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1 Introduction
To describe the periodic oscillation in Nicholson’s classic experiments [1] with the Aus-
tralian sheep blowfly, Lucilia cuprina, Gurney et al. [2] put up the following Nicholson’s

blowflies model:
w(t) = —dw(t) + bw(t — 9)e 7 ), (1.1)

where b is the maximum per capita daily egg production rate, % is the size at which the
blowfly population reproduces at its maximum rate, d is the per capita daily adult death
rate, and ¢ is the generation time. Due to the immense application of Nicholson’s blowflies
model in biology, model (1.1) and its modifications have been extensively discussed by lots
of authors (see, e.g., [3—6] and the references therein). Noticing the periodic change of real
environment, many scholars [7-9] generalized model (1.1) into the following Nicholson’s
blowflies model:

w(t) = —d(tyw(t) + Y b(t)w(t - v;(£))e 0, (1.2)

j=1

where m is a positive integer, d : R — R and b;,;,%; : R — [0,+00), j = 1,2,...,m, are

bounded continuous functions, and w(z) is the size of the population at time ¢. Noting
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that the exponential convergent rate can be unveiled [10-29], Long [30] investigated the
exponential convergence of model (1.2).

Some researchers think that time delays appearing in many biological models are pro-
portional; in other words, the proportional delay function takes the form 9(¢) = ¢ — at
(0 < a <1 is a constant). In objective world, proportional delay plays a key role in nu-
merous areas such as web quality, current collection [31], biological systems and many
nonlinear models [32, 33], electrodynamics [34], and probability principle [35]. So it is
valuable to study the global exponential convergence of Nicholson’s blowflies model with
proportional delays. But so far there are no manuscripts about the global exponential con-
vergence of Nicholson’s blowflies model with proportional delays.

Stimulated by the above analysis, it is important for us to analyze the global exponential
convergence on Nicholson’s blowflies model with proportional delays. In this paper, we
focus on the following Nicholson’s blowflies model with proportional delays:

W(t) = —d(Ow(t) + Y biO)wlazt)e G, (1.3)

j=1

where m is a positive integer, d : R — R and b;,;, % : R — [0,+00), j = 1,2,...,m, are
bounded continuous functions, a; is the proportional delay factor such that 0 < g; < 1,
ajt =t — (1 —ayt, and (1 —a;)t — +00 as t — +00.

The initial condition of model (1.3) takes the form
W(S) = I;[/(S)) IS [dotOI tO]: Lo > 0, (1.4')

where ag = min;.1 5 ,{a;}, and ¥ is a real-valued continuous function on [agto, £].

For convenience, we denote [* = sup,(,, .0 [{(£)| and I~ = infie[sy,+00) [/(£)| for a bounded
continuous function / on [ty, +00).

Throughout this paper, we also make the following assumptions:

(K1) There exist a bounded continuous function: d* : [ty, +00) — (0, +00) and a positive

constant p such that e” I; d©)do < poe‘fst 4*©0)d0 for all t,s € Rand t —s > 0.

(K2) sup;s, {—d*(t) + Z;Zl |b;(2)[} < 0.

(K3) ma > 1, where a = maxj<j<{a;}.
The key task of this paper is finding a sufficient condition that ensures the global expo-
nential convergence of all solutions of (1.3). The key contributions of this paper are the
following: (i) For the first time, the new Nicholson’s blowflies model with proportional
delays is presented; (ii) A new sufficient condition that guarantees the global exponen-
tial convergence of Nicholson’s blowflies model with proportional delays is established;
(ili) Until now, the global exponential convergence for Nicholson’s blowflies model with
proportional delays has not been studied.

2 Main findings
Now we will discuss the global exponential convergence of model (1.3)

Lemma 2.1 Let d* >0 and o > 0 be constants such that

t
/ (d*(v)-d(v))dv<o forallt,seRandt—s=>0.
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Then for any ty € R, the solution w(t; to, ) of system (1.3) with the initial value (1.4) satisfies
w(t; ko, V) > 0 for all t € [ty,n(¥)) and n(¥) = +oo, where [ty, n(V)) is the maximal right
interval of the existence of a solution w(t; to, V).

In view of the proof of Lemma 2.1 in Long [30], we can easily prove Lemma 2.1.

Theorem 2.1 For system (1.3), under the assumptions of Lemma 2.1, if (K1)-(K3) hold,
then there exists a constant & > 0 such that w(t) = O(e™5?) as t — +oo.

Proof Assume that w(¢) is an arbitrary solution of model (1.3). By (1.3) we have

w(t) + dEw(t) = Y bi(tywlat)e 1 OGY, (2.1)

j=1

Define the continuous function

D (w) = sup{w —d*(e) + M|:Z|bj(t)| + a):| } w € [0, +00). (2.2)
t>ty j=1

It follows from (K2) that
®(0) = sup{—d*(t) + u|:2|b,(t)|:| ] <0. (2.3)
t=to i1

In view of the continuity of ®(w), we can choose a constant & € (0, inf, d*(t)) such that

<P(§)=sup{$—d*(t)+u{2\bj(t)|+$“ <0. (2.4)
t>ty j=1
Let

¥, = te[‘i‘f}j‘m]W”" (2.5)

For all € > 0, we get

(w(@®)| < (1 llp +€)e 5 < Py, +€)e ) (2.6)
for t € [apty, tp], where P >y + 1. We will further prove that

lw(®)| < P(I1 o +€)e s 1) (2.7)
fir ¢ > ty. Otherwise, there exists t* > t; such that

(w(£)| = P(I¥ll, +€)e s (2.8)
and

(w(@®)| < P(I1 |, +€)e 1) (2.9)
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for t € [apty, t*]. Note that

(s) + d(t)w(s) = Zb (s)w(ays)e 7o) (2.10)
j=1

for s € [£y,t] and ¢ € [y, t*]. By (2.10) we get

w(t):w(to)e’-%d(")d‘%/ e i av d"[Zb syw(a;s)e eV W“/s:|dS,te[to,t ] (2.11)

to j=1

By (2.4) and (K3) we have

o f LA N (g vwas) | g

0 ) e |:Z i| S
t* % m

< (I1¥lly +€)pe fig v / ek <V>%[Z|b,»(s)!|w(a/s)|}ds
Lo j=1

.t*
— a*(v)d
< (I, + €) e fo O

t* o m
+ / e-Jsd‘V%[ij(sﬂl’(llwng+e) “’}ds
to

j=1

£ t* o
< (”1//”9 + E)Me_fzo d*(v)dv +/ e—fst d (v)dve—é(s—to)(d*(s) —5) ds

to

x e EP(|lyrl, + €)

_ o _ & £ ok
(”‘(//”Q +€) E(t*~tg) e ftO (d*(v) é)dv_'_/ e—fs (d (V)—E)dv(d*(s)_g)ds

to

xe fTP(gll, +€)

_ .[tt()* (d*(v)-&) dv

= P(Ill, +€)e " ‘O)[e

£
= P(I¥ll, +€)e” rm)[(; l)efzo(d(v)é)dv+1i|

< P(Ilyll, +€)e ), (2.12)

o1 e (d*(v)-s)dv]

which contradicts (2.8). Then (2.7) is true. Thus w(t) = O(e7%?) as t — +00. The theorem
is proved. 0

Remark 2.1 In [36, 37] the authors dealt with neural networks with proportional delays,
but they did not consider the global exponential convergence of involved models. In [10,
38] the authors studied the exponential convergence of neural networks with proportional
delays, but they did not investigate Nicholson’s blowflies models. In this paper, we study
the global exponential convergence of Nicholson’s blowflies model with proportional de-
lays. All the derived results in [10, 36—38] cannot be applied to model (1.3) to obtain the
global exponential convergence of system (1.3). So far, no results about the global expo-
nential convergence of Nicholson’s blowflies model with proportional delays are reported.
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Figure 1 The relation of t and w(t). The initial values are wy = 0.2,0.3,0.5,0.4,0.45

Therefore our findings on the global exponential convergence of Nicholson’s blowflies
model with proportional delays are essentially innovative and supplement earlier publi-
cations to a certain extent.

3 Example
Consider the model

2
w(t) = —d@)w(t) + Z bi(Ow(ajt)e i OM?, (3.1)

Jj=1

where d(¢) = 0.2(1 + 0.5sin¢), by (¢) = 0.07 + 0.07| cos V/5¢|, ba(¢) = 0.05 + 0.05] sin ~/5¢|,
() =1+ 0.1]cos/3t], y»(t) = 1 + 0.1|sin/3t|, a1 = 0.1, ay = 0.6 Then 4*(t) = 0.2
and 1 = €5, Let o = 555- Then e i dOd < o309 ¢ > 5 and fst(d*(v) —dW)dv <o,
SUp,s 4 {=d*(£) + 1 21'2:1 |b;(t)[} &~ —0.6052 < 0. Thus all the conditions in Theorem 2.1 are
satisfied, and all solutions of model (3.1) converge exponentially to (0,0)7. This fact is

shown in Fig. 1.

4 Conclusions

Exponential convergence is an important dynamical behavior of differential dynamical
systems. During the past decades, many researchers payed much attention to it. In this
paper, we have discussed Nicholson’s blowflies model with proportional delays. By means
of the differential inequality knowledge, we derived a sufficient criterion ensuring the ex-
ponential convergence of all solutions for Nicholson’s blowflies model with proportional
delays. The sufficiency criterion can be easily checked by simple computation. Up to now,
there are no papers that focus on the exponential convergence of Nicholson’s blowflies
model with proportional delays, which shows that the results derived in this paper are
new and extend earlier publications to some extent.
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