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Abstract
Since bifurcation makes it difficult to manage a paddy ecosystem, controlling
bifurcation is an important management tool. In this paper, the stability and
bifurcation control for a fractional order paddy ecosystem in the fallow season with
time delay are investigated. Firstly, a paddy ecosystem model formulated by
two-dimensional delayed fractional order differential equations with linear delayed
feedback controller is proposed to reveal the interaction between weeds and
inorganic fertilizers in paddy systems. Using the time delay as the bifurcation
parameter, the sufficient conditions for stability of the system and the existence of
Hopf bifurcation are obtained by analyzing the relevant characteristic equations. The
results show that the time delay can heavily affect the dynamics of the system, and
the feedback gain and the fractional order have significant impact on the control
effect. Finally, the verification of the accuracy and validity of these conclusions is
made by two examples, the control effect of the feedback gain and the fractional
order on Hopf bifurcation are illustrated intuitively by a contour map.
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1 Introduction
As everyone knows, there are a lot of interacting components in a paddy ecosystem, such
as weeds, inorganic salts, light intensity, herbivore, especially human activities, which
make it become a complex nonlinear system. Recently, some mathematical models of
paddy ecosystem have been proposed and some valuable results have been achieved [1–5].

In [1], the following differential equation model of the paddy ecosystem in the fallow
season was put forward and the interaction between weeds and inorganic fertilizers in the
system was investigated by Xiang and Zhou:

⎧
⎨

⎩

ṗ(t) = cf (I)H(u(t), p(t)) – (d2 + d3)p(t),

u̇(t) = b – d1u(t) + rd2p(t) – f (I)H(u(t), p(t)),
(1)

where p(t) denotes the weed biomass per unit area at time t, and u(t) denotes the inorganic
fertilizer content per unit area at time t. In system (1), the first term on the right-hand side
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of the first equation represents weeds growth rate, which is related to the light intensity
I and the inorganic fertilizer u. The constant c is the conversion coefficient of inorganic
fertilizer and light energy converted by weeds to their biomass. The term d2p(t) is the mor-
tality of weeds. Considering the presence of weeds harvesting and herbivore consumption
in the paddy field at fallow time, system (1) uses the item d3p(t) to indicate the weeds re-
moval rate. On the right-hand side of the second equation, the first term b denotes artificial
fertilizer rate, the second item d1u(t) indicates the loss of inorganic fertilizer in a paddy
field. The coefficient r is the conversion rate of microbes transforming dead weeds to in-
organic fertilizer. The last term f (I)H(u(t), p(t)) is the consumption of inorganic fertilizer
u(t) caused by the growth of weeds p(t). They obtained the conditions for the existence
and the stability of a weeds extinction equilibrium and a positive equilibrium. They found
a fact that in order not to let the inorganic fertilizer content tend to zero, the artificial fer-
tilizer rate b should not be allowed to be 0. That is to say, some measures should be taken
to avoid the exhaustion of inorganic fertilizers due to the growth of weeds. Considering
herbivores in paddy fields can eat some weeds and increase fertilizer by excreting feces,
Xiang, Wu, and Zhou proposed a differential equations model of the paddy ecosystem in
the fallow season to reveal the effects of herbivores on inorganic fertilizer and weeds. The
results show that the introduction of some herbivores into a paddy ecosystem in the fal-
low season can increase the content of inorganic fertilizer and makes it possible for a Hopf
bifurcation phenomenon to emerge in the system [2].

Fractional differential equations can exactly describe many nonlinear phenomena.
Ecosystems generally have three characteristics: first, they have greater freedom; second,
most of them have memory; third, they have extensive fractal characteristics. These char-
acteristics of ecosystems make them more suitable for establishing fractional differential
equation models to study their dynamic properties. Recently, the research on the qual-
itative properties of fractional biological models has attracted a great deal of attention
from researchers [6–11]. Rivero et al. discussed the biological significance of fractional
order in [7]. They thought that the model Dαx(t) = kx(t) reflects that the growth of pop-
ulation x follows the generalized exponential growth rule x(t) = CEα(ktα), where Eα(z) is
the Mittag-Leffler function as follows:

Eα(z) =
∞∑

n=0

zn

Γ (αn + 1)
.

The Mittag-Leffler function Eα(z) is a generalization of the classical exponential function,
but it has one more parameter α, so there is one more degree of freedom. They extended
several classical population models to fractional order models. By comparing the numeri-
cal solutions of different fractional order, they found that the order of fractional derivative
is a good speed controller, which can control how those trajectories of system approach (or
far from) the critical point. This characteristic helps to faithfully represent the anomalous
reality of interaction among certain species.

The dynamic relationship between predators and predators is a very common form
of population interactions. Many researchers have studied the properties of fractional
order predator-prey systems [6, 8, 9, 12]. In [10], the authors studied the dynamics of
a fractional order toxic-phytoplankton-phytoplankton-zooplankton system. The Routh–
Hurwitz criterion was applied to discuss the stability analysis of biologically feasible equi-
libria for the system in terms of reproduction numbers. Local stability properties of the
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toxic-phytoplankton-free equilibrium were also investigated. In addition to studying the
stability of equilibria for fractional order systems, many scholars have also discussed the
existence of Hopf bifurcations [13–17]. By extending the integer order paddy ecosystem
discussed in [3] to fractional order case, Zhou et al. established a fractional order paddy
ecosystem with time delay [4]. They obtained the sufficient conditions of the stability of
equilibria and the existence of Hopf bifurcation, which are the generalization of the cor-
responding conditions of integer order systems in [3].

The existence of bifurcation in a nonlinear system will cause changes in system stability
[18–20]. Therefore, controlling the occurrence of bifurcation becomes an important re-
search topic. Some of controllers are designed to suppress or reduce some of the existing
bifurcation dynamics of a given nonlinear system [21–24]. A linear delayed feedback con-
troller was introduced to adjust the occurrence of Hopf bifurcation for a delayed fractional
gene regulatory network [21] and for a fractional predator-prey system [22]. They found
that the feedback gain significantly affects the effect of bifurcation control. The polynomial
function controller also was chosen to control Hopf bifurcation [23, 25]. One may obtain
the desired behavior of a Hopf bifurcation effectively by choosing appropriate values of
the coefficients of a polynomial controller [23]. Some other nonlinear functions were also
used as bifurcation controllers. For example, a parametric delay feedback controller was
added to a small-world network system [24], which is a modification of polynomial con-
trollers whose coefficients are reduced exponentially with the time delay as kie–p(τ ). The
results showed that the small-world network model of the controller with delay-dependent
parameters changes the dynamic characteristics of the system with delay-independent pa-
rameters controller.

It is difficult to manage rice production for an unstable paddy ecosystem. However, a
Hopf bifurcation may occur in a paddy ecosystem, which will lead to instability of the sys-
tem [4]. Therefore, we want to delay or eliminate the Hopf bifurcation in a paddy ecosys-
tem by using the methods of bifurcation control. It is generally known that microbes need
time to transform dead weeds into inorganic fertilizers, so time delay is inevitable. But
from the term rd2p(t) in the second equation of system (1), it is easy to find that model (1)
did not consider the time delay. Based on the above, the main purpose of this paper is to
extend system (1) to a fractional form with delay and give a detailed analysis of controlling
Hopf bifurcation.

2 Preliminaries
We firstly give some basic concepts and lemmas. Consider the linear fractional order de-
layed system

DαX(t) = AX(t) + BX(t – τ ), (2)

where X(t) = (x1(t), x2(t), . . . , xn(t))T ∈ C([–τ ,∞),Rn), and the time delay τ > 0. Dα is the
Caputo fractional derivative defined as follows:

Dαf (t) =
1

Γ (m – α)

∫ t

0
(t – s)m–α–1f (m)(s) ds,
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where Γ (q) =
∫ ∞

0 e–ttq–1 dt is the gamma function, m ∈ N, and m – 1 ≤ α ≤ m. In this
paper, we suppose 0 < α ≤ 1. The characteristic equation of system (2) is

�(λ) = det
(
λαE – A – Be–λτ

)
= 0.

We will employ the following result to discuss the stability of the fractional order delayed
system (2) [26].

Lemma 1 If α ∈ (0, 1), all the eigenvalues λs of M = A + B satisfy |arg(λ)| > π
2 , and the

characteristic equation �(λ) = 0 has no purely imaginary roots for any τ > 0, then the zero
solution of system (2) is Lyapunov globally asymptotically stable.

We still need the following Hopf bifurcation conditions proposed in [27] for a general
fractional order delayed system

DαY (t) = F
(
Y (t), Y (t – τ )

)
: (3)

(a) All the eigenvalues of the coefficient matrix M of the linearized system of (3) at the
equilibrium Y ∗ satisfy | arg(λ)| > απ/2.

(b) The characteristic equation �(λ) = 0 of the linearized system of (3) has a pair of
purely imaginary roots ±iω0 when τ = τ0.

(c) d Re(λ(τ ))
dτ

|τ=τ0 > 0, where Re(·) denotes the real part of the complex number.
If the above conditions hold, then system (3) undergoes a Hopf bifurcation at the equilib-
rium Y ∗ when τ = τ0.

Next we introduce some notations defined in [4] and a polynomial of degree 4 with real
coefficients a = (1, a1, a2, a3, a4),

fa(ξ ) = ξ 4 + a1ξ
3 + a2ξ

2 + a3ξ + a4,

where a1 > 0, a3 > 0, and a4 > 0.
If a2 ≥ 0, then there is not a positive real root for equation fa(ξ ) = 0. Next, we consider the

case of a2 < 0. The polynomial fa(ξ ) can be decomposed into the product of the following
two quadratic polynomials:

f1(ξ ) = ξ 2 +
(

a1

2
– Ma

)

ξ +
va

2
– sgn

(
a1va

2
– a3

)

Na (4)

and

f2(ξ ) = ξ 2 +
(

a1

2
+ Ma

)

ξ +
va

2
+ sgn

(
a1va

2
– a3

)

Na,

where

Ma =

√

a2
1

4
– a2 + va, Na =

√
v2

a
4

– a4
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and va is any positive real root of equation

ν3 – a2ν
2 + (a1a3 – 4a4)ν + 4a2a4 – a2

1a4 – a2
3 = 0.

Denote the discriminants of the polynomial f1(ξ ) and f2(ξ ) by

�a =
a2

1
2

– a2 – va – a1Ma + sgn

(
a1va

2
– a3

)

4Na (5)

and �2 = a2
1

2 – a2 – va + a1Ma – sgn( a1va
2 – a3)4Na.

As for the existence of positive roots of equation fa(ξ ) = 0, we have the following con-
clusion [4].

Lemma 2 Suppose that ai > 0 (i = 1, 3, 4). If a2 < 0 and �a ≥ 0, then there are only two
positive real roots in the equation fa(ξ ) = ξ 4 + a1ξ

3 + a2ξ
2 + a3ξ + a4 = 0. If a2 ≥ 0, or a2 < 0

and �a < 0, there is no positive real root in the equation fa(ξ ) = 0.

3 The modeling of a delayed fractional paddy ecosystem with feedback control
According to the analysis in Sect. 1, we extend the integer order system (1) to the fractional
order form, introduce delay τ into the item rd2p(t), and put a time delay force k(u(t) –
u(t – τ )) in the second equation. Thus we obtain the fractional order paddy ecosystem
with delay feedback control as follows:

⎧
⎨

⎩

Dαp(t) = cf (I)h(u(t))p(t) – d2p(t) – d3p(t),

Dαu(t) = b – d1u(t) + rd2p(t – τ ) – f (I)h(u(t))p(t) + k(u(t) – u(t – τ )),
(6)

where k is a feedback gain parameter, the meanings of the variables and other parameters
are the same as those of system (1). We suppose that the uptake of inorganic fertilizer by
weeds complies with the general Michaelis–Menten uptake kinetics as follows:

h(u) =
au

m + u
,

where a is the maximum uptake rate of inorganic fertilizer u and m is its half-saturation
concentration. Taking into account actual requirements, the parameters in system (6) are
nonnegative and satisfy the following conditions: 0 < c < 1, 0 < r < 1, and di > 0 (i = 1, 2).

The equilibrium (p∗, u∗) of system (6) satisfies the following equations:

⎧
⎨

⎩

F1(p∗, u∗) = cf (I)h(u∗)p∗ – (d2 + d3)p∗ = 0,

F2(p∗, u∗) = b – d1u∗ + rd2p∗ – f (I)h(u∗)p∗ = 0.
(7)

Obviously, when caf (I)
d2+d3

> 1 + md1
b , system (6) has a unique positive equilibrium (p∗, u∗),

which is defined as

p∗ =
c(b – d1u∗)

(1 – rc)d2 + d3
, u∗ =

m(d2 + d3)
caf (I) – d2 – d3

.
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From (7), for the positive equilibrium (p∗, u∗), the following relations hold:

cf (I)h
(
u∗) – d2 – d3 = 0, f (I)h

(
u∗) =

d2 + d3

c
,

h′(u∗) =
am

(m + u∗)2 =
(a – h(u∗))2

am
> 0.

4 Control of bifurcation for a fractional paddy ecosystem
Through the coordinate transformation x(t) = p(t)–p∗, y(t) = u(t)–u∗, we can turn system
(6) into the following form:

⎧
⎪⎪⎨

⎪⎪⎩

Dαx(t) = –(d2 + d3)x(t) + cf (I)[h(y + u∗)(x + p∗) – h(u∗)p∗],

Dαy(t) = rd2x(t – τ ) – d1y(t) – f (I)[h(y + u∗)(x + p∗) – h(u∗)p∗]

+ k(y(t) – y(t – τ )).

(8)

Using the following Taylor expansion of h(y + u∗) at the point u∗

h
(
y + u∗) = h

(
u∗) + h′(u∗)y + O

(
y2),

where O(y2) represents the remaining items whose orders are greater than or equal to 2,
system (8) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

Dαx(t) = cf (I)p∗h′(u∗)y(t) + cf (I)h′(u∗)x(t)y(t) + cf (I)(x(t) + p∗)O(y2(t)),

Dαy(t) = rd2x(t – τ ) – f (I)h(u∗)x(t) – (d1 + f (I)p∗h′(u∗) – k)y(t) – ky(t – τ )

– f (I)h′(u∗)x(t)y(t) – f (I)(x(t) + p∗)O(y2(t)).

(9)

Then the linearized system of (9) at the equilibrium (0, 0) is as follows:

⎧
⎨

⎩

Dαx(t) = cf (I)p∗h′(u∗)y(t),

Dαy(t) = rd2x(t – τ ) – f (I)h(u∗)x(t) – (d1 + f (I)p∗h′(u∗) – k)y(t) – ky(t – τ ).
(10)

It is written in matrix form as

DαX(t) = AX(t) + BX(t – τ ), (11)

where

A =

(
0 cf (I)p∗h′(u∗)

–f (I)h(u∗) –(d1 + f (I)p∗h′(u∗) – k)

)

, B =

(
0 0

rd2 –k

)

.

For simplicity, we introduce parameters

⎧
⎨

⎩

b1 = d1 + f (I)p∗h′(u∗), b2 = f (I)p∗h′(u∗)(d2 + d3),

b3 = rcd2f (I)p∗h′(u∗), b4 = b2 – b3,
(12)



Zheng et al. Advances in Difference Equations        (2019) 2019:307 Page 7 of 14

and
⎧
⎨

⎩

a1(k,α) = 2(b1 – k) cos απ
2 , a2(k,α) = b1(b1 – 2k) + 2b2 cosαπ ,

a3(k,α) = 2[b1b2 – k(b2 – b3)] cos απ
2 , a4 = b2

2 – b2
3.

(13)

Obviously, bi > 0 (i = 1, 2, 3, 4) and a4 > 0. From 0 < α ≤ 1 and k ≤ b1, we have a1(k,α) ≥ 0
and a3(k,α) ≥ 0. If 2b2 cosαπ ≥ –b1(b1 – 2k), then a2(k,α) ≥ 0.

Define

αk =

⎧
⎪⎪⎨

⎪⎪⎩

1
π

arccos b1(2k–b1)
2b2

, b1
2 ≤ k ≤ min{b1, b1

2 + b2
b1

},
1 – 1

π
arccos b1(b1–2k)

2b2
, b1

2 – b2
b1

< k < b1
2 ,

1, k ≤ b1
2 – b2

b1
.

(14)

If b1
2 + b2

b1
< b1, let αk = 0 when b1

2 + b2
b1

< k ≤ b1. Thus, if 0 < α ≤ αk , then a2(k) ≥ 0. Other-
wise, if αk < α < 1, then a2(k,α) < 0.

Theorem 1 Suppose that caf (I)
d2+d3

> 1 + md1
b and k ≤ b1.

(i) If 0 < α ≤ αk , or αk < α ≤ 1 and �a < 0, then the positive equilibrium (p∗, u∗) of the
paddy ecosystem (6) is locally asymptotically stable for τ ≥ 0.

(ii) If αk < α ≤ 1 and �a ≥ 0, then there exists a positive number τk,α such that the
positive equilibrium (p∗, u∗) of the paddy ecosystem (6) is locally asymptotically
stable for τ ∈ [0, τk,α), but it is unstable for τ ≥ τk,α , and a Hopf bifurcation emerges
at τ = τk,α .

Proof When τ = 0, the coefficient matrix of system (11) becomes

A + B =

(
0 cf (I)p∗h′(u∗)

rd2 – f (I)h(u∗) –(d1 + f (I)p∗h′(u∗))

)

.

Its characteristic equation is λ2 + b1λ + b4 = 0. It has two eigenvalues as follows:

λ1,2 =
1
2
(
–b1 ±

√

b2
1 – 4b4

)
.

Obviously, the real parts of λ1,2 are less than zero. So the eigenvalues λ1,2 of A + B satisfy
|arg(λ)| > π

2 .
Next we consider the existence of pure imaginary roots of the characteristic equation of

linearized system (10). Its characteristic equation of system (10) is as follows:

λ2α + (b1 – k)λα + b2 –
(
b3 – kλα

)
e–λτ = 0. (15)

Assume that equation (15) has a pair of purely imaginary roots ±iξ (ξ > 0). Substituting

λ = iξ = ξ

(

cos
π

2
+ i sin

π

2

)

into equation (15) and using the Euler formula eiz = cos z + i sin z, we have

ξ 2α(cosαπ + i sinαπ ) + (b1 – k)ξα

(

cos
απ

2
+ i sin

απ

2

)

+ b2
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–
[

b3 – kξα

(

cos
απ

2
+ i sin

απ

2

)]

(cos ξτ – i sin ξτ ) = 0.

Its real part and imaginary part are respectively

ξ 2α cosαπ + (b1 – k)ξα cos
απ

2
+ b2 –

(

b3 – kξα cos
απ

2

)

cos ξτ + kξα sin
απ

2
sin ξτ = 0

and

ξ 2α sinαπ + (b1 – k)ξα sin
απ

2
+

(

b3 – kξα cos
απ

2

)

sin ξτ + kξα sin
απ

2
cos ξτ = 0.

Denote

φ(k,α) = b3 – kξα cos
απ

2
, ψ(k,α) = kξα sin

απ

2
,

w1(k,α) = ξ 2α cosαπ + (b1 – k)ξα cos
απ

2
+ b2,

w2(k,α) = ξ 2α sinαπ + (b1 – k)ξα sin
απ

2
.

So we get the sine and cosine values of τξ as follows:
⎧
⎨

⎩

cos τξ = w1(k,α)φ(k,α)–w2(k,α)ψ(k,α)
φ2(k,α)+ψ2(k,α) ,

sin τξ = – w1(k,α)ψ(k,α)+w2(k,α)φ(k,α)
φ2(k,α)+ψ2(k,α) .

(16)

Because they satisfy sin2 τξ + cos2 τξ = 1, we have

w2
1(k,α) + w2

2(k,α) = φ2(k,α) + ψ2(k,α).

Sorting the power of ξ , one obtains

fa
(
ξα

)
= ξ 4α + a1(k,α)ξ 3α + a2(k,α)ξ 2α + a3(k,α)ξα + a4 = 0, (17)

where ai(k,α) (i = 1, 2, 3, 4) are defined in (13).
(i) If 0 < α ≤ αk , then a2(k,α) = b1(b1 – 2k) + 2b2 cosαπ ≥ 0. Therefore, equation (17)

has no positive real root. If αk < α ≤ 1 and �a < 0, we know the equation fa(ξ ) = 0 has no
positive real root by Lemma 2. Then equation (17) also has no positive real root. Therefore,
the equilibrium (p∗, u∗) is locally asymptotically stable for any τ ≥ 0 by Lemma 1.

(ii) If αk < α ≤ 1 and �a ≥ 0 hold, then the equation fa(ξ ) = 0 has two positive real roots
ξ1 and ξ2 by Lemma 2. Suppose ξ1 ≤ ξ2, then equation (17) has a positive real root ξa such
that ξα

a = ξ2.
If sin τξ > 0, then we have

τk,α =
1
ξa

arccos
w1(k,α)φ(k,α) – w2(k,α)ψ(k,α)

φ2(k,α) + ψ2(k,α)
(18)

from the first equation of (16). If sin τξ < 0, then we get

τk,α =
2π

ξa
–

1
ξa

arccos
w1(k,α)φ(k,α) – w2(k,α)ψ(k,α)

φ2(k,α) + ψ2(k,α)
. (19)
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Thus, conditions (a) and (b) are satisfied. Next, we verify that the transversal condition
(c) holds. Computing the derivative of λ with respect to τ in (15) yields

dλ

dτ
= –

(b3 – kλα)λe–λτ

2αλ2α–1 + α(b1 – k)λα–1 + (kαλα–1 + τ (b3 – kλα))e–λτ
.

Substituting λ = iξa and τ = τk,α gives

(
dλ

dτ

)–1∣∣
∣
∣
λ=iξa

= –
[

α((2λ2α + (b1 – k)λα)eλτ + kλα)
λ2(b3 – kλα)

+
τ

λ

]∣
∣
∣
∣
λ=iξa

=
α((2(iξa)2α + (b1 – k)(iξa)α)eiξaτk,α + k(iξa)α–2)

ξ 2
a (b3 – k(iξa)α)

–
τk,α

iξa
.

For convenience sake, we use the following two notations:

w3 = 2ξ 2α
a cosαπ + (b1 – k)ξα

a cos
απ

2
,

w4 = 2ξ 2α
a sinαπ + (b1 – k)ξα

a sin
απ

2
.

Then we obtain its real part as follows:

Re

{(
dλ

dτk,α

)–1∣∣
∣
∣
λ=iξa

}

=
α

ξ 2
a (φ2(k,α) + ψ2(k,α))

[(
φ(k,α)w3 – ψ(k,α)w4

)
cos ξaτk,α

–
(
φ(k,α)w4 + ψ(k,α)w3

)
sin ξaτk,α + b3φ(k,α)

– φ2(k,α) – ψ2(k,α)
]
.

Substituting (16) into the above expression, we obtain that

Re

{(
dλ

dτ

)–1∣∣
∣
∣
λ=iξa

}

=
α[w1w3 + w2w4 + b3φ(k,α) – φ2(k,α) – ψ2(k,α)]

ξ 2
a (φ2(k,α) + ψ2(k,α))

=
α

ξ 2
a (φ2(k,α) + ψ2(k,α))

[

2ξ 4α
a + 3(b1 – k) cos

απ

2
ξ 3α

a

+
(
2b2 cosαπ + b1(b1 – 2k)

)
ξ 2α

a

+
(
b1b2 – (b2 – b3)k

)
cos

απ

2
ξα

a

]

=
α[4ξ 3α

a + 3a1(k,α)ξ 2α
a + 2a2(k,α)ξα

a + a3(k,α)]
2ξ 2–α

a (φ2(k,α) + ψ2(k,α))

=
αf ′

a(ξα
a )

2ξ 2–α
a (φ2(k,α) + ψ2(,α))

.

Notice that ξα
a is the larger positive real root of equation fa(ξ ) = 0 and the coefficient of

the highest power ξ 4 in the polynomial fa(ξ ) is equal to 1, it is easy to derive f ′
a(ξα

a ) > 0. So
the transversal condition (c) holds. Therefore, a Hopf bifurcation emerges at the positive
equilibrium (p∗, u∗) when τ = τk,α . �
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Figure 1 The stable region of system (6). The curve
αk is defined by (14). The �a defined in (5) is the
discriminant of polynomial (4)

Taking α and k as variable parameters, but fixing other parameters, f (I) = 12, m = 4,
a = 0.1, b = 5, r = 0.9, c = 0.9, d1 = 0.01, d2 = 0.8, and d3 = 0.1, we draw two curves αk and
�a = 0 in the k – α coordinate system (Fig. 1). From the proof of Theorem 1, we can see
that the coefficient a2(k,α) ≥ 0 at the lower left of the curve αk , while a2(k,α) < 0 at its
upper right. From Theorem 1, the lower left of the curve �a = 0 is the stable region of
system (6), while the stability at its upper right region is determined by the time delay τ .

Remark 1 Consider the uncontrolled fractional paddy ecosystem with delay

⎧
⎨

⎩

Dαp(t) = cf (I)h(u(t))p(t) – d2p(t) – d3p(t),

Dαu(t) = b – d1u(t) + rd2p(t – τ ) – f (I)h(u(t))p(t).
(20)

That is the case of k = 0 in system (6).
From (13), we have

⎧
⎨

⎩

a1(0,α) = 2b1 cos απ
2 , a2(0,α) = b2

1 + 2b2 cosαπ ,

a3(0,α) = 2b1b2 cos απ
2 , a4 = b2

2 – b2
3.

(21)

Because k = 0 < b1/2, by definition (14), we get

α0 =

⎧
⎨

⎩

1 – 1
π

arccos
b2

1
2b2

, b2
1 < 2b2,

1, b2
1 ≥ 2b2.

From (16), we know

sin τξ = –
ξ 2α sinαπ + b1ξ

α sin απ
2

b3
< 0.

So we have from (19)

τ0,α =
2π

ξa
–

1
ξa

arccos
ξ 2α

a cosαπ + b1ξ
α
a cos απ

2 + b2

b3
. (22)

Therefore, we obtain the stability and bifurcation existence of the uncontrolled frac-
tional paddy ecosystem (20) from Theorem 1.
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Figure 2 The asymptotical stability of
(p∗ ,u∗) ≈ (17.1429, 20) in uncontrolled system (20)
with α = 0.98, b = 5, and τ = 8 < τ0,0.98 ≈ 9.8065

Figure 3 Waveform diagram of uncontrolled system
(20) with α = 0.98, b = 5, and
τ = 11 > τ0,0.98 ≈ 9.8065

Corollary 1 Suppose that caf (I)
d2+d3

> 1 + md1
b .

(i) If 0 < α ≤ α0, or α0 < α ≤ 1 and �a < 0, then the positive equilibrium (p∗, u∗) of the
paddy ecosystem (20) is locally asymptotically stable for τ ≥ 0.

(ii) If α0 < α ≤ 1 and �a ≥ 0, then there exists a positive number τ0 as (22) such that the
positive equilibrium (p∗, u∗) of the paddy ecosystem (20) is locally asymptotically
stable for τ ∈ [0, τ0,α), but it is unstable for τ ≥ τ0,α , and a Hopf bifurcation emerges
at τ = τ0,α .

5 Numerical examples
In this section, we provide two numerical examples to verify the efficiency and feasibility
of our results. In systems (6) and (20), let f (I) = 12, m = 4, a = 0.1, r = 0.9, c = 0.9, d1 = 0.01,
d2 = 0.8, and d3 = 0.1.

5.1 Example for uncontrolled system
Firstly, we take α = 0.98 and b = 20. The uncontrolled system (20) has a positive equilib-
rium (70.7142, 20). By computing, we get α0 ≈ 0.6099 and �a ≈ –0.0913. By Corollary 1,
the equilibrium (70.7142, 20) is locally asymptotically stable for any τ ≥ 0.

Let us take b = 5 and α = 0.98 again. System (20) also has a positive equilibrium
(17.1429, 20). For this case, we have α0 ≈ 0.5290 and �a ≈ 0.0475. We further get the
Hopf bifurcation critical value τ0,α ≈ 9.8065 by using (22). According to Corollary 1, the
equilibrium (17.1429, 20) is locally asymptotically stable when τ ∈ [0, τ0,α); otherwise, the
equilibrium (17.1429, 20) is unstable and a Hopf bifurcation emerges at τ = τ0,α . Figure 2
depicts the asymptotic stability of the positive equilibrium (17.1429, 20) when the time
delay τ = 8 < τ0,α . Figure 3 indicates that system (20) has a periodic oscillation bifurcating
from the equilibrium (17.1429, 20) when the time delay τ = 11 > τ0,α .
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Figure 4 Contours of the Hopf bifurcation critical
time delay function τk,α

Table 1 Effect of feedback control gain on the Hopf bifurcation critical value

Feedback gain k Critical frequency ξa Bifurcation point τk,0.98

–0.14 0.3172 17.6105
–0.10 0.3648 14.1874
–0.06 0.3934 12.2202
–0.02 0.4168 10.5699
0 0.4274 9.8065
0.02 0.4375 9.0766
0.05 0.4518 8.0475
0.10 0.4740 6.5397
0.15 0.4947 5.3276

5.2 Example for controlled system
We discuss the influence of feedback gain k and fractional order α on the bifurcation of
controlled system (6) by numerical calculation. Let b = 5. We firstly obtain b1 ≈ 0.1529
from (12) and b1/2–b2/b1 ≈ –0.7647. Let the feedback gain k take different values between
b1/2 – b2/b1 and b1, then we can get the αk from (14). For any k ∈ (b1/2 – b2/b1, b1) and
α ∈ (αk , 1], we calculate the corresponding critical threshold ξa by solving equation (17)
and bifurcation point τk,α from (18) or (19). We draw the contours of time delay τk,α in the
k – α coordinate system (Fig. 4). Table 1 lists some critical frequency ξa and bifurcation
point τk,α for different k ∈ [–0.14, 0.15] when α = 0.98. From Fig. 4 or Table 1, we can find
that the τk,α value is increasing as the feedback gain k or the fractional order α decreases.
Therefore, it verifies the result that the occurrence of the Hopf bifurcation is delayed by
taking smaller k or α.

The above two examples show that if the paddy ecosystem is not controlled, a Hopf bi-
furcation may occur in the system, which will be disadvantageous to paddy management.
However, by introducing feedback control to inorganic fertilizers, we can effectively ex-
pand the stable range of equilibrium and suppress the occurrence of bifurcation.

6 Conclusion
In this paper, our model generalizes the existing integer order model (1) to fractional order
case, which is much closer to the real complex paddy ecosystem. We have obtained two
important results. Firstly, the time delay τ required for the transformation of dead weeds
into inorganic fertilizers affects the dynamics of the paddy ecosystem. In system (6), by
introducing time delay τ to the item rd2p(t), we have analyzed how the stability of the
system is affected by time delay τ . Theorem 1 tells us that the stability of system (6) is
independent of time delay only when conditions 0 < α ≤ αk , or αk < α ≤ 1 and �a < 0
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hold. Otherwise, there exists a critical value τk,α , when the delay τ increases from zero
to τk,α , system (6) will change from stable to unstable and Hopf bifurcation phenomena
will arise. Secondly, the delay feedback controller and the fractional order can effectively
control the occurrence of Hopf bifurcation in the fractional paddy ecosystem with time
delay. In the proof of Theorem 1, we give a formula (18) or (19) for calculating the critical
point of bifurcation, which is related to the feedback gain k and fractional order α. From
the numerical results, we have observed that the bifurcation critical value τk,α increases
as the feedback gain k and fractional order α become smaller and smaller. But when α

becomes smaller, there exists a lower bound of α, which is determined by inequalities
α > αk and �a ≥ 0.

We make it clear that although the time delay leads to instability and bifurcation, the
bifurcation can be controlled by the feedback controller or fractional order. Therefore,
our conclusions can guide the management of complex dynamic phenomena in the paddy
ecosystem.
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