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where Dα
–y denotes the Liouville right-sided fractional derivative of order α,

(
Dα

–y
)
(t) := –

1
Γ (1 – α)

d
dt

∫ ∞

t
(v – t)–αy(v)dv for t ∈R+ := (0,∞).

By the Riccati transformation the authors obtained some sufficient conditions.
Recently, Khalil et al. [12] introduced a new well-behaved definition of local fractional

derivative, called the conformable fractional derivative, depending just on the basic limit
definition of the derivative. This new theory is improved by Abdeljawad [13]. For recent
results on conformable fractional derivatives, we refer the reader to [14–23]. This new def-
inition satisfies formulas of the derivatives of the product and quotient of two functions
and has a simpler chain rule. In addition to the definition of conformable fractional deriva-
tive, a definition of conformable fractional integral, the Rolle theorem, and the mean value
theorem for conformable fractional differentiable functions were given. These properties
are more conducive to the study of the oscillation of fractional-order equations.

In fact, some works in this field have shown the significance of conformable fractional
derivative. For example, [24] discusses the potential conformable quantum mechanics,
[25] discusses the conformable Maxwell equations, and [26, 27] show that the conformable
fractional derivative models present good agreements with experimental data, but there
are less oscillation results.

In the paper, we study oscillation criteria of conformable fractional differential equa-
tions. Our main goal is to generalize the oscillatory criteria in [28–37] to the conformable
fractional derivative. The three equations represent three classes of equations of different
orders. For example, in 2016, Akca et al. [33] studied the equation

x′(t) +
m∑

i=1

pi(t)x
(
τi(t)

)
= 0, t ≥ 0,

and obtained the following:

Theorem 1.1 Assume that 0 < ς := lim inft→∞
∫ t
τ (t)

∑m
i=1 pi(s)ds ≤ 1

e and for some r ∈ N,
we have

lim sup
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ >

1 + lnλ0

λ0
,

where h(t) = max1≤i≤m hi(t), hi(t) = sup0≤s≤t τi(s), a1(t, s) := exp{∫ t
s
∑m

i=1 pi(ζ )dζ },
ar+1(t, s) := exp{∫ t

s
∑m

i=1 pi(ζ )ar(ζ , τi(ζ ))dζ }, and λ0 is the smaller root of the equation
eςλ = λ. Then the above equation oscillates.

From this we can unify the oscillation theory of integral-order and fractional-order dif-
ferential equations. Through the inequality principle, iterative sequences, and the Riccati
transformation method this can be extended to the conformable fractional derivatives by
Lemma 2.2.

A solution x is called oscillatory if it is eventually neither positive nor negative. Other-
wise, the solution is said to be nonoscillatory. An equation is oscillatory if all its solutions
oscillate. In this paper, x is differentiable on [t0,∞). This paper is organized as follows. In
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Sect. 2, we introduce some notation and definitions on conformable fractional integrals.
In Sect. 3, we present the main theorems on α-order equations. Section 4 is devoted to the
oscillatory results on 2α-order equation. In Sect. 5, we demonstrate the oscillatory results
for 3α-order equations. In each section, we give examples to illustrate the significance of
the results.

2 Conformable fractional calculus
For the convenience of the reader, we give some background from fractional calculus the-
ory. These materials can be found in the recent literature, see [12, 13, 23].

Definition 2.1 ([13]) The (left) fractional derivative of a function f : [a,∞) → R of order
α ∈ (0, 1] starting from a is defined by

(
Ta

α f
)
(t) = lim

ε→0

f (t + ε(t – a)1–α) – f (t)
ε

.

When a = 0, we write Tα .

Note that if f is differentiable, then (Ta
α f )(t) = (t – a)1–αf ′(t).

Definition 2.2 ([13]) The left fractional integral of order α ∈ (0, 1] starting at a is defined
by

(
Iaα f

)
(t) =

∫ t

a
f (x)dα(x,a) =

∫ t

a
(x – a)α–1f (x)dx.

Definition 2.3 ([13]) Let f : [a,∞) → R be a continuous function, and let α ∈ (0, 1]. Then,
for all t > a, we have

Ta
α I

a
α f (t) = f (t).

Definition 2.4 ([13]) Let f : (a,b) → R be let a differentiable function, and let α ∈ (0, 1].
Then, for all t > a, we have

IaαT
a
α (f )(t) = f (t) – f (a).

Proposition 2.1 ([13]) Let f : (a,∞) → ∞ →R be a twice di�erentiable function, and let
0 < α,β ≤ 1 be such that 1 < α + β ≤ 2. Then

(
Ta

αT
a
β

)
(t) = Ta

α+β f (t) + (1 – β)(t – a)–βTa
α f (t).

Proposition 2.2 ([23]) Let α ∈ (0, 1], and let f and g be α-di�erentiable at a point t > 0 on
[a,∞). Then

(1) Ta
α (af + bg) = aTa

α (f ) + bTa
α (g) for all a,b ∈R,

(2) Ta
α (λ) = 0 for all constant functions f (t) = λ,

(3) Ta
α (fg) = fTa

α (g) + gTa
α (f ),

(4) Ta
α ( fg ) = gTa

α (f )–fTa
α (g)

g2 ,



Feng and Sun Advances in Difference Equations        (2019) 2019:313 Page 4 of 30

(5) Ta
α (tn) = ntn–α for all n ∈R, and

(6) Ta
α (f ◦ g)(t) = f ′(g(t))Ta

α (g)(t) for f differentiable at g(t).

Lemma 2.1 ([13]) Let f , g : [a,b] → R be two functions such that fg is di�erentiable, and
let α ∈ (0, 1]. Then

∫ b

a
f (x)Ta

α (g)(x)dα(x,a) = fg
∣∣∣∣
b

a
–

∫ b

a
g(x)Ta

α (f )(x)dα(x,a).

Lemma 2.2 Let f : (t0,∞) → R be di�erentiable, and let α ∈ (0, 1]. If Tt0
α f (t) = M(t), then

for all t > s > t0, we have

f (t) – f (s) = It0α M(t).

Proof We can conclude from Tt0
α f (t) = M(t) that

(
t – t0
t – s

)1–α

Ts
αf (t) = M(t),

that is,

Ts
αf (t) =

(
t – t0
t – s

)α–1

M(t).

Then applying Iα to the latter from s to t, we have

IsαT
s
αf (t) = Isα

[(
t – t0
t – s

)α–1

M(t)
]
,

that is,

f (t) – f (s) = It0α M(t).

The proof of Lemma 2.2 is complete. �

3 α-Order conformable fractional differential equations with finite
nonmonotone delay arguments

In this section, we deal with the differential equations of the form

Tt0
α x(t) +

m∑

i=1

pi(t)x
(
τi(t)

)
= 0, t ≥ t0, (3.1)

whereTα denotes the conformable differential operator of order α ∈ (0, 1], pi(t), 1 ≤ i ≤ m,
are nonnegative functions, τi(t), 1 ≤ i ≤ m, are nonmonotone functions of positive real
numbers such that

τi(t) ≤ t, t ≥ t0, lim
t→∞ τi(t) = ∞, 1 ≤ i ≤ m.

To prove our main results, we establish some fundamental results in this section.
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Lemma 3.1 Assume that x(t) is an eventually positive solution of (3.1) and ar(t, s), r ∈N
+,

is de�ned as

a1(t, s) = exp

{∫ t

s
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ

}
,

ar+1(t, s) = exp

{∫ t

s
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
ζ , τi(ζ )

)
}

.

(3.2)

Then

x(t)ar(t, s) ≤ x(s), 0 ≤ s ≤ t, r ∈N
+. (3.3)

Proof Let x(t) be an eventually positive solution of equation (3.1). Then there exists t1 > t0
such that x(t) > 0 and x(τi(t)) > 0, 1 ≤ i ≤ m, for all t ≥ t1, so

Tt0
α x(t) = –

m∑

i=1

pi(t)x
(
τi(t)

) ≤ 0, t ≥ t1.

This means that x(t) is monotonically decreasing, that is, x(τi(t)) ≥ x(t), 1 ≤ i ≤ m, and it
is easy to put it into the original equation:

Tt0
α x(t) + x(t)

m∑

i=1

pi(t) ≤ 0, t ≥ t1.

Dividing this equation by x(t), we get

Tt0
α x(t)
x(t)

≤ –
m∑

i=1

pi(t), t ≥ t1,

that is,

(t – t0)1–α x′(t)
x(t)

≤ –
m∑

i=1

pi(t), t ≥ t1.

Integrating the last inequality from s to t, 0 ≤ s ≤ t, we get

lnx(ζ )
∣∣∣∣
t

s
≤

∫ t

s

(
(ζ – t0)α–1

(
–

m∑

i=1

pi(ζ )

))
dζ ,

that is,

lnx(t) ≤ lnx(s) –
∫ t

s
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ .

So

x(s) ≥ x(t) exp

{∫ t

s
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ

}
,
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that is, estimate (3.3) is valid for r = 1. Supposing that (3.3) is established for r = n, we
obtain

x(t)an(t, s) ≤ x(s),

so

Tt0
α x(t) +

m∑

i=1

pi(t)x(t)an
(
t, τi(t)

) ≤ 0.

Repeating these steps can, we obtain

x(s) ≥ x(t) exp

{∫ t

s
(ζ – t0)α–1

m∑

i=1

pi(ζ )an
(
ζ , τi(ζ )

)
dζ

}
,

that is, x(t)an+1(t, s) ≤ x(s). So Lemma 3.1 is proved by mathematical induction. �

Lemma 3.2 Assume that x(t) is an eventually positive solution of (3.1) and

0 < β := lim inf
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ ≤ 1
e

, (3.4)

where

h(t) = max
1≤i≤m

hi(t), hi(t) = max
0≤s≤t

τi(s), t ≥ 0. (3.5)

Then

γ = lim inf
t→∞

x(h(t))
x(t)

≥ λ0, (3.6)

where λ0 is the smaller root of the equation λ = eβλ.

Proof Let x(t) be an eventually positive solution of equation (3.1). Then there exists t1 > t0
such that x(t) > 0 and x(τi(t)) > 0, 1 ≤ i≤ m, for all t ≥ t1. Thus we can conclude from (3.1)
that

Tt0
α x(t) = –

m∑

i=1

pi(t)x
(
τi(t)

) ≤ 0, t ≥ t1.

This means that x(t) is monotonically decreasing and positive.
By (3.4), for any ε ∈ (0,β), there is tε such that

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ ≥ β – ε, t ≥ tε ≥ t1.

We will show that

lim inf
t→∞

x(h(t))
x(t)

≥ λ1, (3.7)
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where λ1 is the smaller root of the equation

e(β–ε)λ = λ.

For contradiction, we assume that

γ = lim inf
t→∞

x(h(t))
x(t)

< λ1.

Therefore

e(β–ε)γ > γ . (3.8)

Then for any δ ∈ (0,γ ), there exists tδ such that x(h(t))
x(t) ≥ γ –δ for t ≥ tδ . Dividing both sides

of (3.1) by x(t), we have

–
Tt0

α x(t)
x(t)

=
m∑

i=1

pi(t)
x(τi(t))
x(t)

≥
m∑

i=1

pi(t)
x(h(t))
x(t)

≥ (γ – δ)
m∑

i=1

pi(t).

Integrating the latter from h(t) to t, we obtain

–
∫ t

h(t)

x′(s)
x(s)

ds≥
∫ t

h(t)
(s – t0)α–1

(
(γ – δ)

m∑

i=1

pi(s)

)
ds,

or

–
∫ t

h(t)

x′(s)
x(s)

ds≥ (γ – δ)(β – ε),

so

x(h(t))
x(t)

≥ e(γ –δ)(β–ε).

Therefore

γ = lim inf
t→∞

x(h(t))
x(t)

≥ e(γ –δ)(β–ε),

which implies

γ ≥ e(β–ε)γ ,

which is a contradiction to hypothesis (3.8). So (3.7) is true. Since (3.7) implies (3.6), the
proof of Lemma 3.2 is complete. �

Theorem 3.1 Assume that (3.4) holds and for some r, we have

lim sup
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ >

1 + lnλ0

λ0
, (3.9)
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where h(t) is de�ned by (3.5), ar(t, s) is de�ned by (3.2), and λ0 is the smaller root of the
equation eβλ = λ. Then equation (3.1) oscillates.

Proof If equation (3.1) has a solution x(t), then –x(t) is also a solution of equation (3.1), so
we only consider the situation where a solution of (3.1) is eventually positive, that is, there
is an integer t1 ≥ t0 such that x(t) > 0 and x(τi(t)) > 0, 1 ≤ i ≤ m, for all t ≥ t1. By (3.1) we
have

Tt0
α x(t) = –

m∑

i=1

pi(t)x
(
τi(t)

) ≤ 0, t ≥ t1.

It is shown that x(t) is an eventually decreasing function.
By Lemma 3.2 inequality (3.6) holds. It can be easily seen that λ0 > 1, so for any real

number 0 < ε ≤ λ0 – 1, we have

x(h(t))
x(t)

≥ λ0 – ε, t ≥ t2 ≥ t1.

Then there is t∗ ∈ (h(t), t) satisfying

x(h(t))
x(t∗)

= λ0 – ε, t ≥ t2. (3.10)

Then integrating from t∗ to t equation (3.1) and substituting into (3.3), we have

x(t) – x
(
t∗

)
+ x

(
h(t)

)∫ t

t∗
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 0.

Combining this with (3.10), we have

∫ t

t∗
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ x(t∗)

x(h(t))
=

1
λ0 – ε

. (3.11)

Dividing (3.1) by x(t), substituting into (3.3), and then integrating from h(t) to t∗, we have

–
∫ t∗

h(t)

x′(ζ )
x(ζ )

dζ ≥
∫ t∗

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )
x(h(t))
x(ζ )

ar
(
h(t), τi(ζ )

)
dζ ,

and because of Tt0
α x(t) < 0, we have

(λ0 – ε)
∫ t∗

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ

≤
∫ t∗

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )
x(h(t))
x(t)

ar
(
h(t), τi(ζ )

)
dζ

≤ –
∫ t∗

h(t)

x′(ζ )
x(ζ )

dζ ,
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that is,

∫ t∗

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 1

λ0 – ε
ln

x(h(t))
x(t∗)

. (3.12)

Adding (3.12) to (3.11), we get

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 1 + ln(λ0 – ε)

λ0 – ε
.

This inequality holds for all 0 < ε ≤ λ0 – 1, so as ε → 0, we obtain

lim sup
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 1 + lnλ0

λ0
.

This is a contradiction to (3.9). The proof of Theorem 3.1 is complete. �

Lemma 3.3 Assume that x(t) is an eventually positive solution of (3.1) and that β and h(t)
are de�ned by (3.4) and (3.5). Then

lim inf
t→∞

x(t)
x(h(t))

≥ 1
2
(
1 – β –

√
1 – 2β – β2

)
:= A(β). (3.13)

Proof Assume that x(t) > 0 for t > T1 ≥ t0. Then there exists T2 ≥ T1 such that x(τi(t)) > 0,
i = 1, 2, . . . ,m. In view of (3.1), Tt0

α x(t) ≤ 0 on [T2,∞). Clearly, (3.13) holds for β = 0. If
0 < β ≤ 1

e , then for any ε ∈ (0,β), there exists Nε such that

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ > β – ε, t > Nε . (3.14)

For fixed ε, we will show that for each t > Nε , there exists λt such that h(λt) < t < λt and

∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ = β – ε. (3.15)

In fact, for a given t > Nε , f (λ) :=
∫ λ

t (ζ – t0)α–1 ∑m
i=1 pi(ζ )dζ is continuous. Because of

limt→∞ h(t) = ∞ and (3.14), we have limλ→∞ f (λ) > β – ε > 0. Hence there exists λt > t
such that f (λ) = β – ε, that is, (3.15) holds. From (3.14) we have

∫ λt

h(λt )
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ > β – ε =
∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ ,

and therefore h(λt) < t.
Integrating (3.1) from t (> T3 = max{T2,Nε}) to λt , we have

x(t) – x(λt) ≥
∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )x
(
τi(ζ )

)
dζ . (3.16)
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We see that h(t) ≤ h(ζ ) ≤ h(λt) < t for t ≤ y≤ λt . Integrating (3.1) from τi(ζ ) to t, we have
that for t ≤ ζ ≤ λt ,

x
(
τi(ζ )

)
– x(t)

≥
∫ t

τi(ζ )
(u – t0)α–1

m∑

i=1

pi(u)x
(
τi(u)

)
du

≥ x
(
h(t)

)∫ t

τi(ζ )
(u – t0)α–1

m∑

i=1

pi(u)du

> x
(
h(t)

)
(∫ ζ

h(ζ )
(u – t0)α–1

m∑

i=1

pi(u)du –
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)du

)

> x
(
h(t)

)
(

(β – ε) –
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)du

)
. (3.17)

From (3.16) and (3.17) we have

x(t) ≥ x(λt) +
∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )x
(
τi(ζ )

)
dζ

> x(λt) +
∫ λt

t
(ζ – t0)α–1

×
m∑

i=1

pi(ζ )

[
x(t) + x

(
h(t)

)
(

(β – ε) –
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)du

)]
dζ

= x(λt) + x(t)(β – ε)

+ x
(
h(t)

)
[

(β – ε)2

–
∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)du

]
dζ . (3.18)

Noting the known formula

∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)dudζ

=
∫ λt

t
(u – t0)α–1

m∑

i=1

pi(u)
∫ λt

u
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ du,

or

∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)dudζ

=
∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )
∫ λt

ζ

(u – t0)α–1
m∑

i=1

pi(u)dudζ ,
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we have

∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )
∫ ζ

t
(u – t0)α–1

m∑

i=1

pi(u)dudζ

=
1
2

∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )
∫ λt

t
(u – t0)α–1

m∑

i=1

pi(u)dudζ

=
1
2

[∫ λt

t
(ζ – t0)α–1

m∑

i=1

pi(ζ )dζ

]2

=
1
2

(β – ε)2.

Substituting this into (3.18), we have

x(t) > x(λt) + x(t)(β – ε) +
1
2

(β – ε)2x
(
h(t)

)
. (3.19)

Hence

x(t)
x(h(t))

>
(β – ε)2

2(1 – β + ε)
:= d1,

and then

x(λt) >
(β – ε)2

2(1 – β + ε)
x
(
h(λt)

)
= d1x

(
h(λt)

) ≥ d1x(t).

Substituting this into (3.19), we obtain

x(t) > x(t)(m + d1 – ε) +
1
2

(m – ε)2x
(
h(t)

)
,

and hence

x(t)
x(h(t))

>
(β – ε)2

2(1 – β – d1 + ε)
:= d2.

In general, we have

x(t)
x(h(t))

>
(β – ε)2

2(1 – β – dn + ε)
:= dn+1, n = 1, 2, . . . .

It is not difficult to see that if ε is small enough, then 1 ≥ dn > dn–1, n = 2, 3, . . . . Hence
limn→∞ dn = d exists and satisfies

–2d2 + 2d(1 – β + ε) = (β – ε)2,

that is,

d =
1 – β + ε ± √

1 – 2(β – ε) – (β – ε)2

2
.
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Because of Tt0
α ≤ 0, we have d < 1. Therefore, for all large t,

x(t)
x(h(t))

>
1 – β + ε –

√
1 – 2(β – ε) – (β – ε)2

2
.

Letting ε → 0, we obtain that

x(t)
x(h(t))

>
1 – β –

√
1 – 2β – β2

2
= A(β).

This shows that (3.13) holds. �

Theorem 3.2 Assume (3.4) holds and that for some r, we have

lim sup
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ

> 1 –
1
2
(
1 – β –

√
1 – 2β – β2

)
, (3.20)

where h(t) is de�ned by (3.5), ar(t, s) is de�ned by (3.2), and λ0 is the smaller root of the
equation eβλ = λ. Then equation (3.1) oscillates.

Proof If equation (3.1) has a solution x(t), then –x(t) is also a solution of equation (3.1),
so we only consider the situation where a solution of (3.1) is eventually positive, that is,
x(t) > 0 and x(τi(t)) > 0, 1 ≤ i ≤ m, for all t ≥ T3. By (3.1) we have

x′(t) – x
(
h(t)

)
(t – t0)α–1

m∑

i=1

pi(t) ≤ 0, t ≥ T3.

Integrating from h(t) to t the latter and substituting into (3.3), we have

x(t) – x
(
h(t)

)
+ x

(
h(t)

)∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 0.

Consequently,

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 1 –

x(t)
x(h(t))

,

which gives

lim sup
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 1 – lim inf

t→∞
x(t)

x(h(t))
,

and by (3.13) the last inequality leads to

lim sup
t→∞

∫ t

h(t)
(ζ – t0)α–1

m∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ≤ 1 –

1
2
(
1 – β –

√
1 – 2β – β2

)
,

which contradicts (3.20). The proof of the theorem is complete. �
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Example 3.1 We consider the delay differential equation

T 1
2
x(t) + p1(t)x

(
τ1(t)

)
+ p2(t)x

(
τ2(t)

)
= 0, t ≥ 0, (3.21)

where

τ1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t – 1, t ∈ [3k, 3k + 1],

–3t + 12k + 3, t ∈ [3k + 1, 3k + 2],

5t – 12k – 3, t ∈ [3k + 2, 3k + 3],

k ∈N, and τ2(t) = τ1(t) – 1,

pi(t) =
1
8
t

1
2 , i = 1, 2.

By (3.5) we obtain

h1(t) = max
0≤s≤t

τ1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

t – 1, t ∈ [3k, 3k + 1],

3k, t ∈ [3k + 1, 3k + 2],

5t – 12k – 13, t ∈ [3k + 2, 3k + 3],

k ∈N, and h2(t) = h1(t) – 1.

So h(t) = max1≤i≤2{hi(t)} = h1(t).
The functions Fr : N → R

+ are defined as Fr(t) =
∫ t
h(t)

∑m
i=1 pi(ζ )ar(h(t), τi(ζ ))dζ . When

t = 3k + 2.6, t ∈N, for any r ∈N
+, the function Fr(t) attains its maximum. In particular,

F1(t = 3k + 2.6) =
∫ 3k+2.6

3k
ζ – 1

2

2∑

i=1

pi(ζ )ar
(
h(t), τi(ζ )

)
dζ ,

where

ar
(
h(t), τi(ζ )

)
= exp

{∫ h(t)

τi(ζ )
(ξ – t0)α–1

m∑

i=1

pi(ξ )dξ

}
= exp

{∫ h(t)

τi(ζ )
ξ– 1

2
1
4
ξ

1
2 dξ

}

= exp

{
1
4
(
h(t) – τi(ζ )

)}
,

so

F1(t = 3k + 2.6) =
∫ 3k+2.6

3k
ζ – 1

2

2∑

i=1

1
8
ζ

1
2 exp

{
1
4
(
h(t) – τi(ζ )

)}
dζ

=
1
4

∫ 3k+2.6

3k

(
exp

{
1
4
(
h(t) – τ1(ζ )

)}
+ exp

{
1
4
(
h(t) – τ2(ζ )

)})
dζ

=
1
4

∫ 3k+1

3k

(
exp

{
1
4
(
h(t) – τ1(ζ )

)}
+ exp

{
1
4
(
h(t) – τ2(ζ )

)})
dζ

+
1
4

∫ 3k+2

3k+1

(
exp

{
1
4
(
h(t) – τ1(ζ )

)}
+ exp

{
1
4
(
h(t) – τ2(ζ )

)})
dζ
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+
1
4

∫ 3k+2.6

3k+2

(
exp

{
1
4
(
h(t) – τ1(ζ )

)}
+ exp

{
1
4
(
h(t) – τ2(ζ )

)})
dζ

≈ 1.5052,

and therefore

lim sup
t→∞

F1(t) ≥ 1.5052.

Now we see that

β = lim inf
t→∞

∫ t

h(t)
ζ – 1

2

m∑

i=1

pi(ζ )dζ =
1
4
(
t – h(t)

)
=

1
4

≤ 1
e

.

The solution of λ = eβλ is λ0 = 1.435, so we get

1.5052 >
1 + lnλ0

λ0
≈ 0.9485,

1.5052 > 1 > A(β).

Therefore equation (3.21) satisfies the conditions of Theorems 3.1 and 3.2, and thus equa-
tion (3.21) oscillates.

4 Oscillation of 2α-order neutral conformable fractional differential equation
In this section, we deal with differential equations of the form

Tt0
α

(
r(t)

(
Tt0

α

(
x(t) + p(t)x

(
τ (t)

)))β)
+ q(t)xβ

(
σ (t)

)
= 0, t ≥ t0, (4.1)

where Tα denotes the conformable differential operator of order α ∈ (0, 1], β ≥ 1 is a quo-
tient of odd positive integers, and the functions r, p, q, τ , σ are such that r,p,q, τ ,σ ∈
C1([t0,∞), (0,∞)). We also assume that, for all t ≥ t0, τ (t) ≤ t, σ (t) ≤ t, Tt0

α σ (t) > 0,
limt→∞ τ (t) = limt→∞ σ (t) = ∞, 0 ≤ p(t) < 1, q(t) ≥ 0, and q does not vanish eventually.

We further use the following notation:

ε :=
(
β/(β + 1)

)β+1, Q(t) := q(t)
(
1 – p

(
σ (t)

))β ,

z(t) = x(t) + p(t)x
(
τ (t)

)
< ∞, π (t) :=

∫ ∞

t
(s – t0)α–1r(s)–1/β ds.

Lemma 4.1 Let β ≥ 1 be a ratio of two odd numbers. Then

A(β+1)/β – (A – B)(β+1)/β ≤ 4
2
B1/ββ

[
(1 + β)A – B

]
, AB ≥ 0.

–Cv(β+1)/β +Dv≤ ββ

(β + 1)β+1
Dβ+1

Cβ
, C > 0.

(4.2)

Theorem 4.1 Assume that π (t) =
∫ ∞
t (s – t0)α–1r(s)–1/β ds < ∞ and there exists a function

ρ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

It0α

(
ρ(t)Q(t) –

(
σ (t) – t0

)(1–α)β (Tt0
α ρ+(t))β+1r(σ (t))

(β + 1)β+1ρβ(t)(Tt0
α σ (t))β

)
= ∞. (4.3)
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Suppose that there exists a function δ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

It0α

[
ψ(t) –

δ(t)r(t)((ϕ(t))+)β+1

(β + 1)β+1

]
= ∞, (4.4)

where

ψ(t) := δ(t)
[
q(t)

(
1 – p

(
σ (t)

)π (τ (σ (t)))
π (σ (t)

)β

+
1 – β

r1/β (t)πβ+1(t)

]
,

p(t) < π (t)/π
(
τ (t)

)
, ϕ(t) :=

Tt0
α δ(t)
δ(t)

+
1 + β

r1/β(t)π (t)
,

and (ϕ(t))+ := max{0,ϕ(t)}. Then equation (4.1) oscillates.

Proof Let x(t) be a nonoscillating solution of (4.1) on [t0,∞). Without loss of generality,
we may assume that there exists t1 ≥ t0 such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0 for
all t ≥ t1. Then z(t) ≥ x(t) > 0, and since

Tt0
α

{
r(t)

[
Tt0

α

(
z(t)

)]β}
= –q(t)xβ

(
σ (t)

) ≤ 0, (4.5)

the function [r(t)Tt0
α z(t)]β is nonincreasing for all t ≥ t1. ThereforeTt0

α z(t) does not change
sign eventually, that is, there exists t2 ≥ t1 such that either Tt0

α z(t) > 0 or Tt0
α z(t) < 0 for all

t ≥ t2.
Case I. Assume first that Tt0

α z(t) > 0 for all t ≥ t2. Note that Tt0
α z(t)|t=σ (t) = Tt0

α (z(σ (t))).
Then

r(t)
(
Tt0

α

(
z(t)

))β ≤ r
(
σ (t)

)(
Tt0

α z
(
σ (t)

))β ,

from which it follows that

Tt0
α

(
z
(
σ (t)

)) ≥ (
Tt0

α

(
z(t)

))( r(t)
r(σ (t))

)1/β

. (4.6)

Since x(t) ≤ z(t), we see that

x(t) ≥ [
1 – p(t)

]
z(t), t ≥ t2. (4.7)

In view of (4.7) and (4.1),

Tt0
α

(
r(t)

(
Tt0

α

(
x(t) + p(t)x

(
τ (t)

)))β)
+ Q(t)zβ

(
σ (t)

) ≤ 0, t ≥ t2. (4.8)

Put

w(t) = ρ(t)
r(t)(Tt0

α z(t))β

zβ (σ (t))
, t ≥ t2. (4.9)
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Clearly, w(t) > 0. Applying Tt0
α to (4.9) and using (4.6) and (4.8), we obtain

Tt0
α

(
w(t)

)

=
Tt0

α ρ+(t)
ρ(t)

w(t) + ρ(t)
Tt0

α (r(t)(Tt0
α z(t))β )

zβ (σ (t))
– ρ(t)

r(t)(Tt0
α z(t))ββz′(σ (t))Tt0

α σ (t)
zβ+1(σ (t))

≤ Tt0
α ρ+(t)
ρ(t)

w(t) – ρ(t)Q(t) –
βTt0

α σ (t)

(ρ(t)r(σ (t)))
1
β (σ (t) – t0)1–α

w
β+1
β (t),

where Tt0
α ρ+(t) = max{Tt0

α ρ(t), 0}. Set

F(v) =
Tt0

α ρ+(t)
ρ(t)

v –
βTt0

α σ (t)

(ρ(t)r(σ (t)))
1
β (σ (t) – t0)1–α

v
β+1
β , v > 0.

By calculation letting v0 = (σ (t) – t0)(1–α)β 1
(β+1)β

(Tt0
α ρ+(t))β
ρβ–1(t)

r(σ (t))
(Tt0

α σ (t))β
, we have that when

v = v0,

the function F(v) attains its maximum F(v0). So

F(v) ≤ F(v0) =
(
σ (t) – t0

)(1–α)β (Tt0
α ρ+(t))β+1r(σ (t))

(β + 1)β+1ρβ(t)(Tt0
α σ (t))β

.

Therefore

Tt0
α

(
w(t)

) ≤ –ρ(t)Q(t) +
(
σ (t) – t0

)(1–α)β (Tt0
α ρ+(t))β+1r(σ (t))

(β + 1)β+1ρβ (t)(Tt2
α σ (t))β

.

Applying Iα to the last inequality from t0 to t, we have

0 < w(t) ≤ w(t0) – It0α

(
ρ(t)Q(t) –

(
σ (t) – t0

)(1–α)β (Tt0
α ρ+(t))β+1r(σ (t))

(β + 1)β+1ρβ(t)(Tt0
α σ (t))β

)
.

Letting t → ∞ in this inequality, we get a contradiction to (4.3).
Case II. Assume now that Tt0

α z(t) < 0 for all t ≥ t0. It follows from (4.1) that
Tt0

α (r(Tt0
α z)β ) < 0 for all s ≥ t ≥ t2, and thus

Tt0
α z(s) ≤

(
r(t)
r(s)

)1/β

Tt0
α z(t). (4.10)

Dividing (4.10) by (s – t0)1–α and then integrating from t to l, l ≥ t ≥ t2, we have

z(l) – z(t) ≤
∫ l

t
(s – t0)α–1

{(
r(t)
r(s)

)1/β

Tt0
α

(
z(t)

)}
ds

= r(t)1/βTt0
α

(
z(t)

)∫ l

t
(s – t0)α–1r(s)–1/β ds.

Letting l → ∞, we get

z(t) ≥ –π (t)r1/β (t)Tt0
α

(
z(t)

)
, (4.11)
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which implies that

Tt0
α

(
z(t)
π (t)

)
=

π (t)Tt0
α z(t) – z(t)Tt0

α π (t)
π2(t)

=
π (t)Tt0

α z(t) + z(t)r–1/β(t))
π2(t)

≥ π (t)Tt0
α z(t) – π (t)Tt0

α z(t)
π2(t)

= 0.

Hence we conclude that

x(t) = z(t) – p(t)x
(
τ (t)

) ≥ z(t) – p(t)z
(
τ (t)

) ≥
(

1 – p(t)
π (τ (t))
π (t)

)
z(t). (4.12)

Using (4.12) in (4.5), we have

Tt0
α

{
r(t)

[
Tt0

α

(
z(t)

)]β} ≤ –q(t)
(

1 – p
(
σ (t)

)π (τ (σ (t)))
π (σ (t))

)β

zβ
(
σ (t)

) ≤ 0. (4.13)

Define a generalized Riccati substitution by

w(t) := δ(t)
[
r(t)(Tt0

α z(t))β

zβ (t)
+

1
πβ (t)

]
. (4.14)

By (4.11), w(t) ≥ 0 for all t ≥ t2. Applying Tt0
α to (4.14), we have

Tt0
α w(t) =

Tt0
α δ(t)
δ(t)

w(t)

+ δ(t)
(
Tt0

α (r(t)(Tt0
α z(t))β )

zβ
–

βr(t)(Tt0
α z(t))β+1

zβ+1(t)
– βπ–(β+1)Tt0

α π (t)
)

=
Tt0

α δ(t)
δ(t)

w(t)

+ δ(t)
Tt0

α (r(t)(Tt0
α z(t))β )

zβ
– βδ(t)r(t)

(
w(t)

δ(t)r(t)
–

1
r(t)πβ (t)

)(β+1)/β

+
βδ(t)

r1/β (t)π1+β (t)
. (4.15)

Let A := w(t)/(δ(t)r(t)) and B = 1/(r(t)πβ (t)). Using Lemma 4.1, we conclude that

(
w(t)

δ(t)r(t)
–

1
r(t)πβ (t)

) β+1
β

≥
(

w(t)
δ(t)r(t)

) β+1
β

–
1

βr1/β(t)π (t)

[
(1 + β)

w(t)
δ(t)r(t)

–
1

r(t)πβ (t)

]
.

On the other hand, we get by (4.13) that Tt0
α z < 0 and from σ (t) ≤ t that

Tt0
α {r(t)[Tt0

α (z(t))]β}
zβ (t)

≤ –q(t)
(

1 – p
(
σ (t)

)π (τ (σ (t)))
π (σ (t))

)β

.
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Thus (4.15) yields

Tt0
α w(t) =

Tt0
α δ(t)
δ(t)

w(t) + δ(t)
Tt0

α (r(t)(Tt0
α z(t))β )

zβ

– βδ(t)r(t)
(

w(t)
δ(t)r(t)

–
1

r(t)πβ (t)

)(β+1)/β

+
βδ(t)

r1/β (t)π1+β (t)

≤ Tt0
α δ(t)
δ(t)

w(t) – δ(t)q(t)
(

1 – p
(
σ (t)

)π (τ (σ (t)))
π (σ (t))

)β

+
βδ(t)

r1/β(t)π1+β (t)

– βδ(t)r(t)
((

w(t)
δ(t)r(t)

) β+1
β

–
1

βr1/β(t)π (t)

[
(1 + β)

w(t)
δ(t)r(t)

–
1

r(t)πβ (t)

])

= –δ(t)
[
q(t)

(
1 – p

(
σ (t)

)π (τ (σ (t)))
π (σ (t))

)β

+
1 – β

r1/β(t)πβ+1(t)

]

+
[
Tt0

α δ(t)
δ(t)

+
1 + β

r1/β(t)π (t)

]
w(t) –

β

(δ(t)r(t))1/β w
(β+1)/β(t),

that is,

Tt0
α w(t) ≤ –ψ(t) +

(
ϕ(t)

)
+w(t) –

β

(δ(t)r(t))1/β w
(β+1)/β(t). (4.16)

Denote C := β/(δ(t)r(t))1/β , D := (ϕ(t))+, and v := w(t). Applying inequality (4.2), we obtain

(
ϕ(t)

)
+w(t) –

β

(δ(t)r(t))1/β w
(β+1)/β(t) ≤ δ(t)r(t)((ϕ(t))+)β+1

(β + 1)β+1 . (4.17)

By (4.16) and (4.17) we have

Tt0
α w(t) ≤ –ψ(t) +

δ(t)r(t)((ϕ(t))+)β+1

(β + 1)β+1 .

Applying Iα to the latter inequality from t0 to t, we have

It0α

[
ψ(t) –

δ(t)r(t)((ϕ(t))+)β+1

(β + 1)β+1

]
≤ –w(t) +w(t0),

which contradicts (4.4). Therefore (4.1) oscillates. �

Example 4.1 We consider the equation

T1
1
2

(
t2T1

1
2

(
x(t) + p(t)x

(
t
2

)))
+ q(t)x(t) = 0, t ≥ 0, (4.18)

where p(t) = 1
5 and q(t) = (2 + 4

√
2

5 )t. Let ρ(t) = 1 and δ(t) = 1/t. Then we have

It0α

(
ρ(t)Q(t) –

(
σ (t) – t0

)(1–α)β (Tt0
α ρ+(t))β+1r(σ (t))

(β + 1)β+1ρβ(t)(Tt0
α σ (t))β

)

= It0α Q(t) = It0α

(
4
5

(
2 +

4
√

2
5

)
t
)

,
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and it is obvious that (4.3) holds. Because of ϕ(t) = 2/
√
t, ψ(t) = (q0(1 – 2

√
2p0))/t = 34

25 . So

It0α

[
ψ(t) –

δ(t)r(t)((ϕ(t))+)β+1

(β + 1)β+1

]
= It0α

[
34
25

–
1
t t

2( 2√
t )

2

22

]
= It0α

9
25

,

and we can conclude that condition (4.4) is satisfied. Hence by Theorem 4.1 we deduce
that (4.18) oscillates.

5 Oscillation of 3α-order damped conformable fractional differential equation
This section deals with oscillatory behavior of all solutions of the 3α-order nonlinear delay
damped equation of the form

Tt0
α

(
r2Tt0

α

(
r1

(
Tt0

α y
)β))

(t) + p(t)
(
Tt0

α y(t)
)β + q(t)f

(
y
(
g(t)

))
= 0, t ≥ t0, (5.1)

where 0 < α ≤ 1, and β ≥ 1 is the ratio of positive odd integers. We further assume that
the following conditions are satisfied:

(H1) r1, r2,p,q ∈ C(I,R+), where I = [t0,∞), R+ = (0,∞);
(H2) g ∈ C1(I,R), Tt0

α g(t) ≥ 0 and g(t) → ∞ as t → ∞;
(H3) f ∈ C(R,R) is such that xf (x) > 0 for x �= 0, and f (x)/xγ ≥ k > 0, where γ is the ratio

of positive odd integers.
We define

R1(t, t0) = It0α
1

r1/β
1 (t)

, R2(t, t0) = It0α
1

r2(t)
, and R∗(t, t0) = It0α

(
R2(t, t0)
r1(t)

)1/β

for t0 ≤ t1 ≤ t ≤ ∞ and assume that

R1(t, t0) → ∞, t → ∞, (5.2)

and

R2(t, t0) → ∞, t → ∞. (5.3)

A function y is called a solution of (5.1) if y, r1(Tt0
α y)β , r2(r1(Tt0

α y)β ) ∈ C1([ty,∞),R) and
y satisfies (5.1) for [ty,∞) for some ty ≥ t0.

For brevity, we define

L0y(t) = y(t), L1y(t) = r1(t)
(
Tt0

α (L0y)
)β (t),

L2y(t) = r2(t)Tt0
α (L1y)(t), L3y(t) = Tt0

α (L2y)(t)

on I . Then (5.1) can be written as

L3y(t) +
p(t)
r1(t)

L1y(t) + q(t)f
(
y
(
g(t)

))
= 0.

The purpose of this section is to ensure that any solution of (5.1) oscillates when
the related second-order linear ordinary fractional differential equation without de-
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lay

Tt0
α

{
r2(t)Tt0

α z(t)
}

+
p(t)
r1(t)

z(t) = 0 (5.4)

is nonoscillatory.
Next, we state and prove the following lemmas.

Lemma 5.1 Let y be a nonoscillatory solution of (5.1) on I . Suppose (5.4) is nonoscillatory.
Then there exists t2 ∈ [t1,∞) such that y(t)L1y(t) > 0 or y(t)L1y(t) < 0, t ≥ t2.

Proof Let y be a nonoscillatory solution of (5.1) on [t1,∞), say y(t) > 0 and y(g(t)) > 0 for
t ≥ t1 ≥ t0. Let x = –L1y(t). By (5.1) we have

Tt0
α

(
r2Tt0

α x
)
(t) +

p(t)
r1(t)

x(t) = q(t)f
(
y
(
g(t)

))
> 0, t ≥ t1.

Let u(t) be a positive solution of (5.4), say u(t) > 0 for t ≥ t1 ≥ t0. If x is oscillatory, then x
has consecutive zeros at a and b (t1 < a < b) such that Tt0

α x(a) ≥ 0, Tt0
α x(b) ≤ 0, and x(t) > 0

for t ∈ (a,b). Then we obtain

0 <
∫ b

a

[
Tt0

α

(
r2Tt0

α x
)
(t) +

p(t)
r1(t)

x(t)
]
u(t)dα(t,a)

=
∫ b

a
(t – a)1–α

(
r2Tt0

α x
)′(t)

(
t – t0
t – a

)1–α

u(t)dα(t,a) +
∫ b

a

p(t)
r1(t)

x(t)u(t)dα(t,a)

= r2(t)Tt0
α x(t)

(
t – t0
t – a

)1–α

u(t)
∣∣∣∣
b

a
–

∫ b

a

(
r2Tt0

α x
)
(t)Ta

α

[(
t – t0
t – a

)1–α

u(t)
]
dα(t,a)

+
∫ b

a

p(t)
r1(t)

x(t)u(t)dα(t,a)

= r2(t)Tt0
α x(t)

(
t – t0
t – a

)1–α

u(t)
∣∣∣∣
b

a
+

∫ b

a

p(t)
r1(t)

x(t)u(t)dα(t,a)

–
∫ b

a
r2(t)

(
t – t0
t – a

)1–α

Ta
α

[(
t – t0
t – a

)1–α

u(t)
]
(t – a)1–αx′(t)dα(t,a)

= r2(t)Tt0
α x(t)

(
t – t0
t – a

)1–α

u(t)
∣∣∣∣
b

a
–

{
r2(t)

(
t – t0
t – a

)1–α

Ta
α

[(
t – t0
t – a

)1–α

u(t)
]}

x(t)
∣∣∣∣
b

a

+
∫ b

a
Ta

α

{
r2(t)

(
t – t0
t – a

)1–α

Ta
α

[(
t – t0
t – a

)1–α

u(t)
]}

x(t)dα(t,a)

+
∫ b

a

p(t)
r1(t)

u(t)x(t)dα(t,a)

= r2(t)Tt0
α x(t)

(
t – t0
t – a

)1–α

u(t)
∣∣∣∣
b

a
+

∫ b

a

{
Tt0

α

{
r2(t)Tt0

α u(t)
}

+
p(t)
r1(t)

u(t)
}
x(t)dα(t,a)

= r2Tt0
α x(t)

(
t – t0
t – a

)1–α

u(t)
∣∣∣∣
b

a
≤ 0,

which yields a contradiction. This completes the proof. �
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Lemma 5.2 If y is a nonoscillatory solution of (5.1) and y(t)L1y(t) > 0, t ≥ t1 ≥ t0, then

L1y(t) ≥ R2(t, t0)L2y(t) for all t ≥ t1 (5.5)

and

y(t) ≥ R∗(t, t0)(L2y)1/β (t) for all t ≥ t1. (5.6)

Proof If y is a nonoscillatory solution of (5.1), then y(t) > 0, y(g(t)) > 0, and L1y(t) > 0 for
t ≥ t1 ≥ t0. It is easy to see that

L3y(t) = –
p(t)
r1(t)

L1y(t) – q(t)f
(
y
(
g(t)

)) ≤ 0,

which implies that L2y(t) is nonincreasing on [t1,∞). Applying Iα to Tt0
α L1y(t) = L2y(t)

r2(t) from
t1 to t and Lemma 2.2, we get

L1y(t) = L1y(t1) + It0α

[
L2y(t)
r2(t)

]
≥ L2y(t)It0α

1
r2(t)

= L2y(t)R2(t, t0) for any t ≥ t1.

Then

Tt0
α y(t) ≥

(
R2(t, t0)
r1(t)

)1/β

(L2y)1/β (t).

Now, applying Iα to the last inequality from t1 to t, we can obtain from Lemma 2.2 that

y(t) ≥ y(t1) + It0α

[(
R2(t, t0)
r1(t)

)1/β

(L2y)1/β(t)
]

≥ (L2y)1/β (t)It0α

(
R2(t, t0)
r1(t)

)1/β

= R∗(t, t0)(L2y)1/β (t) for t ≥ t1.

This completes the proof. �

In the following two lemmas, we consider the second-order delay differential inequality

Tt0
α

(
r2Tt0

α x(t)
) ≥ Q(t)x

(
h(t)

)
, t > t0, (5.7)

where the function r2 is as in (5.1), Q(t) ∈ C(I,R+), and h(t) ∈ C1(I,R) is such that h(t) ≤ t,
Tt0

α h(t) ≥ 0 for t ≥ t0, and h(t) → ∞ as t → ∞.

Lemma 5.3 If

lim sup
t→∞

R2
(
h(t), t0

)
It0α Q(t) > 1, (5.8)

then all bounded solutions of (5.7) are oscillatory.
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Proof Let x(t) be a bounded nonoscillatory solution of (5.7), say x(t) > 0 and x(h(t)) > 0 for
t ≥ t1 for some t1 ≥ t0. By (5.7), r2Tt0

α x(t) is strictly increasing on [t1,∞). Hence, for any

t2 ≥ t1, applying Iα from t2 to t in Tt0
α x(t) = r2(t)Tt0

α x(t)
r2(t) and Lemma 2.2 yield

x(t) = x(t2) + It0α

[
r2(t)Tt0

α x(t)
r2(t)

]
> x(t2) + r2(t2)Tt0

α x(t2)It0α
1

r2(t)

= x(t2) + r2(t2)Tt0
α x(t2)R2(t, t0),

so Tt0
α x(t2) < 0, as otherwise (5.3) would imply x(t) → ∞ as t → ∞, a contradiction to the

boundedness of x. Altogether,

x > 0,Tt0
α x < 0, and Tt0

α

(
r2Tt0

α x
)

> 0 on [t1,∞).

Now, for v≥ u ≥ t1, repeating the previous steps, we have

x(u) > x(u) – x(v) = –It0α

[
r2(v)Tt0

α x(v)
r2(v)

]
≥ –r2(v)Tt0

α x(v)It0α
1

r2(v)

= –r2(v)Tt0
α x(v)R2(v, t0). (5.9)

For t ≥ s ≥ t1, setting u = h(s) and v = h(t) in (5.9), we get

x
(
h(s)

)
> –r2

(
h(t)

)
Tt0

α x
(
h(t)

)
R2

(
h(t), t0

)
.

Applying Iα to (5.7) from h(t) ≥ t1 to t, we obtain from Lemma 2.2 that

–r2
(
h(t)

)
Tt0

α x
(
h(t)

)
> r2(t)Tt0

α x(t) – r2
(
h(t)

)
Tt0

α x
(
h(t)

)

≥ It0α
(
Q(t)x

(
h(t)

))

> –r2
(
h(t)

)
Tt0

α x
(
h(t)

)
R2

(
h(t), t0

)
It0α Q(t),

that is,

1 > R2
(
h(t), t0

)
It0α Q(t).

Taking lim sup as t → ∞ on both sides of this inequality yields a contradiction to (5.8).
This completes the proof. �

Lemma 5.4 If

lim sup
t→∞,u→∞

R2(u, t0)It0α Q(t) > 1, (5.10)

then all bounded solutions of (5.7) are oscillatory.

Proof Let x be a bounded nonoscillatory solution of (5.7), say x(t) > 0 and x(h(t)) > 0 for
t ≥ t1 for some t1 ≥ t0. As in Lemma 5.1, we obtain

x > 0, Tt0
α x < 0, and Tt0

α

(
r2Tt0

α x
)

> 0 on [t1,∞).
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Applying Iα to(5.7) from u≥ t1 to t, we obtain from the previous forms that

–r2(u)Tt0
α x(u) > r2(t)Tt0

α x(t) – r2(u)Tt0
α x(u) ≥ It0α

(
Q(t)x

(
h(t)

)) ≥ x
(
h(t)

)
It0α Q(t),

so

–Tt0
α x(u) >

(
1

r2(u)
It0α Q(t)

)
x
(
h(t)

)
. (5.11)

We obtain from (5.11) that

x
(
h(t)

)
> x

(
h(t)

)
– x(u) ≥ x

(
h(t)

)
It0α

[(
1

r2(u)
It0α Q(t)

)]
,

that is,

1 > R2(u, t0)It0α Q(t).

Taking lim sup as u, t → ∞ on both sides of this inequality yields a contradiction to (5.10).
This completes the proof. �

Theorem 5.1 Assume that (5.2) and (5.3) hold and β ≥ γ . Suppose that there exist two
functions m,h ∈ C1(I,R) such that

g(t) ≤ h(t) ≤ t, Tt0
α h(t) ≥ 0, and m(t) > 0, t ∈ I,

satisfying

lim sup
t→∞

It0α

[
km(t)q(t) –

A2(t)
4B(t)

]
= ∞, (5.12)

and for t ≥ t1,

⎧
⎨

⎩
A(t) = Tt0

α m(t)
m(t) – p(t)

r1(t)R2(t, t0),

B(t) = c∗m–1(t)Tt0
α g(t)(R∗(g(t), t0))γ –1(R2(g(t),t0)

r1(g(t)) )1/β(t – t0)α–1,
(5.13)

and that (5.8) or (5.10) holds with

Q(t) = ckq(t)
(
R1

(
h(t), t0

))γ –
p(t)
r1(t)

≥ 0, t ≥ t1,

with c, c∗ > 0. Then every solution y of (5.1) and L2y(t) are oscillatory.

Proof Let y be a nonoscillatory solution of (5.1) on [t1,∞), t1 ≥ t0. We assume that y(t) > 0
and y(g(t)) > 0 for t ≥ t1. From Lemma 5.1 we have L1y(t) < 0 or L1y(t) > 0 for t ≥ t1.

Step 1. We assume that L1y(t) > 0 on [t1,∞). By (5.1) L2y is strictly decreasing. Hence,
for any t2 ≥ t1, we have from Lemma 2.2 that

L1y(t) = L1y(t2) + It0α

[
L2y(t)
r2(t)

]
≤ L1y(t2) + L2y(t2)It0α

1
r2(t)

= L1y(t2) + L2y(t2)R2(t, t2).
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So L2y(t2) > 0 as otherwise (5.3) would imply L1y(t) → –∞ as t → ∞, a contradiction to
the positivity of L1y. Altogether, L2y > 0 on [t1,∞).

Define the following generalized Riccati transformation:

w(t) = m(t)
L2y(t)
yγ (g(t))

, t ∈ [t1,∞). (5.14)

By the product and quotient rules, α-differentiating w, we obtain

Tt0
α w(t) = Tt0

α

[
m(t)

L2y(t)
yγ (g(t))

]

= Tt0
α m(t)

L2y(t)
yγ (g(t))

+m(t)
Tt0

α (L2y(t))yγ (g(t)) – γ [yγ –1(g(t))]y′(g(t))Tt0
α g(t)L2y(t)

y2γ (g(t))

=
Tt0

α m(t)
m(t)

w(t) +m(t)
Tt0

α (L2y(t))
yγ (g(t))

– m(t)
γ y′(g(t))Tt0

α g(t)L2y(t)
yγ +1(g(t))

=
Tt0

α m(t)
m(t)

w(t) +
Tt0

α (L2y)(t)
L2y(t)

w(t) – γTt0
α g(t)

y′(g(t))
y(g(t))

w(t).

Using (5.1), (5.5), and assumption (H3) on f , we obtain

Tt0
α m(t)
m(t)

w(t) +
Tt0

α (L2y)(t)
L2y(t)

w(t)

=
Tt0

α m(t)
m(t)

w(t) –
p(t)
r1(t)L1y(t) + q(t)f (y(g(t)))

L2y(t)
w(t)

=
Tt0

α m(t)
m(t)

w(t) –
p(t)
r1(t)L1y(t)
L2y(t)

w(t) –
q(t)f (y(g(t)))

L2y(t)
w(t)

≤ Tt0
α m(t)
m(t)

w(t) –
p(t)
r1(t)

R2(t, t0)w(t) – km(t)q(t)

=
[
Tt0

α m(t)
m(t)

–
p(t)
r1(t)

R2(t, t0)
]
w(t) – km(t)q(t)

= A(t)w(t) – km(t)q(t).

By the definition of L1y(t) and (5.5) we obtain

(t – t0)1–α
(
y
(
g(t)

))′ = Tt0
α y

(
g(t)

)
=

(
1

r1(g(t))
L1y

(
g(t)

))1/β

≥
(
R2(g(t), t0)
r1(g(t))

)1/β(
L2y

(
g(t)

))1/β

≥
(
R2(g(t), t0)
r1(g(t))

)1/β(
L2y(t)

)1/β .



Feng and Sun Advances in Difference Equations        (2019) 2019:313 Page 25 of 30

Then

y′(g(t))
y(g(t))

≥ (t – t0)α–1
(

R2(g(t), t0)
m(t)r1(g(t))

)1/β m1/β (t)(L2y)1/β (t)
yγ /β (g(t))

yγ /β–1(g(t)
)

(5.14)= (t – t0)α–1
(

R2(g(t), t0)
m(t)r1(g(t))

)1/β

w1/β (t)yγ /β–1(g(t)
)
,

and we obtain

Tt0
α w(t) ≤ A(t)w(t) – km(t)q(t)

– γTt0
α g(t)(t – t0)α–1

(
R2(g(t), t0)
m(t)r1(g(t))

)1/β

w1/β (t)yγ /β–1(g(t)
)
w(t)

≤ A(t)w(t) – km(t)q(t)

– γTt0
α g(t)(t – t0)α–1w1/β+1(t)yγ /β–1(g(t)

)( R2(g(t), t0)
m(t)r1(g(t))

)1/β

. (5.15)

Since L3y(t) < 0, we have 0 < L2y(t) ≤ L2y(t1), L2y(t1) = c1 for t ≥ t1. Then

r2(t)Tt0
α (L1y)(t) = L2y(t) ≤ c1, t ≥ t1,

and thus we get from Lemma 2.2 that

r1(t)
(
Tt0

α y
)β (t) = L1y(t) = L1y(t1) + It0α

[
r2(t)Tt0

α (L1y(t))
r2(t)

]
≤ L1y(t1) + c1It0α

1
r2(t)

= L1y(t1) + c1R2(t, t0) =
[
L1y(t1)
R2(t, t0)

+ c1

]
R2(t, t0)

≤
[

L1y(t1)
R2(t2, t0)

+ c1

]
R2(t, t0) = c̃1R2(t, t0)

(note that L1y(t1) > 0), where

c̃1 = c1 +
L1y(t1)
R2(t2, t0)

.

Therefore, we get for all t ≥ t2 that

y(t) = y(t2) + It0α
[
Tt0

α y(t)
] ≤ y(t2) + It0α

(
c̃1R2(t, t0)

r1(t)

)1/β

= y(t2) + c̃1
1/βR∗(t, t0) =

[
y(t2)

R∗(t, t0)
+ c̃1

1/β
]
R∗(t, t0)

≤
[

y(t2)
R∗(t2, t0)

+ c̃1
1/β

]
R∗(t, t0)

= c2R∗(t, t0)

(note that y(t2) > 0), where

c2 =
y(t2)

R∗(t2, t0)
+ c̃1

1/β .
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Then we get

yγ /β–1(g(t)
) ≥ cγ /β–1

2
(
R∗(g(t), t0

))γ /β–1, t ≥ t2. (5.16)

By (5.14) and (5.6) we have

w(t) = m(t)
L2y(t)
yγ (g(t))

≤ m(t)
L2y(g(t))
yγ (g(t))

≤ m(t)
(
R∗(g(t), t0

))–βyβ–γ
(
g(t)

)
, t ≥ t2. (5.17)

Using (5.16) in (5.17), we get

w(t) ≤ cβ–γ
2 m(t)

(
R∗(g(t), t0

))–γ , t ≥ t2.

Then

w1/β–1(t) ≥c(1/β–1)(β–γ )
2 m1/β–1(t)

(
R∗(g(t), t0

))–γ (1/β–1), t ≥ t2. (5.18)

Using (5.16) and (5.18) in (5.15), we get

Tt0
α w(t)

≤ A(t)w(t) – km(t)q(t)

– γ c–β+γ
2 m–1Tt0

α g(t)
(
R∗(g(t), t0

))γ –1
(
R2(g(t), t0)
r1(g(t))

)1/β

(t – t0)α–1w2(t)

= A(t)w(t) – km(t)q(t) – B(t)w2(t)

= –km(t)q(t) –
(√

B(t)w(t) –
A(t)

2
√
B(t)

)2

+
A2(t)
4B(t)

≤ –km(t)q(t) +
A2(t)
4B(t)

, t ≥ t2, (5.19)

where c∗ = γ cγ –β
2 , and A and B are as in (5.13). Applying Iα to (5.19) from t0 to t, we get

It0α

[
km(t)q(t) –

A2(t)
4B(t)

]
≤ w(t0) – w(t) ≤ w(t0),

which contradicts (5.12).
Step 2. Let L1y(t) < 0 on [t1,∞). We consider the function L2y(t). The case L2y(t) ≤ 0

cannot hold for all large t, say t ≥ t2 ≥ t1, since by double integration of

Tt0
α y(t) =

(
L1y(t)
r1(t)

)1/β

≤
(
L1y(t2)
r1(t)

)1/β

, t ≥ t2,

we get from (5.2) that y(t) ≤ 0 for all large t, which is a contradiction. Thus we assume
that y(t) > 0, L1y(t) < 0, and L2y(t) ≥ 0 for all large t, say t ≥ t3 ≥ t2. Now, for v ≥ u ≥ t3,
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we have

y(u) > y(u) – y(v) = –It0α

[
r1/β
1 (v)Tt0

α y(v)
r1/β
1 (v)

]

≥ –It0α

[
1

r1/β
1 (v)

]
r1/β
1 (v)Tt0

α y(v)

= R1(v, t0)
(
–L1y(v)

)1/β .

Letting u = g(t) and v = h(t), we obtain

y
(
g(t)

) ≥ R1
(
h(t), t0

)(
–L1y

(
h(t)

))1/β

= R1
(
h(t), t0

)
x
(
h(t)

)
, for h(t) ≥ g(t) ≥ t3,

where x(t) = (–L1y(t))1/β > 0 for t ≥ t3. By (5.1), since that x(t) is decreasing and g(t) ≤
h(t) ≤ t, we get

Tt0
α

(
r2Tt0

α z
)
(t) +

p(t)
r1(t)

z
(
h(t)

) ≥ kq(t)
(
R1

(
h(t), t0

))γ z
(
h(t)

)
zγ /β–1(h(t)

)
,

where z(t) = xβ (t). Because z(t) is decreasing and β ≥ γ , there exists a constant c4 > 0 such
that zγ /β–1(t) ≥ c4 for t ≥ t2. Then we have

Tt0
α

(
r2Tt0

α z
)
(t) ≥ kq(t)

(
R1

(
h(t), g(t)

))
)γ z

(
h(t)

)
zγ /β–1(h(t)

)
–

p(t)
r1(t)

z
(
h(t)

)

≥
[
c4kq(t)

(
R1

(
h(t), g(t)

))γ –
p(t)
r1(t)

]
z
(
h(t)

)
.

Proceeding exactly as in the proofs of Lemmas 5.3 and 5.4, we arrive at the desired con-
clusion, thus completing the proof. �

Example 5.1

T 1
2

(
T 1

2

(
t–

3
2 T 1

2
y(t)

))
+ t–

5
2 T 1

2
y(t)

+
[

1
2

(t – 2)–2t–
1
2 + 2(t – 2)–2t–1 + 1

]
f
(
y(t – 2)

)
= 0, t > 0, (5.20)

where r1(t) = t– 3
2 , r2(t) = 1, q(t) = 1

2 (t – 2)–2t– 1
2 + 2(t – 2)–2t–1 + 1, p(t) = t– 5

2 , g(t) = t – 2,
h(t) = t – 2, α = 1

2 , β = 1, γ = 1, c∗ = 1. By taking m(t) = 1 we get

R1(t, t0) = It0α
1

r1/β
1 (t)

= Iαt
3
2 =

1
2
t2 → ∞ as t → ∞,

R2(t, t0) = It0α
1

r2(t)
= Iα1 = 2t

1
2 → ∞ as t → ∞,

⎧
⎨

⎩
A(t) = Tt0

α m(t)
m(t) – p(t)

r1(t)R2(t, t0) = –t–1R2(t, t0) = –t–12t 1
2 = 2t– 1

2 ,

B(t) = c∗m–1(t)Tt0
α g(t)(R∗(g(t), t0))γ –1(R2(g(t),t0)

r1(g(t)) )1/β(t – t0)α–1 = 2(t – 2)2t– 1
2 ,
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It0α

[
km(t)q(t) –

A2(t)
4B(t)

]
= Iα

(
1
2

(t – 2)–2t–
1
2 + 2(t – 2)–2t–1 + 1 –

4t–1

8(t – 2)2t– 1
2

)

= Iα
(
2(t – 2)–2t–1 + 1

)
,

so

lim sup
t→∞

It0α

[
km(t)q(t) –

A2(t)
4B(t)

]
= ∞.

Q(t) = ckq(t)
(
R1

(
h(t), t0

))γ –
p(t)
r1(t)

=
(

1
2

(t – 2)–2t–
1
2 + 2(t – 2)–2t–1 + 1

)(
1
2

(t – 2)2
)

– t–1

=
1
4
t–

1
2 +

1
2

(t – 2)2 ≥ 0,

and we obtain that

It0α Q(t) = Iα
1
4
t–

1
2 +

1
2

(t – 2)2 =
∫ t

0

(
1
4
s–1 +

1
2

(s – 2)2s–
1
2

)
ds

=
∫ t

0

(
1
4
s–1 +

1
2
s

3
2 – 2s

1
2 + 2s–

1
2

)
ds

=
1
4

ln t +
1
5
t

5
2 –

4
3
t

3
2 + 4t

1
2 –

1
4

ln 0.

Hence

It0α Q(t) > It0α Q(1) = 0 +
1
5

–
4
3

+ 4 –
1
4

ln 0 > 1, t > 1,

R2
(
h(t), t0

)
> R2

(
h
(

9
4

)
, t0

)
= 2

(
9
4

– 2
) 1

2
= 1, t >

9
4

,

R2(u, t0) > R2

(
1
4

, t0
)

= 2
(

1
4

) 1
2

= 1, u >
1
4

.

So

lim sup
t→∞

R2
(
h(t), t0

)
It0α Q(t) > 1,

lim sup
t→∞,u→∞

R2(u, t0)It0α Q(t) > 1,

Then we see that (5.8) and (5.10) are clearly satisfied, and it is easy to verify that the equa-
tion

T 1
2

(
T 1

2
z(t)

)
+ t–1z(t) = 0 (5.21)

is nonoscillatory, and one nonoscillatory solution of (5.21) is z(t) = 18t 1
3 . Then we get that

equation (5.20) is oscillatory.
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Example 5.2

T 1
2

(
t–

1
2 T 1

2

(
t–

1
2 T 1

2
y(t)

))
+ 2t–

1
2 T 1

2
y(t) + 3y(t) = 0, t ≥ 0, (5.22)

where r1(t) = r2(t) = t– 1
2 , p(t) = 2t– 1

2 , q(t) = 3, k = 1, g(t) = t, α = 1
2 , β = γ = 1, c∗ = c = 1.

Letting m(t) = 1 and h(t) = t, we can obtain

R2(t, t0) = t, A(t) = –2t, B(t) = t, Q(t) = 3t – 2,

so all conditions except (5.12) are satisfied.
Equation (5.22) can be rewritten as

y′′′(t) + 2y′(t) + 3y(t) = 0.

It is obvious that the equation is nonoscillatory. It has a nonoscillatory solution x =
e 1

2 t cos
√

2
2 t. We can obtain that condition (5.12) indispensable.

6 Conclusion
In this paper, we study three kinds of different order conformable fractional equations and
obtain oscillatory results of three equations. Those results unify the oscillation theory of
the integral-order and fractional-order differential equations.
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