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and several algebraic criteria of Mittag-Le�er and asymptotical stability were obtained.

Zhang et al. [12] studied the stability of nonlinear fractional di�erential systems with Ca-

puto derivatives by using the comparison method. Wu et al. [16] analyzed the stability

of nonlinear discrete fractional systems via the Lyapunov second direct method. Mean-

while, however, numerical algorithms for fractional di�erential equations are not mature

enough. On the premise of the reliability and accuracy of calculations, there still exist

some challenges to improve the computational e�ciency, e.g., to lower the computational

burdens and storage consumptions. To solve fractional di�erential equations, many nu-

merical algorithms have been developed [2, 17, 18], including “nite di�erence method,

“nite element method, polynomial con“guration method, etc. Among these methods, the

“nite di�erence method is most commonly used.

As we all know, the classical models for disease dynamics are the Susceptible-Infected-

Susceptible (SIS), Susceptible-Infected-Recovered (SIR), Susceptible-Infected-Recovered-

Susceptible (SIRS), and Susceptible-Exposed-Infected- Recovered (SEIR) models, which

represent di�erent stages of infection for individuals in a population. Based on the mem-

ory function of a fractional-order system, many scholars use fractional-order di�erential

equations to analyze the transmission dynamics of infectious diseases, which has more re-

alistic signi“cance than using the integer-order di�erential equation [19…23]. However, as

the transmission dynamics of an infectious disease is greatly a�ected by inter-individual

connections, also known as network topology, it has practical signi“cance to analyze the

transmission characteristics of fractional-order infectious diseases in complex networks.

Speci“cally, infectious diseases spread out in population through certain types of inter-

personal contacts. Such contacts naturally form into a complex social network, where a

network node represents an individual, and the inter-personal contacts through which

the disease can transmit are represented as edges. A large number of di�erent network

transmission models have been proposed (e.g., [24…28]). Zhu et al. [29] provided a typical

mean-“eld modeling framework to describe the time-evolution dynamics and o�er some

theoretical analyses to study the spreading threshold and the global stability of the model.

In Ref. [30], a general SIS model with infective vectors on complex networks was studied,

and a new technique based on the basic reproduction matrix was introduced. Wang et

al. [31] reviewed two node-based SIR models incorporating degree correlations and an

edge-based SIR model without considering the degree correlation to predict the disease

evolution on correlated networks. Huo [32] proposed a fractional SIR model with birth

and death rates on heterogeneous complex networks and investigated the stability of a

disease-free equilibrium point and an endemic equilibrium point.

Despite of these extensive e�orts, only a few studies have investigated the fractional

epidemic models on complex networks under disease control. By adopting some control

strategies, the disease may only be able to spread in a “nite population, or even disappear

ultimately. We shall use a linear proportion control named linear treatment to control

the disease propagation. The main objective is to analyze the stability of the disease-free

equilibrium point and the endemic equilibrium point for a fractional-order SIS network

model with linear treatment function, based on the reproduction number.

The organization of the rest part of this manuscript is as follows. The de“nition of Ca-

puto fractional derivative and some of its important properties are given in Sect.2. In

Sect.3, the SIS fractional disease model with treatment function is described and the ba-

sis reproduction number is derived. In Sect.4, the stability of the disease-free equilibrium
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point and the endemic equilibrium point is discussed in detail. In Sect.5, an example is

presented to verity the e�ectiveness of the theoretical results. Finally, Sect.6 concludes

the whole report.

2 Preliminaries
Let us recall some basic de“nitions on Caputo di�erential operator of fractional calculus.

Firstly, we introduce the de“nition of Caputo fractional derivative.

Definition 1 ([14]) Suppose thatα > 0,t > t0, α,t0,t � R. The Caputo fractional derivative

for a smooth function f = f (t) is given by

c
t0Dα

t f (t) =
1

Γ (n …α)

∫ t

0

f n(ζ )
(t …ζ )α+1…n dζ , n … 1 <α < n,n � N.

whereΓ denotes the gamma function.

If n = 1, then 0 <α < 1 and

c
t0Dα

t f (t) =
1

Γ (1 …α)

∫ t

0

f n(ζ )
(t …ζ )α

dζ .

Lemma 1 Assume that 0 <α � 1, t0Dα
t x(t) � t0Dα

t y(t), x(t0) = x0 � y(t0) = y0, then x(t) �

y(t).

For simplicity, the Caputo fractional derivativect0Dα
t is always rewritten asDα .

Considering the following general type of fractional di�erential equations involving Ca-

puto derivative:

Dαx(t) = f (x,t), (1)

with the initial condition x0 = x(t0), we have the following de“nition.

Definition 2 The constantx� is an equilibrium point of the Caputo fractional dynamic

system (1) if and only if f (t,x� ) = 0.

When 0 <α < 1, the Caputo fractional-order system (1) has the same equilibrium points

as the integer-order systemdx
dt = f (t,x).

3 Model description and basic reproduction number
Based on the Caputo derivative, we propose a fractional SIS complex network model as

follows:

⎧⎨
⎩

DαSk(t) = b(Sk + Ik) …βSk …λ(k)SkΘ(t) + γ Ik,

DαIk(t) = λ(k)SkΘ(t) … (γ + β + μ)Ik, k = 1,2, . . . ,n,
(2)

whereDα is the Caputo derivative,α (0 <α < 1) is the order of the di�erential operator for

system (2). Sk(t), Ik(t) are respectively the densities of the susceptible and infected nodes

(individuals) with the degreek (k = 1, 2, . . . ,n) at time t, b is the birth rate,β is the natural

death rate,μ is the death rate due to illness,γ is the recovery rate of the infected nodes,
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λ(k) is the infection rate and satis“esc � λ(k) � d, Θ(t) = �k�…1∑n
k�=1 ϕ(k�)P(k�)Ik� is the

probability that a randomly chosen edge emanating from a node of degreek points to an

infected node of degreek� . ϕ(k�) is the density of nodek� , P(k�) is the degree distribution

of nodek� , and�k� is the average degree of the network. It can be seen that the spread of

disease networks is in”uenced by the topological structure of social networks.

The e�ective management of infectious diseases is treatment. In this paper the linear

treatment function T(Ik) = aIk is introduced. Then system (2) is rewritten as follows:

⎧⎨
⎩

DαSk(t) = b(Sk + Ik) …βSk …λ(k)SkΘ(t) + γ Ik + aIk,

DαIk(t) = λ(k)SkΘ(t) … (γ + β + μ)Ik …aIk, k = 1, 2, . . . ,n.
(3)

For system (3), the equilibrium points should satisfy

⎧⎨
⎩

b(Sk + Ik) …βSk …λ(k)SkΘ(t) + γ Ik + aIk = 0,

λ(k)SkΘ(t) … (γ + β + μ + a)Ik = 0, k = 1,2, . . . ,n.
(4)

The disease-free equilibrium pointE0 of system (3) corresponds toIk = 0 (k = 1, 2, . . . ,n).

Substituting it into Eq. (4), sinceSk + Ik 	 1, we have

⎧⎨
⎩

S0
k = b

β
,

I0
k = 0, k = 1,2, . . . ,n.

The endemic equilibrium point of system (3) corresponds to the case where the disease

persists in crowdIk 
= 0 (k = 1,2, . . . ,n). So, the equilibrium pointE� = (S�
k ,I �

k ) has the form

I �
k =

λ(k)Θ(t)
λ(k)Θ(t) + γ + μ + β + a

,

Θ(t) = �k�…1

∑n
k�=1 ϕ(k�)P(k�)λ(k�)Θ(t)

λ(k)Θ(t) + γ + μ + β + a
.

(5)

From Eq. (5) we can obtain thatΘ(t)(1 …�k�…1
∑n

k�=1 ϕ(k� )P(k� )λ(k� )

λ(k)Θ(t)+γ +μ+β+a ) = 0, let f (Θ) = 1 …

�k�…1
∑n

i=1 ϕ(i)P(i)λ(k)
λ(k)Θ(t)+γ +μ+β+a , obviouslyf �(Θ) > 0, limΘ �� f (Θ) = 1.

SinceΘ � 0, there exists a unique positive solution for equationf (Θ) = 0 if and only if

f (0) < 0.

Choose the basic reproduction number

R0 = �k�…1

∑n
k�=1 ϕ(k�)P(k�)λ(k�)
γ + μ + β + a

.

When R0 > 1, there exists a unique endemic equilibrium pointE� = (S�
k ,I �

k ). When R0 < 1,

system (3) only has a disease-free equilibrium pointE0 = (S0
k ,I0

k ).

Remark 1 For the basic reproduction numberR0, whenϕ(k�) = k� andλ(k�) = λk� , R0 can

be simpli“ed to R0 = �k2�
�k�

λ
γ +μ+β+a .
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4 The stability of the equilibrium points
In this section, we prove the stability ofE0 and E� , which is one of the most important
topics in the study of mathematical biology.

Theorem 1 For system (3), when R0 � 1, the disease-free equilibrium point is asymptot-
ically stable, and the disease will die out ultimately; when R0 > 1, there exists a unique
endemic equilibrium point, and the disease-free equilibrium point and the endemic equi-
librium point are both stable, which means that the disease will not spread to all individ-
uals.

Proof Sincec � λ(k) � d,

DαΘ(t) = �k�…1
n∑

i=1

ϕ(i)P(i)DαIi

= �k�…1
n∑

i=1

ϕ(i)P(i)
[
λ(i)(1 …Ii)Θ(t) … (γ + μ + β)Ii …aIi

]

= �k�…1

[ n∑
i=1

ϕ(i)P(i)λ(i)(1 …Ii)Θ(t) …
n∑

i=1

ϕ(i)P(i)(γ + μ + β + a)Ii

]

= Θ(t)

[
…(γ + μ + β + a) + �k�…1

n∑
i=1

ϕ(i)P(i)λ(i)(1 …Ii)

]
. (6)

Let r = …(γ + μ + β + a) + �k�…1∑n
i=1 ϕ(i)P(i)λ(i), then

R0 … 1 =
�k�…1∑n

i=1 ϕ(i)P(i)λ(i) … (γ + μ + β + a)
γ + μ + β + a

.

(1) For Eq. (6), whenR0 < 1 (r < 0),DαΘ(t) � rΘ(t) …cΘ2(t).
First, let DαΘ1(t) = rΘ1(t), Θ1(t) = rEα,1
 rtα � . Sincer < 0, limt�� Θ �(t) = 0, we have

limt�� Ik(t) = 0.
Secondly, letDαΘ2(t) � …cΘ2

2(t). Consider the comparing system

Dαx(t) = …cx2(t), x(0) =Θ(0),x(t) > 0,

and construct a linear fractional-order equationDαx(t) = x(0)x(t) its solution is x(t) =
x(0)Eα,1
 x(0)tα � .

For equationDαx(t) = x2(t), x(0) =Θ(0) > 0, we can obtain that

D…αDαx(t) = D…αx2(t),

that is to say,x(t) …x(0) = D…αx2(t) > 0.
Therefore,x2(t) > x(0)x(t) and …cx2(t) < …cx(0)x(t).
Since …cx(0) < 0, applying Lemma1, limt�� x(t) = 0, limt�� Θ2(t) � limt�� x(t) = 0.
Combining with the above analysis, we can summarize that whenr < 0,limt�� Θ(t) = 0.

Hence,limt�� Ik(t) = 0.
(2) For Eq. (6), when R0 = 1 (r = 0), DαΘ(t) � …cΘ2(t). Similarly, limt�� Θ(t) = 0,

namelylimt�� Ik(t) = 0.
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(3) For Eq. (6), whenR0 > 1 (r > 0),DαΘ(t) � rΘ(t) …cΘ2(t).
Considering the comparing system

Dαx(t) = rx(t) …cx2(t) = …c
[

x(t) …
r
2c

]
+

r2

4c
, (7)

from the above analysis, we can derive that the solution of Eq. (7) is stable. Applying

Lemma 1, we have that whenr > 0, no matter the equilibrium point is disease free or

endemic,Θ(t) is stable. In other words, the disease will not spread to all individuals.

The proof is completed. �

Remark 2 For Eq. (7), let the Lyapunov functionV (t) = (x(t) …r
c )2, then

DαV (t) = Dα

(
x(t) …

r
c

)2

�
(

x(t) …
r
c

)
Dα

(
x(t) …

r
c

)

=
(

x(t) …
r
c

)[
rx(t) …cx2(t)

]

= …cx(t)
(

x(t) …
r
c

)2

.

Sincec > 0, thenDαV (t) � 0, and the equilibrium points are stable.

5 Numerical simulations
In this section, numerical simulations are presented to illustrate the above-mentioned the-

oretical results. There are many numerical methods for solving the fractional equation. In

this manuscript, the “nite di�erence method is used, and the simulation results are pre-

sented as follows.

For system (3) on a BA random scale-free network, the number of nodes on the net-

works is n = 200, the degree distributionP(k) satis“esP(k) = 2m2k…3. For simplicity, let

ϕ(k) = k, λ(k) = λk, b = 0.01,λ = 0.03,β = 0.01,γ = 0.02,μ = 0.01, and the initial condition

is (0.7,0.3). At this moment, there is a disease-free equilibrium pointE0 = (1,0) and an

endemic equilibrium point E� = (0.93,0.02) for system (3), which are both stable. By cal-

culation, the basic reproduction number isR0 = 1.3238 > 1. Figure1 and Fig.2 show time

series plots for the infectious nodesIk and the susceptible nodesSk respectively, when de-

greek changes from 1 to 200. From Fig.1 and Fig.2 we can observe that the disease will

not spread to all individuals. Besides, we can “nd that the larger the degree of node is, the

quicker the disease will decay.

From Fig.3 we can observe that, with the help of the linear treatment function, the in-

fectious scale would decrease much quicker. The larger the parametera is, the smaller

the basic reproduction number is and the faster the disease decreases. For example, when

a = 0.02,R0 = 0.8825 < 1; whena = 0.03,R0 = 0.7565 < 1. But no matter how small the

parameter a is, the disease will die out ultimately. Additionally, we also “nd that the

fractional-order parameter has a strong impact on the decay rate of the infectious scale,

which is presented in Fig.4. The larger the parameterα is, the faster the disease dies out.
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Figure 1 Evolution of the stateIk for system (3) at di�erent k

Figure 2 Evolution of the stateSk for system (3) at di�erent k

From Figs.1…4, we can observe that without control, the disease may continue to spread
over a small area and would not be extinct. By contrast, with treatment function the disease
will decrease more quickly and be extinct ultimately. Moreover, it also takes much less time
to reach a steady state.

6 Conclusions
In this article, the stability of a fractional-order SIS complex network model with linear
treatment function has been investigated. The expression of the basic reproduction num-
ber R0 was provided and some theoretical results have been obtained. WhenR0 � 1, the
disease-free equilibrium point is asymptotically stable, and the disease will become extinct
ultimately regardless of the initial density of the infected individuals. WhenR0 > 1, there
exists a unique endemic equilibrium point. Whether the system ends up at a disease-free
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Figure 3 The in”uence of parametera on the decay rate whenk = 20

Figure 4 The in”uence of parameterα on the decay rate whenk = 20

equilibrium point or an endemic equilibrium point, both states are stable and the disease

will not spread to all individuals. Finally, numerical simulations were presented to demon-

strate the e�ectiveness of the theoretical results and the in”uence of treatment function

and fractional order to the spreading dynamics. Note that the linear treatment function is

not suitable for some infectious disease, for example, cholera,”u, etc., because they have

complex transmission characteristics and are a�ected by many factors. More e�ective con-

trol methods will be developed and evaluated in our future studies. Besides, the feasibility

of solving the fractional equations with other numerical methods, e.g., the methods pro-

posed in Refs. [33, 34], shall also be an interesting issue to be investigated in our future

research.
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