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Abstract
In this paper two modified least-squares iterative algorithms are presented for solving
the Lyapunov matrix equations. The first algorithm is based on the hierarchical
identification principle, which can be viewed as a surrogate of the least-squares
iterative algorithm proposed by Ding et al., whose convergence has not been proved
until now. The second one is motivated by a new form of fixed point iterative scheme.
With the tool of a new matrix norm, the proof of both algorithms’ global convergence
is offered. Furthermore, the feasible sets of their convergence factors are analyzed.
Finally, a numerical example is presented to illustrate the rationality of theoretical
results.
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1 Introduction
Matrix equations are often encountered in control theory [1, 2], system theory [3, 4], and
stability analysis [5–7]. For example, the stability of the autonomous system ẋ(t) = Ax(t) is
determined by whether the associated Lyapunov equation XA + A�X = –M has a positive
definite solution X, where M is a given positive definite matrix with approximate size [8].
In this paper, we are concerned with the following (continuous-time) Lyapunov matrix
equations:

AX + XA� = C, (1.1)

where A ∈ R
m×m and C ∈ R

m×m are the given constant matrices, and X ∈ R
m×m is the

unknown matrix to be determined.
Obviously, by using the Kronecker product ⊗ and the vec-operator vec, equation (1.1)

can be written as a system of linear equations:

(Im ⊗ A + A ⊗ Im) vec(X) = vec(C). (1.2)

The order of its coefficient matrix is m2, which becomes very large when the constant
m is large. For example, if m = 100, then m2 = 10, 000. Obviously, a 10,000 order square
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matrix requires much more storage capacity than several 100 order square matrices. Fur-
thermore, the inverse computation and eigenvalue computation of 10,000 order square
matrix are much more difficult than those of 100 order square matrix.

To solve equation (1.1) or its special cases or generalized versions, different methods
have been developed in the literature [5, 7, 9–19], which belong to the category of itera-
tive methods. For example, two conjugate gradient methods are proposed in [7] to solve
consistent or inconsistent equation (1.1). Both have finite termination property in the ab-
sence of round-off errors and can get least Frobenius norm solution or least-squares solu-
tion with the least Frobenius norm of equation (1.1) when they adopt some special kind of
initial matrix. By using the hierarchical identification principle, Ding et al. [18] designed
a gradient-based iterative algorithm and a least-squares iterative algorithm for equation
(1.1), and they proved that the gradient-based iterative algorithm always converges to the
exact solution for any initial matrix. However, convergence of the least-squares iterative
algorithm is not proved in [18]. In fact, the authors claimed that convergence of the least-
squares iterative algorithm is very difficult to prove and still requires studying further. In
this paper, we are going to further study the least-squares iterative algorithm for equa-
tion (1.1) and present two convergent least-squares iterative algorithms. The feasible set
of their convergence factor is presented.

The remainder of the paper is organized as follows. Section 2 presents the first least-
squares iterative algorithm for equation (1.1) and its global convergence. Section 3 dis-
cusses the second least-squares iterative algorithm for equation (1.1) and its global con-
vergence. Section 4 gives an example to illustrate the rationality of theoretical results. Sec-
tion 5 ends the paper with some remarks.

2 The first algorithm and its convergence
In this section, we give some notations, present the first least-squares iterative algorithm
for equation (1.1), and analyze its global convergence.

The symbol I stands for an identity matrix of approximate size. For any M ∈ R
n×n, the

symbol λmax[M] denotes the maximum eigenvalue of the square matrix M. For any N ∈
R

m×n, we use N� to denote its transpose, and the symbol tr(N ) to stand for its trace. The
Frobenius norm ‖N‖ is defined as ‖N‖ =

√
tr(N�N). The symbol A⊗B defined as A⊗B =

(aijB) stands for the Kronecker product of matrices A and B. For a matrix A ∈ R
m×n, the

vectorization operator vec(A) is defined by vec(A) = (a�
1 , a�

2 , . . . , a�
n )�, where ak is the kth

column of the matrix A. According to the property of the Kronecker product, for any
matrices M, N , and X with approximate size, we have

vec(MXN) =
(
N� ⊗ M

)
vec(X).

The following definition is a simple extension of the Frobenius norm ‖ · ‖.

Definition 2.1 Given a positive definite matrix M ∈ R
n×n and a matrix N ∈ R

m×n, the
M-Frobenius norm ‖N‖M is defined as

‖N‖M =
√

tr
(
N�MN

)
. (2.1)

The M-Frobenius norm ‖ · ‖M defined in (2.1) satisfies the following properties.



Sun et al. Advances in Difference Equations        (2019) 2019:305 Page 3 of 10

Theorem 2.1 Given a positive definite matrix M ∈ R
n×n and three matrices N , N1, N2 ∈

R
m×n, it holds that
(1) ‖N‖M = 0 ⇐⇒ N = 0.
(2) ‖N1 + N2‖2

M = ‖N1‖2
M + 2 tr(N�

1 MN2) + ‖N2‖2
M .

Proof The proof is elementary and is omitted here. �

Theorem 2.2 ([18]) Equation (1.1) has a unique solution if and only if the matrix Im ⊗
A + A ⊗ Im is nonsingular, and the unique solution X∗ is given by

vec
(
X∗) = [Im ⊗ A + A ⊗ Im]–1 vec(C).

By using the hierarchical identification principle, Ding et al. [18] presented the following
least-squares iterative algorithm for equation (1.1):

X1(k) = X(k – 1) + μ
(
A�A

)–1A�[
C – AX(k – 1) – X(k – 1)A�]

, (2.2)

X2(k) = X(k – 1) + μ
[
C – AX(k – 1) – X(k – 1)A�]

A
(
A�A

)–1, (2.3)

X(k) =
X1(k) + X2(k)

2
, 0 < μ < 4. (2.4)

The initial matrix X(0) may be taken as any matrix X0 ∈R
m×m.

The following example shows that the feasible set of the convergence factor μ of iterative
scheme (2.2)–(2.4) maybe not the interval (0, 4).

Example 2.1 Consider the Lyapunov matrix equations AX + XA� = C with

A =

[
2 –1
1 1

]

, C =

[
–1 –5
16 16

]

.

The numerical results of iterative scheme (2.2)–(2.4) with μ = 1, 0.99, 0.2 are plotted in
Fig. 1, in which

Error(k) =
∥∥AX(k) + X(k)A� – C

∥∥.

From the three curves in Fig. 1, we find that: (1) iterative scheme (2.2)–(2.4) with μ = 1
is divergent, while iterative scheme (2.2)–(2.4) with μ = 0.99, 0.2 is convergent; (2) the
constant 1 maybe the upper bound of μ for this example; (3) smaller convergence factor
often can accelerate the convergence of iterative scheme (2.2)–(2.4).

Based on iterative scheme (2.2)–(2.4), we propose the following modified least-squares
iterative algorithm.

The iteration X1(k) is defined the same as in (2.2), while the iterations X2(k) and X(k)
are defined as

X2(k) = X(k – 1) + μ
(
A�A

)–1[C – AX(k – 1) – X(k – 1)A�]
A, (2.5)

X(k) =
X1(k) + X2(k)

2
. (2.6)

The initial matrix X(0) can also be taken as any matrix X0 ∈ R
m×m.
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Figure 1 Numerical results of iterative scheme (2.2)–(2.4) with different μ

Remark 2.1 Modified least-squares iterative algorithm (2.2), (2.5), and (2.6) involves the
inverse of the matrix A�A. However, since this term is invariant in each iteration, we need
only compute it once before all iterations.

In the remainder of this section, we shall prove the global convergence of the first least-
squares iterative algorithm (2.2), (2.5), and (2.6), which is motivated by Theorem 4 in [18].

Theorem 2.3 If equation (1.1) has a unique solution X∗ and r(A) = m, the sequence {X(k)}
generated by iterative scheme (2.2), (2.5), and (2.6) converges to X∗ for any initial matrix
X(0), where the convergence factor μ satisfies

0 < μ <
2
ν

, (2.7)

and the constant ν is defined as

ν = 1 + λmax
(
A�A

)
λmax

((
A�A

)–1).

Proof Firstly, let us define three error matrices as follows:

X̃1(k) = X1(k) – X∗,
(
A�A

)–1/2X̃2(k) = X2(k) – X∗, X̃(k) = X(k) – X∗.

Then, by (2.4), the error matrix corresponding to X(k) can be written as

X̃(k) =
X1(k) + X2(k)

2
– X∗ =

X̃1(k) + X̃2(k)
2

. (2.8)

Thus, from the convexity of the function ‖ · ‖2
A�A, it holds that

∥∥X̃(k)
∥∥2

A�A ≤ ‖X̃1(k)‖2
A�A + ‖X̃2(k)‖2

A�A
2

=
‖X̃1(k)‖2

A�A + ‖X̃2(k)‖2
A�A

2
. (2.9)
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Secondly, setting

ξ (k) = AX̃(k – 1), η(k) = X̃(k – 1)A�. (2.10)

Then, by (2.2), (2.10), and X∗ is a solution of equation (1.1), X̃1(k) can be written as

X̃1(k) = X̃(k – 1) + μ
(
A�A

)–1A�[
–ξ (k) – η(k)

]
. (2.11)

Similarly, by (2.5), (2.10), and X∗ is a solution of equation (1.1), X̃2(k) can be written as

X̃2(k) = X̃(k – 1) + μ
(
A�A

)–1[–ξ (k) – η(k)
]
A. (2.12)

From (2.11) and Theorem 2.1, we have

∥∥X̃1(k)
∥∥2

A�A

=
∥∥X̃(k – 1)

∥∥2
A�A – 2μ tr

(
X̃�(k – 1)A�[

ξ (k) + η(k)
])

+ μ2∥∥(
A�A

)–1A�[
ξ (k) + η(k)

]∥∥2
A�A

=
∥∥X̃(k – 1)

∥∥2
A�A – 2μ tr

(
X̃�(k – 1)A�[

ξ (t) + η(k)
])

+ μ2 tr
([

ξ (k) + η(k)
]�A

(
A�A

)–1A�[
ξ (k) + η(k)

])

=
∥∥X̃(k – 1)

∥∥2
A�A – 2μ tr

(
ξ (k)�

[
ξ (k) + η(k)

])
+ μ2∥∥ξ (k) + η(k)

∥∥2.

Similarly, from (2.12) and Theorem 2.1, we have

∥∥X̃2(k)
∥∥2

A�A

=
∥∥X̃(k – 1)

∥∥2
A�A – 2μ tr

(
X̃�(k – 1)

[
ξ (k) + η(k)

]
A

)

+ μ2 tr
(
A�[

ξ (k) + η(k)
]�(

A�A
)–1[

ξ (k) + η(k)
]
A

)

≤ ∥∥X̃(k – 1)
∥∥2

A�A – 2μ tr
(
η(k)�

[
ξ (k) + η(k)

])

+ μ2λmax
(
A�A

)
λmax

((
A�A

)–1)∥∥ξ (k) + η(k)
∥∥2.

Substituting the above two inequalities into the right-hand side of (2.9) yields

∥∥X̃(k)
∥∥2

A�A

≤ ∥∥X̃(k – 1)
∥∥2

A�A – μ
∥∥ξ (k) + η(k)

∥∥2 +
μ2ν

2
∥∥ξ (k) + η(k)

∥∥2

=
∥∥X̃(k – 1)

∥∥2
A�A – μ

(
1 –

μν

2

)∥∥ξ (k) + η(k)
∥∥2

≤ ∥∥X̃(0)
∥∥2

A�A – μ

(
1 –

μν

2

) k∑

i=1

∥∥ξ (i) + η(i)
∥∥2.

Since 0 < μ < 2/ν , we have

∞∑

k=1

∥∥ξ (k) + η(k)
∥∥2 < ∞,
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from which it holds that

lim
k→∞

(
ξ (k) + η(k)

)
= 0.

That is,

lim
k→∞

(
AX̃(k – 1) + X̃(k – 1)A�)

= 0.

So

lim
k→∞

[Im ⊗ A + A ⊗ Im] vec
(
X̃(k – 1)

)
= 0.

Since the matrix Im ⊗ A + A ⊗ Im is nonsingular, we have

lim
k→∞

vec
(
X̃(k – 1)

)
= 0.

Thus

lim
k→∞

X(k) = X∗.

This completes the proof. �

Remark 2.2 We can adopt some iterative methods, such as the sum method, the power
method [20], to compute the maximum eigenvalue in the constant ν .

3 The second algorithm and its convergence
In this section, we present the second least-squares iterative algorithm for equation (1.1)
and analyze its global convergence.

Define a matrix C̄ as follows:

C̄ = C – XA�. (3.1)

Then equation (1.1) can be written as

S : AX = C̄.

From [18], the least-squares solution of the system S is

X =
(
A�A

)–1A�C̄.

Substituting (3.1) into the above equation, we have

X =
(
A�A

)–1A�(
C – XA�)

.

Then, we get the second least-squares iterative algorithm for equation (1.1) as follows:

X(k) = X(k – 1) – μ
(
X(k – 1) –

(
A�A

)–1A�(
C – X(k – 1)A�))

. (3.2)

The initial matrix X(0) may be taken as any matrix X0 ∈R
m×m.
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Theorem 3.1 If equation (1.1) has a unique solution X∗ and r(A) = m, the sequence {X(k)}
generated by iterative scheme (3.2) converges to X∗ for any initial matrix X(0), where the
convergence factor μ satisfies

0 < μ <
2 + 2λmin(A ⊗ A–1)

1 + λ2
max(A ⊗ A–1) + 2λmin(A ⊗ A–1)

. (3.3)

Proof Firstly, let us define an error matrix as follows:

X̃(k) = X(k) – X∗.

Then, by (3.2), it holds that

X̃(k) = X(k) – X∗

= X(k – 1) – X∗ – μ
(
X(k – 1) –

(
A�A

)–1A�(
C – X(k – 1)A�))

= X̃(k – 1) – μ
(
X(k – 1) –

(
A�A

)–1A�(
AX∗ + X∗A� – X(k – 1)A�))

= (1 – μ)X̃(k – 1) + μ
(
A�A

)–1A�(
X∗A� – X(k – 1)A�)

= (1 – μ)X̃(k – 1) + μA–1(X∗ – X(k – 1)
)
A�

= (1 – μ)X̃(k – 1) – μA–1X̃(k – 1)A�.

So

vec
(
X̃(k)

)
= (1 – μ) vec

(
X̃(k – 1)

)
– μ

(
A ⊗ A–1)vec

(
X̃(k – 1)

)
.

Then

∥∥vec
(
X̃(k)

)∥∥2

= (1 – μ)2∥∥vec
(
X̃(k – 1)

)∥∥2 – 2μ(1 – μ) vec�(
X̃(k – 1)

)(
A ⊗ A–1)vec

(
X̃(k – 1)

)

+ μ2∥∥(
A ⊗ A–1)vec

(
X̃(k – 1)

)∥∥2

≤ (
1 + 2μ + μ2 – 2μ(1 – μ)λmin

(
A ⊗ A–1) + μ2λ2

max

(
A ⊗ A–1))∥∥vec

(
X̃(k – 1)

)∥∥2.

Set ν = 1 + 2μ + μ2 – 2μ(1 – μ)λmin(A ⊗ A–1) + μ2λ2
max(A ⊗ A–1). From (3.3), it holds that

0 < ν < 1. Thus

∥∥vec
(
X̃(k)

)∥∥2 ≤ ν
∥∥vec

(
X̃(k – 1)

)∥∥2 ≤ νk∥∥vec
(
X̃(0)

)∥∥2.

Then

lim
k→∞

vec
(
X̃(k)

)
= 0.

So

lim
k→∞

X(k) = X∗.

This completes the proof. �
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Figure 2 Numerical results of the two tested algorithms (LSIA1 and LSIA2)

Example 3.1 Let us apply the two modified least-squares iterative algorithms, i.e., iterative
scheme (2.2), (2.5), and (2.6) (denoted by LSIA1) and iterative scheme (3.2) (denoted by
LSIA2), to solve the Lyapunov matrix equations in Example 2.1. We set μ = 0.2546 in the
first algorithm and μ = 0.3478 in the second algorithm. The numerical results are plotted
in Fig. 2.

The two curves in Fig. 2 illustrate that the two modified least-squares iterative algo-
rithms are both convergent, and LSIA2 is faster than LSIA1 for this problem.

4 Numerical results
In this section, an example is given to show the efficiency of the two proposed algorithms
(denoted by LSIA1 and LSIA2) in Sect. 2 and Sect. 3, and we give some comparisons with
the gradient-based iterative algorithm in [18] (denoted by GBIA). The convergence factors
in both algorithms are set to their upper bounds.

Example 4.1 Let us consider a medium scale Lyapunov matrix equation

AX + XA� = C,

with

A = –triu
(
rand(n), 1

)
+ diag

(
8 – diag

(
rand(n)

))
, C = rand(n).

We set n = 20 and set the initial matrix X(0) = 0.
The convergence factors in the three algorithms are all taken half of their upper bounds.

Three curves in Fig. 3 indicate that LSIA2 is much faster than LSIA1, and LSIA1 is little
faster than GBIA for this problem. In fact, the numbers of iterations of LSIA1, LSIA2, and
GBIA are 134, 12, and 135, respectively. The final errors of LSIA1, LSIA2, and GBIA are
9.1473e–07, 4.1768e–07, and 8.9406e–07, respectively.
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Figure 3 Numerical results of LSIA1, LSIA2, and GBIA

5 Conclusions
In this paper, two modified least-squares iteration algorithms are proposed for solving
the Lyapunov matrix equations, whose global convergence is proved. The feasible set of
their convergence factor is analyzed. Some numerical results are presented to verify the
theoretical results. In the future, we shall analyze the convergence property of the least-
squares iteration algorithm for solving the Sylvester matrix equations.
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