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Abstract
A compound Ornstein–Uhlenbeck process is applied to create a model that can
calculate the dividend yield represented in a sample case of Stock Exchange of
Thailand index in which earning yield is randomly determined. Parameter estimations
are made through the use of least-square technique, while the outcomes are
deduced from the Euler–Maruyama method. We use numerical simulation to
determine the effectiveness of the models, comparing our newly proposed model
with the previous models. The actual dividend yield data is applied for comparison.
The results show that our model performs best among the three models being
compared.
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1 Introduction
In determining the option pricing, dividend yield is among the most crucial factors as
stated in the Black–Scholes–Merton framework which has been one of the main original
contents to be applied in financial analysis. As it can be seen that the dividend yield is
reported daily in the newspapers, many traders consider the performance of dividend yield
before investing in the stock market. Many financial researchers have proposed option
pricing models assuming that the dividend yield exhibits stochastic behavior, as seen in
[1, 2], and [3].

In [4], a proposition was made that the stock price process follows the following stochas-
tic differential equation:

dS(t) =
(
μS – γ (t)

)
S(t) dt + σSS(t) dW (t), (1)

where parameter μS is constant and σS > 0. The Wiener process W (t) and the dividend
yield parameter γ (t) are under the Ornstein–Uhlenbeck process environment.

In this model, the most essential element is the mean-reverting dividend yield which
is the natural characteristic of most financial factors. Since one of the main economic
characteristics is mean-reversion, investors find this model financially interesting. There
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is a tendency for an economy to fall into a recession when the dividend yields are high.
Later, the yields will drop down to their equilibrium value. In contrast, when the dividend
yields are below expectation, they will in reverse increase to the equilibrium value.

Another factor that should be analyzed is the P/E ratio which is also among common
data in the financial field that can be acquired easily. Phewchean inserted a factor of P/E
ratio in his extended option pricing model, and results showed the better performance in
2012 [5].

One of the financial assumptions used is that the dividend yield actually can depend
on the earning yield ϑ(t), that is, E/P ratio. This earning yield can then be presumed to
be under the process of Ornstein–Uhlenbeck. Conversely, the dividend yield can rely on
more than one stochastic factor and therefore cannot qualify as an Ornstein–Uhlenbeck
process. Hence, stochastic differential equations as a system must be considered.

2 Compound Ornstein–Uhlenbeck processes
In 1930, L. Ornstein and G. Eugene Uhlenbeck introduced a process which is considered
a solution to stochastic differential equation as follows:

dX(t) = θ
(
μ – X(t)

)
dt + σ dW (t), (2)

where constant parameters are μ, θ �= 0, and σ > 0 with Wiener process W (t). μ, θ , and σ

are long-term mean, velocity, and friction coefficient, respectively.
In order to have a rational explanation, Ito’s theory was applied. We were able to come up

with a solid explanation from which we could prove that the process was mean-reverting
when θ is positive [5].

To develop the process for multivariate cases, the following steps are performed. Let
X1, . . . , Xn be stochastic processes given by the following system:

dX1(t) = θ11
(
μ11 – X1(t)

)
dt + · · · + θ1n

(
μ1n – Xn(t)

)
dt +

m∑

k=1

σ1k dWk(t),

dX2(t) = θ11
(
μ21 – X2(t)

)
dt + · · · + θ2n

(
μ2n – Xn(t)

)
dt +

m∑

k=1

σ2k dWk(t),

...

dXn(t) = θn1
(
μn1 – Xn(t)

)
dt + · · · + θnn

(
μnn – Xn(t)

)
dt +

m∑

k=1

σnk dWk(t),

where σik is non-zero, and each Wk(t) is an independent Wiener process. An individual
Xi is a compound Ornstein–Uhlenbeck process, and together they form a system of com-
pound Ornstein–Uhlenbeck processes.

If the matrix θ = [θij]n×n in the previous explanation is non-singular, then there is an
n-dimensional vector μ = [μ1 · · · μn]T such that

⎡

⎢
⎢⎢
⎢
⎣

θ11 θ12 · · · θ1n

θ21 θ22 · · · θ2n
...

...
. . .

...
θn1 θn2 · · · θnn

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

μ1

μ2
...

μn

⎤

⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎣

θ11μ11 + θ12μ12 + · · · + θ1nμ1n

θ21μ21 + θ22μ22 + · · · + θ2nμ2n
...

θn1μn1 + θn2μn2 + · · · + θnnμnn

⎤

⎥
⎥⎥
⎥
⎦

.
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This μ yields

dX1(t) = θ11
(
μ1 – X1(t)

)
dt + · · · + θ1n

(
μn – Xn(t)

)
dt +

m∑

k=1

σ1k dWk(t),

dX2(t) = θ11
(
μ1 – X2(t)

)
dt + · · · + θ2n

(
μn – Xn(t)

)
dt +

m∑

k=1

σ2k dWk(t),

...

dXn(t) = θn1
(
μ1 – Xn(t)

)
dt + · · · + θnn

(
μn – Xn(t)

)
dt +

m∑

k=1

σnk dWk(t).

Equivalently,

dX(t) = θ
(
μ – X(t)

)
dt + σ dW(t), (3)

where X(t) = [X1(t) · · · Xn(t)]T , σ = [σik]n×m and W(t) = [W1(t) · · · Wm(t)]T .
This shows that there will be a vector process correlating to the system if the matrix θ

of the system of compound Ornstein–Uhlenbeck processes is non-singular. The vector
process in (3) is called the vector Ornstein–Uhlenbeck process.

When X(t) satisfies (3) with the initial condition X(0) = x0, the result of the vector
Ornstein–Uhlenbeck process is

X(t) =
(

I – e–θ t)μ + e–θ tx0 +
∫ t

0
e–θ (t–s)σ dW(s). (4)

This is derived by general Ito’s formula, Theorem 4.2.1 in [6], with f (X, t) = eθ tX .
Furthermore, by applying Ito’s isometry property of the stochastic integral, Corol-

lary 3.1.7 in [6], we learned that

E
[

X(t)
]

= e–θ tx0 +
(

I – e–θ t)μ (5)

and

Cov
[

X(s), X(t)
]

=
∫ min(s,t)

0
e–θ (s–u)σσ T e–θT (t–u) du. (6)

Moreover, the matrix of covariance is

Var[X] =
∫ t

0
e–θ (t–s)σσ T e–θT (t–s) ds. (7)

Theorem 1 The vector Ornstein–Uhlenbeck process X(t) fulfilling (3) is mean-reverting if
all eigenvalues of θ are positive.

Proof Because e–θ t tends to the zero matrix as t tends to infinity if all eigenvalues of θ are
positive, a conclusion from (5) is that, under this state, E[X(t)] becomes μ.
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However, it is different for Var[X(t)]. We cannot take t in (7) to infinity directly while we
can in the case of E[X(t)]. We use the identity vec(ABC) = (CT ⊗ A) vec(B), where ⊗ is a
Kronecker product expressed in [7] and vec(A) is expressed as a column vector made of
the columns of A stacked on top of one another from left to right. Then

vec
(
Var

[
X(t)

])
=

∫ t

0
eθ (s–t) ⊗ eθ (s–t) ds vec

(
σσ T)

. (8)

Here, we can apply eA⊗B = eA ⊕ eB, where ⊕ is a Kronecker sum. The result is

vec
(
Var

[
X(t)

])
=

∫ t

0
eθ (s–t) ⊗ eθ (s–t) ds vec

(
σσ T)

=
∫ t

0
e(θ⊕θ )(s–t) ds vec

(
σσ T)

= (θ ⊕ θ )–1(I – e–(θ⊕θ)t) vec
(
σσ T)

. (9)

Still, because every eigenvalue of θ ⊕ θ is positive, the covariance matrix becomes a
constant matrix Σ such that vec(Σ) = (θ ⊕ θ )–1 vec(σσ T ). �

Corollary 1 The 2-dimensional vector Ornstein–Uhlenbeck process X(t) fulfilling (3) is
mean-reverting if one of the following conditions is met.

1. (θ11 – θ22)2 + 4θ12θ21 ≥ 0 and θ11θ22 – θ12θ21 < 0, or
2. (θ11 – θ22)2 + 4θ12θ21 < 0 and θ11 + θ22 > 0, or
3. θ11θ22 – θ12θ21 < 0 and θ11 + θ22 > 0.

3 Models and parameter estimation
In this study, three unique models are proposed to emulate dividend yield values. To begin
with, we presume the stochastic dividend yield to reflect the Ornstein–Uhlenbeck pro-
cess (SDY model), as shown in [4], Moreover, as laid out in [5], we have an assumption
that the stochastic dividend yield complies with the compound Ornstein–Uhlenbeck pro-
cess which is determined by the earning yield under stochastic environment (SEY model).
However, not only does the dividend yield depend on the earning yield, but the earning
yield also reciprocally depends on the dividend yield. Therefore, we introduce the new
model based on the idea that both yields follow the compound Ornstein–Uhlenbeck pro-
cess depending on each other (MSEY model). We can define these models with the fol-
lowing stochastic differential equations.

Model for SDY:

dγ (t) = θγ

(
μγ – γ (t)

)
dt + σγ dW (t). (10)

Model for SEY:

dγ (t) = θγϑ

(
μϑ – ϑ(t)

)
dt + θγ

(
μγ – γ (t)

)
dt + σγ dW1(t),

dϑ(t) = θϑ

(
μϑ – ϑ(t)

)
dt + σϑ dW2(t),

(11)

where W1(t) and W2(t) are assumed to be independently uncorrelated.
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Model for MSEY:

dγ (t) = θγϑ

(
μϑ – ϑ(t)

)
dt + θγ

(
μγ – γ (t)

)
dt + σγ dW1(t),

dϑ(t) = θϑγ

(
μγ – γ (t)

)
dt + θϑ

(
μϑ – ϑ(t)

)
dt + σϑ dW2(t),

(12)

where W1(t) and W2(t) are assumed to be independently uncorrelated.
By using Euler–Maruyama approach, the Markov chains related to each model are ob-

tained.
Model for SDY:

γt+�t = γt + θγ (μγ – γt)�t + σγ �Wt . (13)

Model for SEY:

γt+�t = γt + θγϑ (μϑ – ϑt) dt + θγ (μγ – γt) dt + σγ �W1t ,

ϑt+�t = ϑt + θϑ (μϑ – ϑt) dt + σϑ�W2t .
(14)

Model for MSEY:

γt+�t = γt + θγϑ (μϑ – ϑt) dt + θγ (μγ – γt) dt + σγ �W1t ,

ϑt+�t = ϑt + θϑ (μϑ – ϑt) dt + θϑγ (μγ – γt) dt + σϑ�W2t .
(15)

In order to perform the application of the proposed model, we use the least square tech-
nique to estimate each parameter. The derivation for MSEY model can be shown. Firstly,
we rewrite equation (15):

γt+�t = aγt + bϑt + γt + c + εγ

ϑt+�t = dγt + eϑt + ϑt + f + εϑ ,
(16)

where parameters a = 1 – θγ �t, b = –θγϑ�t, c = (θγ μγ + θγϑμϑ )�t, d = –θϑγ �t, e = 1 –
θϑ�t, f = (θϑγ μγ + θϑμϑ )�t, εγ = σγ

√
�tN(0, 1), and εϑ = σϑ

√
�tN(0, 1).

In order to find estimations of a, b, c, d, e, and f , when data γt0 ,γt1 , . . . ,γtN and ϑt0 ,ϑt1 , . . . ,
ϑtN are notified, it is satisfactory to solve the systems defined by ∇E(a, b, c) = 0 as well as
∇E(d, e, f ) = 0. The results are as follows.

⎡

⎢
⎣

∑N–1
t=0 γt+1γt∑N–1
t=0 γt+1ϑt∑N–1

t=0 γt+1

⎤

⎥
⎦ =

⎡

⎢
⎣

∑N–1
t=0 γ 2

t
∑N–1

t=0 γtϑt
∑N–1

t=0 γt∑N–1
t=0 γtϑt

∑N–1
t=0 ϑ2

t
∑N–1

t=0 ϑt∑N–1
t=0 γt

∑N–1
t=0 ϑt N

⎤

⎥
⎦

⎡

⎢
⎣

a
b
c

⎤

⎥
⎦ ,

and

⎡

⎢
⎣

∑N–1
t=0 ϑt+1γt∑N–1
t=0 ϑt+1ϑt∑N–1

t=0 ϑt+1

⎤

⎥
⎦ =

⎡

⎢
⎣

∑N–1
t=0 γ 2

t
∑N–1

t=0 γtϑt
∑N–1

t=0 γt∑N–1
t=0 γtϑt

∑N–1
t=0 ϑ2

t
∑N–1

t=0 ϑt∑N–1
t=0 γt

∑N–1
t=0 ϑt N

⎤

⎥
⎦

⎡

⎢
⎣

d
e
f

⎤

⎥
⎦ .

We can obtain these estimators θ̂γ , θ̂ϑ , θ̂γ ϑ , θ̂ϑγ , μ̂γ , and μ̂ϑ by substitution.
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Figure 1 Actual data of stock exchange of Thailand dividend yield from January 2009 to December 2016

Table 1 Estimations of parameters in models SDY, SEY, and MSEY

Parameter SDY SEY MSEY

θ̂γ 0.09061 0.08967 0.08967
θ̂γ ϑ – 1.22529 1.22529
θ̂ϑγ – – 0.00056
θ̂ϑ – 0.26591 0.26543
μ̂γ 2.66592 2.72988 2.71448
μ̂ϑ – 0.05656 0.05768
σ̂γ 0.26296 0.25409 0.25553
σ̂ϑ – 0.00690 0.00690

For σγ and σϑ , we calculate a primary estimation:

γ̃t+�t = aγ̃t + bϑ̃t + γ̃t + c

and

ϑ̃t+�t = dγ̃t + eϑ̃t + ϑ̃t + f .

Lastly, let

σ̂γ =
√

Var(γt – γ̃t)
�t

and σ̂ϑ =

√
Var(ϑt – ϑ̃t)

�t
.

4 Numerical simulation
Referring to the previous procedures, we are able to produce numerical results of the sim-
ulation. We collected the dividend yield data every month from January 2009 to December
2016 from Stock Exchange of Thailand index of the fifty most active companies (SET50).
Figure 1 shows the collected data presented graphically.

Table 1 presents estimations of values of all parameters used in three separate models.
These estimators fulfill Corollary 1’s mean-reverting conditions.
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Figure 2 Sample of SDY model simulated path (dashed line) compared to actual data (normal line)

Figure 3 Sample of SEY model simulated path (dashed line) compared to actual data (normal line)

Thus, a simulation path of the aforementioned models is then generated using the ana-
lytic solution (4) by parameters in Table 1. We discern the initial values γ (0) and ϑ(0) to
instead be its actual values at January of 2009, and we use 120 observations to make up
each path. In Figs. 2–4, we compare the real data to a sampling of simulated paths and pro-
ceed to use the root mean square error (RMS) for assessing the potential of these proposed
models. These outcomes of the RMS error are statistically calculated by 10,000 separate
simulations, and in Table 2 we give the means and standard deviations of RMS error for
corresponding models.

Error reduction of approximately 8.65% and 13.91% when using the SEY and MSEY
models respectively can be observed as compared to the SDY model. Therefore, the ob-
servations suggest that both the SEY and especially the MSEY models function more pro-
ficiently than the SDY model. Such a result concurs with the assumption that the values
of dividend yield and earning yield depend on each other.
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Figure 4 Sample of MSEY model simulated path (dashed line) compared to actual data (normal line)

Table 2 Comparison of RMS error

RMS error SDY SEY MSEY

Dividend yield mean 0.91951 0.83993 0.79156
s.d. 0.20384 0.16705 0.15229

5 Conclusion
We consider the compound Ornstein–Uhlenbeck process in order to create dividend yield
models to study in a case of Stock Exchange of Thailand through consideration of the earn-
ing yield as an additional stochastic factor. Using the least squares technique and simulat-
ing results through the Euler–Maruyama technique, we can conduct parameter estimation
with respect to three different models: SDY, SEY, and MSEY. Python’s simulation results in
the model with earning yield slightly reduce the RMS error. The numerical result shows
that both SEY and MSEY models reduce the RMS error of estimation. The new MSEY
model is especially proficient at reducing error at a rate of 14%. This suggests that our
proposed dividend yield models with an extension of earning yield have more accurate
data comparing to the original model. To further improve our model for future studies,
we should focus on improving our estimation technique and using more financial factors
in the real world.
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