”M B(f)”eq 74) Namdpl I’dql_[”f”Zp/ 74y (12)
j=1
ifl<p;<oco(i=1,...,d),1<g<ocforea=0,andl<p; <0 (i=1,...,d),1<q< oo for
0 <a < md and é < pi +.- 4 ﬁ - %. One can easily check that
m
MG, 5(1) () - M), s @) < > M, 5(Ej)() Vi e 7, (13)
j=1

where f = (fi,....fu), 8 = @1, gm) a0d F; = (i, .., f1,f; = 8o @jo1, - - - Gm)- It follows from
(4) and (12)—(13) that both M%, ; and M’ , are bounded and continuous from W'#1(Z4) x
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WP (Z4) x ... x WhPn(Z4) — Wh(Z) provided that 1 < p; < o0 (i=1,...,m), 1 < g <
oo fore=0,and1<p;, <o0 (i=1,...,m), 1§q<oofor0<a<md,and$51%1+~--+
Ii — 2. In addition, it is clear that both M}, ; and M/, ;; are not bounded from ¢!(Z%) x
LNZ) x -+ x £Y(ZD) to £H(Z4).

Based on the above bounds for MQ’B and MQR, Theorem 1.2, (7), and (10)—(11), a ques-
tion that arises naturally is the following.

Problem 1.4 Are both the operators MQB and MQR bounded and continuous from
LNZ) x LYZ4) x - - x £1(Z?) to BV(Z4)?

We would like to point out that Problem 1.4 seems to be affirmative and expected. How-
ever, we will present a positive answer to Problem 1.4 by the following more general con-

clusion.

Theorem 1.5 Let 0 <o <md,0 <A <1,and 0 < B <1.Let q > 1 such that q > mddmﬂ
Then the opemtorf > IVM B(f | is bounded and continuous from €' (Z%) x £1(Z%) x -
Y(Z%) to £4(Z%). Moreover,

| VM 5(F) \\Mzd),wmdq,nzuf,anl(Zd IVfilliga) [T Wil (14)

1<j#pu=<m
for allj’ = (fi,....fn) with each f; € €*(Z?). The same results hold for the operator MQR

Remark 1.6 It should be pointed out that inequality (14) holds only if g > —%—. To see

this, let / be an integer such that/ > 8V4d. d. Taking f;(i1) = xj <y (1) forall 1 5] 5 M, one can
i d

verify that |[filly1(z4) ~a “, IVfillerzay ~a %1 and ||VM§)B(f)|IM(Zd) Zd 127! 1t follows

that

||VM§B(/[ ||eq(zd) > lgm-md-ﬁ
~o,md,B,q .
ZM 1(Hfu||51 Zd)”VfM”(l 74d) )ngj;{uim |V}||£1(Zd)

This yields our claim by letting [ — oo.
As several direct corollaries of Theorem 1.5, we obtain the following.

Corollary 1.7 Letm>1,0< A <1,and 0 <o < (m - 1)d + 1. Then both MQ’B and MQR
are bounded and continuous from £ (Z%) x £1(Z%) x - -- x £Y(Z%) to BV(Z?).

Corollary 1.8 Letm>1,0<A <1,and 0 < a < (m — 1)d. Then both MQ,B and MQ,R are
bounded from BV(Z?%) x £N(Z%) x - - x £1(Z%) to BV(Z?).

Remark 1 9 When 8 =1 (resp.,, =0)and 0 <« < (m — 1)d + 1 (resp., 0 < a < (m — 1)d),
then - d 277 < 1. Thus Theorem 1.5 yields Corollaries 1.7 and 1.8. On the other hand,
Corollary 1.7 extends Theorem B, which corresponds to the case A =0 and A = 1.

Remark 1.10 Our main results are new even in the special case m =1 and « = 0.
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The paper is organized as follows. Section 2 contains some preliminary notation and a
useful subtle summability lemma. The proof of Theorem 1.5 will be given in Sect. 3. We
would like to remark that our arguments are motivated by [7], but our methods and tech-
niques are more simple and direct than those of [7]. It is worth mentioning that there are
three virtues: (i) In the previous papers [5, 7, 27], the authors established the endpoint
regularities of the discrete maximal operator and its fractional version and multilinear
fractional version by dealing with their centered case and uncentered case individually.
Here, we give a uniform handling method of proving the regularity properties of discrete
centered and uncentered maximal operators. (ii) In the precise papers [5, 7, 27], the proofs
of the corresponding continuity results are highly dependent on the Brezis—Lieb lemma
[3]. Moreover, the discrete versions of Luiro’s lemma (see [5, Lemmas 3—4] and [7, Lem-
mas 4-5] played key roles in the proofs of the corresponding continuity results in [5, 7].
However, these useful lemmas are unnecessary in our proofs. (iii) Although our main re-
sult greatly improves the main result of [27], our methods and techniques are more simple
than those of [27].

Throughout this paper, if there exists a constant ¢ > 0 depending only on ¢ such that
A < c¢B, we then write A <y Bor B2y A; and if A <y B <y A, we then write A ~y B. In
what follows, for a set E C R?, we set E° = {x € R%x ¢ E}. We shall use the conventions

nieﬂ a;=1and Zie(f} a; =0.

2 Preliminaries
We start by presenting some preliminary notation. It was shown in [34] that

calr —~d/2)* < N(B.(7)) <calr+ Vdi2)* ViaeZ*andr>+d/2, (15)

darn X
where ¢; = %. It is clear that

Xioer<1)(r) + (2[r =11+ 1)dX{r>1)(i") < N(R,(n)) < (2[r] + l)d Vr>0and i€ Z%. (16)

Here [x] = {k € Z; k < x}. Fix x € R4\ Z%, there exist two lattice points 7, € Z¢ and 1, € Z*
such that |7} — %| < v/d/2 and ||77, — ¥||ec < 1/2 and

B, 1,011) C B,(®) C B,, /7,011 Vr>~d/2;

Ri_15(n3) C RA(X) C Rps1o(2)  Vr>1/2.

Consequently,
calr -V <N(B,®) < calr + Vd)* ¥xeR?and r>Vd; (17)
(2lr-3/21 + 1) < N(R,(®) < (2[r + 1/2] +1)*  VxeR%and r > 3/2. (18)

It follows from (18) that
2°(r-2)* < N(R,®) <29(r+ ) V¥xeR%andr>5/2. (19)
Define the functions F(r) and G(r) on (0, c0) by

F(r) = calr = VA X o ayay (1) + Xoereava 1
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G(r) = 2%(r = 2 X2y (r) + Xg0<r<ny (1)
Observe from (17) and (19) that

N(B,(¥) = F(r) and N(R,(*)>G(r) VieR?andr>0. (20)
We can claim that

N(B/i(®)" -N(B,®)" $pa F(r)’™ ¥r>0,y >1andx e R% (21)
To see this, fix ¥ € R?, when r > 44, by (17) and the differential mean value theorem,

N(B,1(®)" ~N(B,®)" < ((r+ 1+ VA — (r —a)'?) $pa (r = Va1, (22)
When 0 < 7 < 4+/d, we get from (15) that

N(B,1(®)" =N (B,®)" <N (B, j7.,®)” <, (5vd)".
This together with (22) yields (21).

Fix 7 > 0 and X € RY, if there exists 7 € Z such that 71 € R,(%). It follows easily from (16)

and (19) that

N(Ra@®) - N(R®)" Sy GO (23)

The following lemma is two refined summability estimates, which play key roles in our
proofs.

Lemma 2.1 Let R > ~/d andy > d. Then

—_— - — d—
max{Zw Y ||n||og}§d,yR v,

17|=R I7llco=R
neZd neZd

Q(l) = ¢ for 7t # 1 and 5 peze QW) C {x € RY : |x| > R/2). When ¥ € Q(71) and |71| > R,
we have

Proof For any 71 € 7%, let Q(i1) = {x e R : =1/2 < x; — m; < 1/2,1 < i < d}. Clearly, Q(r) N

%] < % — 71| + 7] <~d/2+ 7| < 2|7

It follows that
. x| x|
> il < Z/ Z dng 2| dxSa, RV (24)
|7|>R ||>R Qi) 2 [x|>R/2 2
nezd neZd

Note that % < |7|lso < |7|. Then (24) leads to
- y . _
DO NEIY =vd Y il Say RTY.

I7lloo=R [7|=R
. i (]
neZd neZd
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3 Proof of Theorem 1.5
3.1 Proof of Theorem 1.5 for Mz);c,B
The proof will be divided into two parts.

Step 1. Proof of the boundedness part. Let 0 < g < 1 and g > 1 such that g > dmﬁ
Let f =(fi,....fm) with each f; € £1(Z?). Without loss of generality we may assume that all
J; = 0. We want to show that

[V, ) oz

m
(1
Samdap Z( [T W51 )(||D4fﬂ||3l AN ) (25)
n=1

1<j#u=<m

for all 1 <[ < d. We shall prove (25) for / = d, and other cases are analogous. In what

follows, we set 71 = (1, ny) € Z% with v’ = (n1,...,n4_1) € Z% 1. Then

||DdM (f) ”gq Zd Z Z iMa B(f) n » g + 1) 2,3(}?)(”/’ nd)|q'

n'ezd-1 ngel

For each n' € Z471, let

Xy ={naeZ: MgB(]?)(n', ng+1) < MQB(;’)(n',nd)},
X, ={nae: MAB(f)(n nd+1)>MAB(f)( ng) }s
Xy

= {14 € Z: M}, 5(F) (', ma + 1) = M, () ()}

Hence,

”DdMa B(f)”zq 74)

Z Z aB(f) n',ng) - g,B(f)(n/,nd+1))q

n e7d4-1 ndEX;

+ Z Z B(f) niong+1) - Q,B(f)(n/,nd))q.

nezd-1ng EX

Thus, to prove (25), it suffices to prove that

> > (Mis() (' na) =M () (' ma + 1))

n e74-1 rldEX;

Samdapi Z<1 1;[ il e )(nDdf,L e ) (26)
SjFus<m
Z Z aB(f n nd+1) g,B(f)(n’,nd))q
wezd-1ngeX,
m
Semdafn Z( [T Wi )(an S N ). 27)
u=l *l<jzu=<m
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We only prove (26) since (27) is analogous. For r > 0, we define the function Ar(}? ): R4 —
R by

A (DG =
(=) v

Since all f; € £Y(Z%), then, for any x € R%, lim,_, o, A,(f)(fc) = 0. It follows that, for any
(W', ny) € 74 with X, there exist X € R? and r(#’, ng) > 0 such that | (', ng) - %| < Ar(#, ng)
and Mglg(f)(n’,nd) = A,(,,r,,,d)(}?)(fc). Note that |(#,n; + 1) — (X + €4)| < Ar(n’,n,). Conse-
quently,

M2 5 (F) (1, 1a + 1)

1 i N
(k
N(B wonpye1 (% + 62))" %H i 58

> —

N(Br(n’,nd)+1(x + ed))m % ;.

J=1 ke, @NZA
N Byt ) (X))~ S
> DT DA ) (P E
N(Br(n’,nd)+1 (x)) d
NByir ) (X)™ -
( r(n ,nd)( ) M();,B(f)(}’l/;nd)~

- N(Br(n’,nd)+l(;c))m
This together with (20) and (21) implies that
M, 5 () (1 14) =ML s (D) (1 + 1)

NBn )" ) | m )
- i(k
= ( N(B r(n' ,ng) +1( ))m N(B o nd)(x))m % 1_[ f}( )

Sna F(r(n2) T ). (28)

J=1 keB,y , @nzd
On the other hand, (20) yields that

M, () (', 1) = M, g (F) (1, ma + 1)
< A,(n/,m(?)(fc) — A (DG + 84)

S S "
N(B P 1) (x))’”" !_1[/( Z 5

r(n ) @ )ﬂZd

- H Yo 5®

N(Br(n/,nd)(x + €d )m d

j=1 keBr( )(x+ed)ﬁZd
m
<F(r(m,ma))" Y Y pah®] T Wllaa. (29)
H=L ReBy oy ) BINZA 1<jfus<m

Page90of 18
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Note that By ) (%) C Bs1yior mg) (1, 14). It follows from (28) and (29) that

(MQ,B(}?)(”/, ng) - MQYB(}?)(I’I/, ng+1))?

Sond (F(r(n’, nd)) am Z Z |Ddf,t(7<)’

pu=1 I}EB()wl)r(n/,nd)(n,’nd)mzd

q(1-p)
< 1 Ilﬁllmzd))

1<j#pu=m

m qp
x (F(r(n’,nd))”d""]—[ 3 j;(/?)) : (30)
j=1

= 7<€B(x+1)r(n’,nd)(”/’”d)ﬂzd

For convenience, fix 1 < u < m, we set

1)(1
Aw=(11 WM%JWQmMmf“wmmn

1<j#us<m

Then (30) leads to

(M}, 50 (', 1a) = My, s(F) (1, ma + 1))
Sm,d ZAM (F(r(n” nd))),
n=1

q(md—a+p)

NS
x ( > IDdfu<k)|)

]}EB()dl)r(n/,nd) (n’,nd)mZd

x ( > fu(/?))ﬁ. (31)

KEBG; 1)/ d)(n’,nd)ﬁZd

By (31) and Holder’s inequality with exponents p = ﬁ andp’ = %,

Z Z B(f n nd) Q]B(;")(n/,nd+1))q

n' ezd-1 }’ldEXn+

NMZM(Z S (E(r(ma))

n eZd-1 ngex?,

- 1-p
D SR VAT

KEB(; 1)y ) W ) Z?

md—a+ N B
( S Y (F(r(ng))) T Y fu(k)) . (32)

n'ezd-1 ngeX?, keBg, ) (' mg)nzd

q(md-a+p)

r(n’ ng)

Page 10 of 18
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Note that
_ qlmd-c+p) -
> 2 (F(r(rma)) 7 > |Dafu)]
n'ez24-1 ngeX?, KBy 41y ng) (0 )2
md;oﬁ-ﬁ)
< > IPafi®)] Y (E( Xkl <G )r(i)} (33)
kezd v/
Fix k € Z°. By (15) we have
d
Z X(Rii<av/dnet)) = ca(4Vd(n + 1) + Vd/2)“. (34)

nezZd

Since g(md — o + ) > d. Invoking Lemma 2.1, we have

|l_<' _ 7l| —g(md-a+pB)
Z ( Tl ‘/‘_1) X{|k==4/d0+1)}

nezd
- - d-q(md—a+p)
Sa,m,d,ﬂ,q,k Z |”l| q(md—a+p) Sa,m,d,ﬁ,q,k (4\/;()» + 1)) qimazo . (35)
|71 >4+/d(x+1)
nezZd

Combining (35) with (34) yields that

qmddot+ﬂ)
Z( ("(”‘))) X{ k=7l <(+ 1)r(in))
nezd
q(md-a+p)
e
< > (F( X{{f—ii|<av/d0+1))
nezd
Mdda+ﬁ)
Z (r())) X(av/d(s 1) k=7 <O+ 1)r()
nezd

< D Kioieavaon)

nezd
7 - —q(md-a+p)
|k —n| 1
+ Z Cd( el vd X(|k=ri|=a/d(.+1))
d

,Soz,m,d,ﬁ,q,)\ 1. (36)

(36) together with (33) yields that

_ q(md—a+p)

> D (B(r(ma)) > pdu®)
n'€74-1 ndGX;/ lzeB(Ml)r(M/’ﬂd)(n’,nd)ﬁZd
,Sot,m,d,ﬂ,q,k ”Ddfu ”[1(]1{01)' (37)

Similarly,

q(md-a+p)

X ECln) T AR

.
n €741 ndEXn keB(Ml)r(n’,nd)(”/'”d)ﬁzd
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Sa,m,dyﬂ,q,k "fu ll 2L(RA)- (38)

Then (26) follows from (32) and (37)—(38).

Step 2. Proof of the continuity part. Letj? =(fi,....fm) with each f; € £(Z%) and g;; — f; in
¢4(Z?) forany 1 <j < masi— oc.Letg; = (g;1,...,8im) fori € Z.Since ||gi;| - fiI| < g;;—f]
for all 1 <j < d, we may assume without loss of generality that all g;; > 0 and f; > 0. It

suffices to show that
Jim [|DM;, (@) ~ DM () | ) = O (39)

foreach/=1,2,...,d.

We only prove (39) for [ = d (since other cases are analogous). By the boundedness part,
we see that DdMQ'B(]_”) € £9(Z%). Then, fix € € (0,1), there exist N = Nl(e,f) >0and A >
8v/d() + 1) such that

lgij —fillerzay <€ and  Igijlleza) < Wfillagay+1 Vi=Niand1<j<m; (40)

Z d—q(md-
max{ ”DdM?Y:B(f)X(BsA(()))C ”zq(zd)’ ISl}P i X, @)e et 2y, A alm ‘“ﬂ)} <E€. (41)
<j<m
Combining (41) with (40) yields that

sup [1DagijX s ,@)¢ller z4)

1<j<m

<2 sup ”gl]X (BA© ”[1 (z4)
1<j<m

<2 sup (lgj —fllorzay + Wixw, @) lerzay) <4€ Vi= N (42)

1<j<m

For any 7€ Z% and i > N, we can write

M, 5(@) () - M B(f)(n)|

<

sup P
r>0,2cR4 N(B (x))m 4

M5 sh-I] ¥ ﬁ(l?)'
j=1 keB,(HN

J=1 keB,®NZ4

|[n=X|<Ar
m - m
<> (1"[ Will Zau) ( I lgin ||e1(Zd)> giz = fillea 2y
I=1 n=I+1
which together with (40) implies that M* B(gl (n) > M* B(f )(71) as i — oo for any 71 € Z4.
Consequently,
DM 5 (@)(7) — DaMz: 5 (f)(7)  as i — oo Vit € Z°. (43)

By (43), there exists Ny = Nj(¢, A) > 0 such that

|DaM;, 5(8) (1) — DaM, i> N, and |71] < 3A. (44)

€
0= 5z Gy

Page 12 0f 18
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It follows from (44) that

| DM, 5@) = DM, 5 ()| o
= ” (DlMg,B@') _DlMt))\t,B(?))XBgA 0) ”M (z4)
+ (DM 5@) - DIV, 5(F) x, VNG

S € + || (D[M)\ B(gl D[I\/[}L B(f ) BBA

@9

()

Fix i > max{Ny, N;}. We can write

” (DZMA B(gl) DlMa B(f)) BgA ||lq 74)

< > Y DM@+ Y Y [DaM 5 @)
|n'|=24 ng€Z wezd Ingl=24
n ezd-1 ngeZ

=2A1 +A2.

We first estimate A;. For each n' € Z4! with |#/| > 24, let
Y = {nd €l: Mglg@i)(n/,nd + 1) < Mglg@i)(n’,nd)},
Y, = {nd eZ: MQ‘B@)(M’,nd +1)> MQ,B@i)(n’,nd)},
Yy ={ng € Z: M, g@)(n',na + 1) = M, (@) (n',n4) }.

Then

Ar = Z Z » @) (1 na) = ML g(@)(n,ng + 1))*

| |>2A ndeY};r
nezd-1

+ Z Z &5@) (1, na+1) = M;, 5(@)(n',na))".

n'|>2A ndeY
n'ez4-1

We now prove that

Z Z aB(gl I’l I’ld) aB(gl (l’l I’ld+1)) Notm,d,ﬂ,q,kf €

' |>2A ndelf;r
n74-1

Z Z B(gl n y Mg + 1) ﬁc,B@i)(n/’ nd))q sa,m,d,ﬁ,q,kf €.

|n'|>2A ndeY
n e7d4-1

‘ q

Page 13 0f 18

(45)

(46)

(47)

(48)

(49)

We only prove (48), and (49) is analogous. Sinceall g;; € £Y(Z%), then for any (n',n,) € 74

with n; € Y, there exist % € R? and r(#/,ny) > 0 such that |(#', ng) —

x| < ar(n’,ny) and

Mg, @) (', n4) = Aypr ) (@) (X). By the argument similar to those used in deriving (32),

Z Z M}, 5(@) (1, na) = MG, 5 @) (7,4 + 1))

|7 [>2A ndeY;
n ez4-1
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m
q-1)(1-p) (g-1)B
Smd Z( [T tefs Zd)> (1Dagsse I i g S )

u=1 M<jFu<m

(XX @t
|/ |>2A ndeY;,
n' e74-1

D SRR )

KEB(; 1)y ) W d) LY

_gq(md—a+p)

qmd-a+p) S\
SY E((m)) T > guk)) . (50)
224 ngeY?, KEB( s 1yr(o ) (W )2
W ezd-1 Ot Dt mg) U7
Note that
_ q(md—a+p) o
Yo D> E(r(nna)) 3 |Dagis (0]
|n'|>2A ndeY;, l?eB(Ml) . ”d)(n g)NZA
n' e74-1
_ gq(md—a+p)
=D 1Dagu®)] D0 D7 (F(r(,ma))
kezd |n'|>2A ”dEYn
n' €741
X X )| <O 1 g} (51)

Fix k = (k',kz). When |k'| > A, we get from (36) that

, 7q(md;a+ﬁ) <
Z Z (F(r(n',na)) YUK =1 kg=n| <O+ Vr(n 1)) Samd,Bgr 1 (52)

| |>2A nge Y;,
n e74-1

When |k'| < A, note that |7/ —k'| > A > 8/d(% + 1) and g(md — o + B) > d. Then by Lemma
2.1 and (41) we have

Y Y F(r(nma))” T Xkt kg < D)
|n'|>2A ndeY;
n' ezd-1

—q(md-a+pB)
—q(md-a+pB) |(k/ -, ka— I’ld)|
<c 1 —_— Y = «/2
sqrmen 3y (e
| |>2A ngeY?,
n'ezd-1 !
Sa,m,ﬂl,ﬂ,q,k Z |;;[|—q(md—a+ﬂ) Sa,m,d,ﬁ,q,k Ad qlmd-c+p) <u¢ m,d, B €- (53)
7= A
nezd
It follows from (40), (42), and (51)—(53) that
q(md-a+p) N
Z Z (', ng)) - Z | Dagi (k)|
17224 ngey s, /?eB(M1),(n/’nd)(n’,nd)ﬂzd

n e7d-1

Page 14 0of 18
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Swpgmdi Y [Dagiu®)]+ Y |Dagiu(k)|e
[K'|>A [K'|<A
k' ezd-1 K ezd-1

Semd,pan 1Dagin X 4@y lerzdy + 208 ll 1 (za)€

Sa,m,d,ﬂ,q,k,f €. (54‘)
Similarly,
(md-a+B)

S Y EFrrm)) T 3 gin®)

|n'|=24 ndeY;, keB(Ml)r(nz,nd)(n’,nd)ﬂZd
nezd-1

Sa,m,d,ﬂ,q,kj €. (55)

Then (48) follows from (40), (50), and (54)—(55). It follows from (47)—(49) that

Al S/a,m,d,ﬁ,q,kf €. (56)
It remains to estimate A,. For each n’ € Z4™1, let
={Inal =24 : M}, 3(@) (', na + 1) < M, 3@)(n', na) },

z
Z {|l’ld| >2A: 1\/[)L B(gl (Vl Vld+1) >MaB(gl ( )}’
Z,

= {|nd| >2A: M o5@) (nng+1) =M B@)(rz’,nd)}.

Then we have

Ay =< Z Z aB(gL n nd) Q,B@)(V/,nd+l))q

n' €241 ng EZ;

+ Z Z M, 5@ (1 g + 1) = ML, g (@) (7, 1a))". (57)

n ezd-1 ndEZ

We want to show that

Z Z aB(g, n nd) aB(g, (n nd+1)) Namdﬁq”e, (58)
n'ezd-1 ngeZ,

Z Z L 5@ (g +1) = M}, 5(@)(n,n4))" Semdparf € (59)
wezd-1ngeZ,,

We only prove (58), and (59) is analogous. Sinceall g;; € £Y(Z%), then for any (1, ng) € Z°
with n, € Z},, there exist X € R? and (1, ny) > 0 such that |(#', ng) — %| < Ar(n’,n,) and
Mg,B(:g})(n’, na) = A 0 (€:)(%). By the arguments similar to those used to derived (32),

2 2 M@ na) - MG 5@ (' ma + 1))

n'eZd-1 ngez’,

m

np

Sond ( I ||g,,||elzd>(||Ddgm||elzd gl o)
n=1

1sj#pu=m

Page 150f 18
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q(md-a+p)

(XX (Fotm)

nezd-1 ng EZ;"

1-
X Z |Ddgi,/t (I_%)|>

KEB(; 1)y ) W d) L

_dglmd-a+p) -\*?
( > FE(r(r ) 7 > gw(k)> . (60)

n 24~ nyeZ?, keB(“l)r(n/’nd)(n/,nd)ﬂzd
Note that
_gqimd-a+p) -
S X e Y bl
n €74~ lndEZ:l ];GB()LH )or! ) (n nd)ﬂZd
g(md-a+p)
=2 IPagn®] 3o 30 F(r(rima))
kezd n'ezd4-1|nq|=2A
ngel
X X )| <04 Dr(n )} (61)

Fix k = (K, kg). When |ky| < A, note that |ng —kg| > A >8y/d(x +1) and g(md — + ) > d.
Invoking Lemma 2.1, we have

q(md-a+B)

Z Z (F(r(n',na))” 4 X (= 1) | <O+ V(0 )}

n ezd4-1|ng|>24

ndEZ
q(md—a+p)
Z Z r(n',na))” X{av/d0u+1) < k= 1) | <O+ (' )}
W ezd-1|ng|>2A
ng€l

qlmd— u(+ﬂ Z Z k- ”d)| B \/:1 —q(md—a+pB)
A+1

W ezd-1|ng|=24

ndEZ
= —q(md—a+ d-q(md-a+
Sa,m,dﬁ,q,l Z |”| at 2 Sa,m,d,ﬁ,q,)» A al +h) Sa,m,d,ﬂ,q,k €. (62)
7]>A
nezd

When |k;| > A, we get easily from (36) that

q(md—a+p)

===
Z Z r(n',na))” X <Gos Dyt )} Smadspign 1- (63)
W ezd-1 |ng|=24
ngel

It follows from (40) and (61)—(63) that

Yo > (E(r(nna) X |Dags,, ()|

n'eZd-1 nyeZ, KEBG 41y 1 d)(n/,nd)ﬂZd

g(md-a+p)

Sa,m,d,ﬁ,q,xf €. (64)



Zhang Advances in Difference Equations (2019) 2019:403 Page 17 of 18

Similarly,
_ qlmd-a+p) -
Y XY e
' ezd-1 nyeZy, KEB; 1)r(o )W )22
fja’m’d’ﬂ,q,)\ﬂ'p €. (65)

Combining (60) with (40) and (64)—(65) yields (58). We get from (57)—(59) that

A2 Sa,m,d,ﬁ,q,kf €. (66)

It follows from (45)—(46), (56), and (66) that

”DlMg,B@) _DlMg,B(f) ”eq(zd) ga,m,d,,s,q,)\,jf € Vi=max{Ni,Np}.
This yields (39) for [ = d.

3.2 Proof of Theorem 1.5 for M},
The proof of Theorem 1.5 for Mg,R is similar as for MQ,B' We only replace the norm | - |
with || - ||s. The details are left to the interested reader.
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