
Lee Advances in Difference Equations        (2019) 2019:333 
https://doi.org/10.1186/s13662-019-2249-3

R E S E A R C H Open Access

Continuum-wise expansive homoclinic
classes for robust dynamical systems
Manseob Lee1*

*Correspondence:
lmsds@mokwon.ac.kr
1Department of Mathematics,
Mokwon University, Daejeon, Korea

Abstract
In the study, we consider continuum-wise expansiveness for the homoclinic class of a
kind of C1-robustly expansive dynamical system. First, we show that if the homoclinic
class H(p, f ), which contains a hyperbolic periodic point p, is R-robustly
continuum-wise expansive, then it is hyperbolic. For a vector field, if the homoclinic
class H(γ ,X) does not include singularities and is R-robustly continuum-wise
expansive, then it is hyperbolic.
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1 Introduction
1.1 Continuum-wise expansiveness for diffeomorphisms
Let M be a closed connected smooth Riemannian manifold. A point x ∈ M is called a
periodic point if there is π (x) > 0 such that f π (x)(x) = x, where π (x) is the period of x.
A periodic point p with period π (p) > 0 is considered hyperbolic if the derivative Dpf π (p)

has no eigenvalues with norm one. Let Per(f ) = {x ∈ M : x is a periodic point of f }, and let
p ∈ Per(f ) be hyperbolic. Subsequently, there are Cr (r ≥ 1) sets W s(p) and W u(p), which
are called the stable manifold of p and the unstable manifold of p, respectively, such that
f iπ (p)(x) → p (as i → ∞) for x ∈ W s(p) and f –iπ (p)(x) → p (as i → ∞) for x ∈ W u(p).

Let p, q ∈ Per(f ) be hyperbolic. We say that p and q are homoclinically related if W s(p) �
W u(q) �= ∅ and W u(p) � W s(q) �= ∅, and in such a case, we write p ∼ q. Let us denote
H(p, f ) = {q ∈ Per(f ) : p ∼ q}. It is known that H(p, f ) is a closed, f -invariant, and transitive
set. Here a closed f -invariant set Λ is transitive if there is x ∈ Λ such that ω(x) = Λ, where
ω(x) is the omega limit set of x.

According to the result of Samle [27], if a diffeomorphism f satisfies Axiom A, that is,
the nonwandering set Ω(f ) = Per(f ) is hyperbolic, then this set can be written as the finite
disjoint union of closed f -invariant sets that are homoclinic classes of a periodic point in-
side them. An interesting problem is the hyperbolicity of homoclinic classes under various
C1-perturbations of expansiveness (see [13, 22, 23, 25, 26, 29]).

Let d be the distance on M induced from a Riemannian metric ‖·‖ on the tangent bundle
TM. A closed f -invariant set Λ (⊂ M) is expansive for f if there is e > 0 such that, for any
distinct points x, y ∈ Λ, there is n ∈ Z such that d(f n(x), f n(y)) ≥ e.
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Let p ∈ Per(f ) be hyperbolic. Then there exist a C1-neighborhood U (f ) of f and a neigh-
borhood U of p such that, for any g ∈ U (f ), pg =

⋂
n∈Z gn(U) is a unique hyperbolic periodic

point of g , where pg is said to be the continuation of p.
We say that the homoclinic class H(p, f ) is C1-robustly expansive if there is a C1-

neighborhood U (f ) of f such that, for any g ∈ U (f ), H(pg , g) is expansive, where pg is the
continuation of p. Note that, in the definition, the expansive constant depends on g ∈ U (f ).

A closed f -invariant set Λ ⊂ M is hyperbolic if the tangent bundle TΛM has a Df -
invariant splitting Es ⊕ Eu and there exist constants C > 0 and 0 < λ < 1 such that

∥
∥Dxf n|Es

x

∥
∥ ≤ Cλn and

∥
∥Dxf –n|Eu

x

∥
∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0.
Sambarino and Vieitez [25] proved that if the homoclinic class H(p, f ) is C1-robustly

expansive and germ expansive, then it is hyperbolic. Here H(p, f ) is germ expansive for f
indicating that if there is e > 0 such that, for any x ∈ H(p, f ), y ∈ M if d(f i(x), f i(y)) < e for
all i ∈ Z, then x = y. We say that the homoclinic class H(p, f ) is C1-stably expansive if there
exist a C1-neighborhood U (f ) of f and a neighborhood U of H(p, f ) such that, for any
g ∈ U (f ), Λg =

⋂
n∈Z gn(U) is expansive, where Λg is the continuation of Λ. Lee and Lee

[13] proved that if the homoclinic class H(p, f ) is C1-stably expansive, then it is hyperbolic.
For obtaining the results, we use a general notion of expansiveness (continuum-wise

expansive) and consider the hyperbolicity of the homoclinic class. Continuum-wise ex-
pansiveness is a general notion of expansiveness (see [11, Example 3.5]). A set A is nonde-
generate if it is not reduced to a point. We say that A ⊂ M is a nontrivial continuum if it is
a compact connected nondegenerate subset of M.

Definition 1.1 Let f : M → M be a diffeomorphism. A closed f -invariant set Λ (⊂ M) is
said to be a continuum-wise expansive subset of f if there is a constant e > 0 such that, for
any nondegenerate subcontinuum A ⊂ Λ, there is n ∈ Z such that

diam f n(A) ≥ e,

where diam A = sup{d(x, y) : x, y ∈ A} for any subset A ⊂ Λ.

Thus the constant e is called a continuum-wise expansive constant for f . In the definition
a diffeomorphism f is continuum-wise expansive if Λ = M.

Das, Lee, and Lee [6] proved that if the homoclinic class H(p, f ) is C1-robustly
continuum-wise expansive and satisfies the chain condition, then H(p, f ) is hyperbolic.
However, it is still an open question if the chain condition is omitted. Subsequently, we
consider that the homoclinic class H(p, f ) is a type of C1-robustly continuum-wise ex-
pansiveness. Let Diff(M) be the space of diffeomorphisms of M endowed with the C1

topology. We call a subset G ⊂ Diff(M) a residual subset if it contains a countable inter-
section of open and dense subsets of Diff(M). A dynamic property is called a C1-generic
property if it holds in a residual subset of Diff(M). Sambarino and Vieitez [26] proved that
if the homoclinic class H(p, f ) is generically C1-robustly expansive, then it is hyperbolic.
Lee [17] proved that if a locally maximal homoclinic class H(p, f ) is homogeneous, then it
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is hyperbolic. Lee [16] proved that if a homoclinic class H(p, f ) is continuum-wise expan-
sive, then it is hyperbolic. Using the C1-generic condition, we define a type of C1-robust
expansiveness, which was introduced by Li [19].

Definition 1.2 Let p be a hyperbolic periodic point of f . We say that the homoclinic class
H(p, f ) is R-robustly P if there exist a C1-neighborhood U (f ) of f and a residual set G ⊂
U (f ) such that, for any g ∈ G , H(pg , g) is P, where pg is the continuation of p.

In the definition, P is replaced by various types of expansiveness. Accordingly, we in-
troduce a general type of expansiveness proposed by Morales and Sirvent [20]. For a Borel
probability measure μ on M, we consider that f is μ-expansive if there is e > 0 such that
μ(Γe(x)) = 0 for all x ∈ M, where Γe(x) = {y ∈ M : d(f i(x), f i(y)) ≤ e for all i ∈ Z}. We say
that f is measure expansive if it is μ-expansive for every nonatomic Borel probability mea-
sure μ on M. According to Artigue and Carrasco [2], we know the following:

expansive ⇒ measure expansive ⇒ continuum-wise expansive.

Lee [17] proved that if the homoclinic class H(p, f ) is R-robustly measure expansive, then
it is hyperbolic. We can obtain the results for the R-robustly expansive homoclinic classes.
According to these results, the following is a general result of [17].

Theorem A Let p be a hyperbolic periodic point of f . If the homoclinic class H(p, f ) is
R-robustly continuum-wise expansive, then H(p, f ) is hyperbolic.

1.2 Continuum-wise expansiveness for vector fields
Let M be defined as before, and let X(M) denote the set of C1-vector fields on M endowed
with the C1-topology. Thus every X ∈X(M) generates a C1-flow Xt : M ×R → M, that is,
a C1-map such that Xt : M → M is a diffeomorphism satisfying (i) X0(x) = x, (ii) Xt+s(x) =
Xt(Xs(x)) for all t, s ∈R and x ∈ M„ and (iii) it is generated by the vector field X if

d
dt

Xt(x)
∣
∣
∣
∣
t=t0

= X
(
Xt0 (x)

)

for all x ∈ M and t ∈ R. A point σ ∈ M is singular if Xt(σ ) = σ for all t ∈ R. We denote by
Sing(X) the set of all singular points of X. For any x ∈ M, if x is not a singular point, then it
is a regular point of X. Let RX be the set of all regular points of X. A periodic orbit of X is an
orbit γ = Orb(p) such that XT (p) = p for some minimal T > 0. We denote by Per(X) the set
of all periodic orbits of X. A point x ∈ M is a critical element if it is either a singular point
or a periodic point of X. Let Crit(X) = Sing(X) ∪ Per(X) be the set of all critical elements
of X. Let Xt be the flow of X ∈X(M). A closed Xt-invariant set Λ is considered hyperbolic
for Xt if there are constants C > 0 and λ > 0 and a splitting TxM = Es

x ⊕ 〈X(x)〉 ⊕ Eu
x such

that the tangent flow DXt : TM → TM leaves the invariant continuous splitting and

‖DXt|Es
x‖ ≤ Ce–λt and ‖DX–t|Eu

x ‖ ≤ Ce–λt

for t > 0 and x ∈ Λ, where 〈X(x)〉 is the subspace generated by X(x).
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An increasing homeomorphism h : R → R with h(0) = 0 is called a reparameteriza-
tion. Let Hom(R) denote the set of all homeomorphisms of R. Let Rep(R) = {h ∈ Hom(R) :
h is a reparameterization}. Bowen and Walters [4] introduced and studied expansiveness
for vector fields. They showed that if a vector field X is expansive, then every singular point
is isolated.

A closed invariant set Λ ⊂ M is expansive of X ∈ X(M) if, for every ε > 0, there exist
δ > 0 and h ∈ Hom(R) such that, for any x, y ∈ Λ, if d(Xt(x), Xh(t)(y)) ≤ δ for all t ∈ R, then
y ∈ X(–ε,ε)(x). If Λ = M, then X is called expansive.

Regarding the notion of expansiveness, Arbieto, Codeiro, and Pacifico [1] introduced
and studied a general notion of expansiveness for vector fields. They proved that if a vec-
tor field X is continuum-wise expansive, then every singular point is isolated. Here we
explain continuum-wise expansiveness for vector fields in further detail. For a subset A of
M, C0(A,R) denotes the set of real continuous maps defined on A. We define

H(A) =
{

h : A → Rep(R) :

there is xh ∈ A with h(xh) = id, and h(·)(t) ∈ C0(A,R) for all t ∈ R
}

,

and if t ∈R and h ∈H(A), then

X t
h(A) =

{
Xh(x)(t)(x) : x ∈ A

}
.

For convenience, we set h(x)(t) = hx(t) for all x ∈ A and t ∈ R. Let Λ be a closed set of M.
A set A is called nondegenerate if it is not reduced to a point. We say that A ⊂ M is a
continuum if it is a compact connected nondegenerate subset A of M.

Definition 1.3 Let X ∈X(M). We say that X is continuum-wise expansive if, for any ε > 0,
there is δ > 0 such that if A ⊂ M is a continuum and h ∈H(A) satisfies

diam
(
X t

h(A)
)

< δ for all t ∈R,

then A ⊂ X(–ε,ε)(x) for some x ∈ A.

Let γ ∈ Per(X) be hyperbolic. We consider that the dimension of the stable manifold
W s(γ ) of γ is the index of γ , denoted by index(γ ). The homoclinic class of X associated
with a hyperbolic closed orbit γ , denoted by H(γ , X), is defined as the closure of the trans-
verse intersection of the stable and unstable manifolds of γ , that is,

H(γ , X) = W s(γ ) � W u(γ ),

where W s(γ ) is the stable manifold of γ , and W u(γ ) is the unstable manifold of γ . It is
evident that it is closed, Xt-invariant, and transitive. Here, a closed invariant set Λ is tran-
sitive if there is x ∈ Λ such that ω(x) = Λ.

For two hyperbolic closed orbits γ and η of X, we say that γ and η are homoclinically
related, denoted by γ ∼ η, if

W s(γ ) � W u(η) �= ∅ and W s(η) � W u(γ ) �= ∅.
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If γ and η are homoclinically related, then index(η) = index(γ ). Let γ ∈ Per(X) be hyper-
bolic. Thus there exist a C1-neighborhood U (X) of X and a neighborhood U of γ such
that, for any Y ∈ U (X), there is a unique hyperbolic periodic orbit γY =

⋂
t∈R Yt(U). The

hyperbolic periodic orbit γY is called the continuation of γ with respect to Y .
We say that the homoclinic class H(γ , X) is C1-robustly expansive if there is a C1-

neighborhood U (X) of X such that, for any Y ∈ U (X), H(γY , Y ) is expansive, where γY

is the continuation of γ .
A subset G ⊂ X1(M) is called a residual subset if it contains a countable intersection of

the open and dense subsets of X1(M). A dynamic property is called a C1-generic property
if it holds in a residual subset of X(M).

Lee and Park [18] proved that, for a C1-generic X, if an isolated homoclinic class H(γ , X)
is expansive, then it is hyperbolic. Here, a closed Xt-invariant set Λ is isolated if there is a
neighborhood U of Λ such that Λ =

⋂
t∈R Xt(U). We consider that a closed invariant set

Λ is germ expansive if, for any ε > 0, there is δ > 0 such that, for any x ∈ Λ and y ∈ M, there
is h ∈ Hom(R) such that if d(Xt(x), Xh(t)(y)) < δ for all t ∈R, then y ∈ X(–ε,ε)(x). It is evident
that, if Λ is expansive, then it is germ expansive. However, the converse is not true. Note
that if Λ is isolated germ expansive, then Λ is expansive.

Gang [10] proved that if the homoclinic class H(γ , X) is C1-robustly expansive and
H(γ , X)-germ expansive, then it is hyperbolic.

A vector field X has the shadowing property on Λ if, for any ε > 0, there exists δ > 0
such that, for any (δ, 1)-pseudo orbit ξ = {(xi, ti) : ti ≥ 1, i ∈ Z} ⊂ Λ, there exist y ∈ M and
h ∈ Hom(R) satisfying

d
(
Xh(t)(y), Xt–si (xi)

)
< ε

for any si ≤ t < si+1, where si are defined as s0 = 0, sn =
∑n–1

i=0 ti, and s–n =
∑–1

i=–n ti, n =
1, 2, . . . .

Lee, Lee, and Lee [14] proved that if the homoclinic class H(γ , X) is C1-robustly ex-
pansive and shadowable, then it is hyperbolic. According to the results, we consider the
hyperbolicity of the homoclinic class H(γ , X) under a type of C1-robustly continuum-wise
expansiveness.

Definition 1.4 Let X ∈ X(M). We say that the homoclinic class H(γ , X) is R-robustly
continuum-wise expansive if there exist a C1-neighborhood U (X) of X and a residual set
G ⊂ U (X) such that, for any Y ∈ G , H(γY , Y ) is continuum-wise expansive, where γY is the
continuation of γ .

Using this definition, we have the following theorem.

Theorem B Let X ∈ X(M) and HX(γ ) ∩ Sing(X) = ∅. If the homoclinic class H(γ , X) is
R-robustly continuum-wise expansive, then it is hyperbolic for X.

2 Proof of Theorem A
Let M be defined as before, and let f : M → M be a diffeomorphism. For any δ > 0, a
sequence {xi}i∈Z is called a δ-pseudo-orbit of f if d(f (xi), xi+1) < δ for all i ∈ Z. For a given
x, y ∈ M, we write x � y if for any δ > 0, there is a finite δ-pseudo-orbit {xi}n

i=0 (n ≥ 1)
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of f such that x0 = x and xn = y. We write x � y if x � y and y � x. The set of points
{x ∈ M : x � x} is called the chain recurrent set of f and is denoted by CR(f ). The chain
recurrence class of f is the set of equivalent classes � on CR(f ). Let p be a hyperbolic
periodic point of f . Denote C(p, f ) = {x ∈ M : x � p and p � x}, which is a closed invariant
set.

It is known that C(p, f ) is a closed f -invariant set. Moreover, H(p, f ) ⊂ C(p, f ). A closed
small arc I of f is called a simply periodic curve if, for any ε > 0,

(a) there is k > 0 such that f k(I) = I ,
(b) 0 < l(f i(I)) < ε for all 0 ≤ i < k,
(c) the endpoints of I are hyperbolic, and
(d) I is normally hyperbolic,

where l(A) denotes the length of A (see [29]). It is evident that I is not a point set.

Lemma 2.1 There is a residual set G1 ⊂ Diff(M) such that, for any f ∈ G1, we have the
following:

(a) f is Kupka–Smale, that is, every periodic point of f is hyperbolic, and the stable and
unstable manifolds are transversal intersections (see [24]).

(b) H(p, f ) = C(p, f ) (see [3]).
(c) if, for any C1-neighborhood U (f ) of f , there is g ∈ U (f ) such that g has a simply

periodic curve I , then f has a simply periodic curve J (see [29]).

The following lemma is important for a C1 perturbation property, which is called Franks’
lemma.

Lemma 2.2 ([8]) Let U (f ) be a C1-neighborhood of f . Then there exist ε > 0 and a C1-
neighborhood U0(f ) ⊂ U (f ) of f such that, for any g ∈ U0(f ), a set {x1, x2, . . . , xN }, a neighbor-
hood U of {x1, x2, . . . , xN }, and a linear map Li : Txi M → Tg(xi)M satisfying ‖Li – Dxi g‖ ≤ ε

for all 1 ≤ i ≤ N , there is ĝ ∈ U (f ) such that ĝ(x) = g(x) if x ∈ {x1, x2, . . . , xN } ∪ (M \ U) and
Dxî g = Li for all 1 ≤ i ≤ N .

For any hyperbolic p ∈ Per(f ), we say that p is weakly hyperbolic if, for any η > 0, there is
an eigenvalue μ of Dpf π (p) such that

(1 – η)π (p) < |μ| < (1 + η)π (p).

It is evident that if p is a weakly hyperbolic periodic point of f , then there is g C1-close to
f such that pg is not hyperbolic for g .

Lemma 2.3 Let p ∈ Per(f ) be hyperbolic. If q ∈ H(p, f ) ∩ Per(f ) with q ∼ p is weakly hyper-
bolic, then there is g C1-close to f such that g has a simply periodic curve L⊂ C(pg , g).

Proof Suppose that q ∈ H(p, f ) ∩ Per(f ) with q ∼ p is weakly hyperbolic. According to
Lemma 2.2, there is g C1-close to f such that pg is not hyperbolic. Thus Dpg gπ (pg ) has an
eigenvalue μ such that |μ| = 1. For simplicity, we may assume that pg is a fixed point of g .
Let Epg be the vector space associated with the eigenvalue μ. For the proof, we consider the
case of μ ∈ R. Consider a nonzero vector v associated with μ. According to Lemma 2.2,
there is g1 C1-close to g such that
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(i) g1(pg) = g(pg) = pg , and
(ii) g1(exppg (v)) = exppg ◦Dpg g ◦ exp–1

pg (expp(v)) = exppg (v).
For any small β > 0, we set Epg1

(β) = {t · v : –β/2 ≤ t ≤ β/2}. Thus we have a closed small
curve J such that

(i) J = exppg1
(Epg1

(β)) with diamJ = β ,

(ii) gπ (pg1 )
1 (J ) = J is the identity map, and

(iii) J is normally hyperbolic.
It is evident that the identity map is contained in C(pg1 , g1). As gπ (pg1 )

1 (J ) = J is the iden-
tity map, by Lemma 2.2 again, there is h C1-close to g such that h has a closed small curve
L ⊂ C(ph, h). Thus the curve L is such that hπ (ph)(L) = L is the identity map, diamL = β ,
L is normally hyperbolic, and the endpoints of L are hyperbolic. The closed small curve
L is a simply periodic curve of h, which is contained in C(ph, h). �

Note that, by Lemma 2.3, there is g C1-close to f such that g has a simply periodic curve
L⊂ C(pg , g). However, the simply periodic curve L is not contained in H(pg , g) (see [25]).
Let WH denote the set of all weakly hyperbolic periodic points of f .

Lemma 2.4 If the homoclinic class H(p, f ) is R-robustly continuum-wise expansive, then
H(p, f ) ∩WH = ∅.

Proof Suppose that H(p, f ) ∩WH �= ∅. Thus there is q ∈ H(p, f ) ∩ Per(f ) with q ∼ p such
that q is weakly hyperbolic. As H(p, f ) is R-robustly continuum-wise expansive and q ∈
H(p, f ) ∩ Per(f ) with q ∼ p such that q is weakly hyperbolic, there is g ∈ G1 ∩ U (f ) such
that H(pg , g) = C(pg , g), and according to Lemma 2.3, there is β > 0 such that g has a simply
periodic curve J ⊂ C(pg , g) with diamJ = β/4. As C(pg , g) is continuum-wise expansive,
J is continuum-wise expansive. According to [12, Proposition 2.6], g is continuum-wise
expansive if and only if gn is continuum-wise expansive for any n ∈ Z\ {0}. Consider e = β .
By the definition of a simply periodic curve there is k > 0 such that

diam gki(J ) = diamJ < e

for all i ∈ Z. By the definition of continuum-wise expansivity, J should be a point. As J
is a simply periodic curve, this is a contradiction. �

The following was proven by Wang [28]. He considered the Lyapunov exponents of the
periodic point in the homoclinic class H(p, f ).

Lemma 2.5 There is a residual set G2 ⊂ Diff(M) such that, for any f ∈ G2, if H(p, f ) is not
hyperbolic, then there is q ∈ H(p, f ) ∩ Per(f ) with q ∼ p such that q is a weakly hyperbolic
periodic point.

Proof of Theorem A Let U (f ) be a C1-neighborhood of f , and let G = G1 ∩G2. As H(p, f ) is
R-robustly continuum-wise expansive, H(pg , g) is continuum-wise expansive for any g ∈
G ∩ U (f ). Assume that there is g ∈ G ∩ U (f ) such that H(pg , g) is not hyperbolic. As g ∈
G ∩ U (f ), there is q ∈ H(pg , g) ∩ Per(g) = C(pg , g) ∩ Per(g) with q ∼ pg such that q is a
weakly hyperbolic point. According to Lemma 2.4, this is a contradiction. Thus, if H(p, f )
is R-robustly continuum-wise expansive, then, for any g ∈ G ∩U (f ), H(pg , g) is hyperbolic,
and hence H(p, f ) is hyperbolic. �
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3 Proof of Theorem B
Let M be defined as before, and let X ∈ X(M). We denote by TpM(δ) the ball {v ∈ TpM :
‖v‖ ≤ δ}. For every x ∈ RX , let Nx = 〈X(x)〉⊥ ⊂ TxM, and let Nx(δ) be the δ ball in Nx. We
set Nx,r = Nx ∩ TxM(r) (r > 0) and Nx,r0 = exp(Nx(r0)) for x ∈ M.

Let Sing(X) = ∅, and let N =
⋃

x∈RX
Nx. We define the linear Poincaré flow

PX
t := πx ◦ DxXt ,

where πx : TxM → Nx (⊂ N ) is the natural projection along the direction of X(x), and DxXt

is the derivative map of Xt . The following is an important result to prove hyperbolicity.

Remark 3.1 ([7]) Let Λ ⊂ M be a compact invariant set of Xt . Then Λ is a hyperbolic
set of Xt if and only if the linear Poincaré flow restriction on Λ has a hyperbolic splitting
NΛ = Ns ⊕ Nu.

Let X ∈X(M), and suppose p ∈ γ ∈ Per(X) (XT (p) = p), where T > 0 is the prime period.
If f : Np,r0 → Np is the Poincaré map (r0 > 0), then f (p) = p. Accordingly, γ is hyperbolic
if and only if p is a hyperbolic fixed point of f . The following is a vector field version of
Franks’ lemma.

Lemma 3.2 ([21]) Let X ∈X(M), p ∈ γ ∈ Per(X) (XT (p) = p, T > 0), and let f : Np,r0 →Np

be the Poincaré map for some r0 > 0. Let U (X) ⊂ X(M) be a C1-neighborhood of X, and let
0 < r ≤ r0 be given. Then there exist δ0 > 0 and 0 < ε0 < r/2 such that, for an isomorphism
L : Np → Np with ‖L – Dpf ‖ < δ0, there is Y ∈ U (X) having the following properties:

(a) Y (x) = X(x) if x /∈ Fp(Xt , r, T/2),
(b) p ∈ γ ∈ Per(Y ),
(c)

g(x) =

⎧
⎨

⎩

expp ◦L ◦ exp–1
p (x) if x ∈ Bε0/4(p) ∩Np,r ,

f (x) if x /∈ Bε0 (p) ∩Np,r ,

where Bε(x) is a closed ball in M center at x ∈ M with radius ε > 0, Fp(Xt , r, T/2) = {Xt(y) :
y ∈Nx,r and 0 ≤ t ≤ T}, and g : Np,r →Np is the Poincaré map defined by Yt .

Remark 3.3 Let Λ ⊂ M be a closed Xt-invariant set, and let Λ be continuum-wise expan-
sive for X. If Λ ∩ Sing(X) �= ∅, then Λ ∩ Sing(X) is totally disconnected.

Proof Suppose that Λ ∩ Sing(X) is not totally disconnected. Thus there is a set C ⊂ Λ ∩
Sing(X) such that C is closed and connected, that is, a nontrivial continuum. Let ε > 0 be
given. We assume that diam(C) < ε. As C ⊂ Λ ∩ Sing(X), Xt(C) = C for all t ∈ R. Thus we
know that

diam
(
Xt(C)

)
= diam(C) < ε

for all t ∈R. Thus C should be an orbit. This is a contradiction as C is a nontrivial contin-
uum. �
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For any x, y ∈ M, we write x ⇀ y if, for any δ > 0, there is a δ-pseudo-orbit {(xi, ti) :
ti ≥ 1}n

i=1 ⊂ M such that x0 = x and d(Xtn–1 (xn–1), y) < δ. Similarly, y ⇀ x. We can ob-
serve that x, y satisfy both conditions, and thus x � y. Thus we have an equivalence
relation on the set R(X). Every equivalence class of � is called a recurrence class of X.
Let γ be a hyperbolic periodic point of X. For some p ∈ γ , let C(γ , X) = {x ∈ M : x �
p denote the chain recurrence class of X}. According to the definition, we can observe
that C(γ , X) is closed and Xt-invariant and that H(γ , X) ⊂ C(γ , X). Bonatti and Crovisier
[3] showed that, for a C1-vector field X, the chain recurrence class C(γ , X) is the homo-
clinic class H(γ , X), which is a version of the vector field of diffeomorphisms. Note that if
a vector field X does not contain singularities, then the C1-generic results of diffeomor-
phisms can be used for C1 generic vector fields (see [5, 9]).

Lemma 3.4 There is a residual set R1 ⊂X(M) such that every X ∈R1 satisfies the follow-
ing conditions:

(a) X is Kupka–Smale, that is, every critical point is hyperbolic and its invariant
manifolds intersect transversally (see [12]).

(b) the chain recurrence class C(γ , X) = H(γ , X) for any γ ∈ Per(X) (see [3]).

We say that a vector field X is a local star on H(γ , X) if there is a C1-neighborhood U (X)
of X such that, for any Y ∈ U (X), every η ∈ H(γY , Y ) ∩ Crit(Y ) is hyperbolic, where γY is
the continuation of Y . Let G∗(H(γ , Y )) denote the set of all vector fields satisfying the local
star on H(γ , X).

Proposition 3.5 Let HX(γ ) ∩ Sing(X) = ∅, and let γ ∈ Per(X) be hyperbolic. If the homo-
clinic class H(γ , X) is R-robustly continuum-wise expansive, then X ∈ G∗(H(γ , X)).

Proof Since HX(γ ) ∩ Sing(X), we prove that if H(γ , X) is R-robustly continuum-wise ex-
pansive, then every η ∈ HX(γ ) ∩ Per(X) is hyperbolic. Suppose by contradiction that there
exist Y ∈ U (X) and γ ∈ H(γY , Y ) ∩ Per(Y ) such that γ is not hyperbolic. Consider p ∈ γ

such that YT (p) = p(T > 0), and let f : Np,r →Np (for some r > 0) be the Poincaré map as-
sociated with Y . As γ is not hyperbolic, p is not hyperbolic. Thus we assume that there is
an eigenvalue λ of Dpf such that |λ| = 1. Let δ0 > 0 and 0 < ε0 < r/4 be given by Lemma 3.2,
and let L : Np → Np be a linear isomorphism with ‖L – Dpf ‖ < δ0 such that L =

( A O
O B

)
with

respect to some splitting Np = Gp ⊕ Hp(= Es
p ⊕ Eu

p ), where A : Gp → Gp has an eigenvalue
λ such that dim Gp = 1 if λ ∈ R or dim Gp = 2 if λ ∈ C and B : Hp → Hp is hyperbolic. Ac-
cording to Lemmas 3.2 and 3.4, there exists Z ∈R1 C1-close to Y (Z ∈ U (X)) such that

(a) Z(x) = Y (x) if x /∈ Fp(Y , r0, T),
(b) p ∈ γ ∈ Per(Z), and
(c)

g(x) =

⎧
⎨

⎩

expp ◦L ◦ exp–1
p (x) if x ∈ Bε0/4(p) ∩Np,r0 ,

f (x) if x /∈ Bε0 (p) ∩Np,r0 .

Here g : Np,r0 → Np is the Poincaré map associated with Z. Consider a nonzero vector
u ∈ Gp such that ‖u‖ ≤ ε0/8. Then we have

g
(
expp(u)

)
= expp ◦L ◦ exp–1

p
(
expp(u)

)
= expp(u).
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Case 1. dim Gp = 1. We may assume that λ = 1 for simplicity (the other case is similar).
We set an arc Iu = {su : 0 ≤ s ≤ 1} and expp(Iu) = Jp. Then we know that

(a) Jp ⊂ Bε0 (p) ∩Np,r0 , and
(b) g|Jp : Jp → Jp is the identity map.

Let diam(Jp) = ε0/2. As g|Jp : Jp → Jp is the identity map, according to Lemma 3.4, Jp ⊂
C(γZ , Z), and hence g|Jp : Jp → Jp is continuum-wise expansive. However, it is evident
that the identity map g|Jp is not continuum-wise expansive, a contradiction.

Case 2. dim Gp = 2. According to Lemma 3.2, we can find Z ∈ R1 ∩ U (X) such that Dpg
is a rational rotation. Thus there is l �= 0 such that Dpgl has an eigenvalue of 1. As in the
proof of case 1, we can derive a contradiction. �

We say that p ∈ γ ∈ Per(X) is a weakly hyperbolic periodic point if, for any δ > 0, there is
an eigenvalue λ of Dpf such that

(1 – δ) ≤ λ ≤ (1 + δ),

where f : Np,r → Np is the Poincaré map associated with X. We introduce the concept
of a vector field version of diffeomorphisms (see [29]). Let Sing(X) = ∅. For any η > 0, we
consider that a C1-curve J is η-simply periodic for X if

(a) J is periodic with period T ,
(b) the length of Xt(J ) is less than η for any 0 ≤ t ≤ T , and
(c) J is normally hyperbolic.

Lemma 3.6 For any X ∈R1, if p ∈ η ∈ H(γ , X) ∩ Per(X) with η ∼ γ is a weakly hyperbolic
periodic point, then, for any C1-neighborhood U (X) of X, there is Y ∈R1 ∩U (X) such that
f has an ε-simply periodic curve J ⊂ H(γY , Y ) for some ε > 0, where f : Np,r → Np is the
Poincaré map defined by Y .

Proof Let X ∈ R1, and let U (X) be a C1-neighborhood of X. Suppose that p ∈ η ∈
H(γ , X) ∩ Per(X) with η ∼ γ is a weakly hyperbolic periodic point. As η ∼ γ , we consider
two points x ∈ W s(η) � W u(γ ) and y ∈ W u(η) � W s(γ ). Consider Y ∈R1 ∩U (X); thus, we
have H(γY , Y ) = C(γY , Y ). Thus, as in the proof of [15, Proposition 4.1], there exist ε > 0
and the Poincaré map g : Np,r →Np associated with Y such that

(i) the map g is defined by Y ,
(ii) g has a closed arc I or a disc D such that g|I : I → I is the identity map, or

g|D : D →D is a rotation map,
(iii) 0 < diamI ≤ ε and 0 < diamD ≤ ε,
(iv) Y–t(x) → γ and Yt(y) → γ as t → ∞, and gn(x) → J (or D) and gn(y) → I (or D)

as n → ∞, and
(v) I ⊂ C(γY , Y ) and D ⊂ C(γY , Y ).

As H(γY , Y ) = C(γY , Y ), we have I ⊂ H(γY , Y ) and D ⊂ H(γY , Y ), and they are ε-simply
periodic curves. �

Lemma 3.7 If the homoclinic class H(γ , X) is continuum-wise expansive, then there is no
η-simply periodic curve J ⊂ H(γ , X).
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Proof Assume that there is an η-simply periodic curve J ⊂ H(γ , X). Thus there is T > 0
such that XT (J ) = J and diam(Xt(J )) ≤ η for any 0 ≤ t ≤ T . It is evident that the curve
J is a nontrivial continuum. As XT (J ) = J , XT (x) = x for all x ∈ J . We define h : J →
Rep(R) such that hx(t) = t for all x ∈ J and t ∈R. Thus, for all t ∈ R, we have

diam
(
X t

h(J )
)

= max
{

d
(
Xhx(t)(x), Xhy(t)(y)

)
: x, y ∈ J

}

= max
{

d
(
Xt(x), Xt(y)

)
: x, y ∈ J

}
< η.

If η is a continuum-wise expansive constant, then it is a contradiction as J contains no
any single orbit of x ∈ J . �

Lemma 3.8 Let γ ∈ Per(X) be hyperbolic. If the homoclinic class H(γ , X) is R-robustly
continuum-wise expansive, then, for any η ∈ H(γ , X) ∩ Per(X) with η ∼ γ , p ∈ η is not a
weakly hyperbolic periodic point.

Proof Suppose by contradiction that there is a hyperbolic η ∈ H(γ , X)∩Per(X) with η ∼ γ

such that p ∈ η is a weakly hyperbolic periodic point. According to Lemma 3.6, there is Y ∈
R1 ∩U (X) such that f has an ε-simply periodic curve J ⊂ H(γY , Y ) for some ε > 0, where
f : Np,r →Np is the Poincaré map defined by Y . As H(γ , X) is R-robustly continuum-wise
expansive, according to Lemma 3.7, this is a contradiction. �

Let p ∈ γ be a hyperbolic periodic point of X with period π (p), and let f : Np,r →Np be
the Poincaré map with respect to X. Subsequently, if μ1,μ2, . . . ,μd are the eigenvalues of
Dpf , then

λi =
1

π (p)
log |μi|

for i = 1, 2, . . . , d are called the Lyapunov exponents of p. Wang [28] proved that, for a C1-
generic nonsingular vector field X ∈X(M), if a homoclinic class H(γ , X) is not hyperbolic,
then there is a periodic orbit Orb(q) of f that is homoclinically related to Orb(p) and has
a Lyapunov exponent arbitrarily close to 0, which is a vector field version of the result of
Wang [28]. Note that if a hyperbolic periodic orbit γ has a Lyapunov exponent arbitrarily
close to 0, then there is a point p ∈ γ such that p is a weakly hyperbolic periodic point
of X. Thus, we can rewrite the result of Wang [28] as follows.

Lemma 3.9 There is a residual set R2 ⊂ X(M) such that, for any X ∈ R2, if H(γ , X) ∩
Sing(X) = ∅ and H(γ , X) is not hyperbolic, then there is η ∈ H(γ , X) ∩ Per(X) with η ∼ γ

such that p ∈ η is a weakly hyperbolic periodic point of X.

Proof of Theorem B As H(γ , X) is continuum-wise expansive, H(γ , X) ∩ Sing(X) = ∅. To
derive a contradiction, we assume that H(γ , X) is not hyperbolic. Consider Y ∩U (X)∩R1 ∩
R2. Thus, according to Lemma 3.9, there is η ∈ H(γY , Y ) ∩ Per(X) with η ∼ γY such that
p ∈ η is a weakly hyperbolic periodic point. As H(γ , X) is R-robustly measure expansive,
according to Lemma 3.8, Y has no weakly hyperbolic periodic points, a contradiction. �
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Remark 3.10 Let ϕ ≡ X1 : M → M be a diffeomorphism, and let p ∈ γ ∈ Per(X) with
Xπ (p)(p) = p. We set X1(p) = p1. Then we define the homoclinic class Hϕ(p1) that con-
tains p1. By assumption HX(γ ) ∩Sing(X) = ∅. According to [1, Theorem 3.2], a vector field
X is continuum-wise expansive if and only if a suspension map ϕ of X is continuum-wise
expansive. Thus as in the proof of Theorem A, we have that the homoclinic class Hϕ(p1)
is hyperbolic if Hϕ(p1) is R-robustly continuum-wise expansive.
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