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Abstract
Recent research has gained more attention on conformable integrals and derivatives
to derive the various type of inequalities. One of the recent advancements in the field
of fractional calculus is the generalized nonlocal proportional fractional integrals and
derivatives lately introduced by Jarad et al. (Eur. Phys. J. Special Topics 226:3457–3471,
2017) comprising the exponential functions in the kernels. The principal aim of this
paper is to establish reverse Minkowski inequalities and some other fractional integral
inequalities by utilizing generalized proportional fractional integrals. Also, two new
theorems connected with this inequality as well as other inequalities associated with
the generalized proportional fractional integrals are established.

MSC: 26D10; 26A33; 05A30

Keywords: Minkowski inequalities; Generalized proportional fractional integral
operator; Inequality

1 Introduction
Fractional calculus is a study of integrals and derivatives of arbitrary order which was a nat-
ural outgrowth of conventional definitions of calculus integral and derivative. Fractional
integral has been comprehensively studied in the literature. The idea has been defined
by numerous mathematicians with a slightly different formula, for example, Riemann–
Liouville, Weyl, Erdélyi–Kober, Hadamard integral, Liouville and Katugampola fractional
integral (see [18, 22, 23, 26, 34]). In the last few years, Khalil et al. [24] and Abdeljawad [1]
established a new class of fractional derivatives and integrals called fractional conformable
derivatives and integrals. Jarad et al. [21] introduced the fractional conformable integral
operators. On the basis of that idea, one can obtain the generalizations of the inequalities:
Hadamard, Hermite–Hadamard, Opial, Grüss, Ostrowski, Chebyshev, among others [19,
35, 37–39]).

Later on in [6], Anderson and Ulness improved the idea of the fractional conformable
derivative by introducing the idea of local derivatives. In [2, 3, 7, 9, 27] researchers intro-
duced new fractional derivative operators by using exponential and Mittag-Leffler func-
tions in their kernels. In [20], Jarad et al. proposed the left and right generalized nonlocal
proportional fractional integral and derivative operators. Such generalizations motivate
future research to present more innovative ideas to unify the fractional operators and ob-
tain the inequalities involving such fractional operators. The integral inequalities and their
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applications play an essential role in the theory of differential equations and applied math-
ematics. A variety of various types of some classical integral inequalities and their gen-
eralizations have been established by utilizing the classical fractional integral, fractional
derivative operators (see, e.g., [4, 12, 14–17, 25, 28–30, 32, 33, 36, 41, 42, 46, 47]).

The reverse Minkowski fractional integral inequalities are perceived in [13]. Anber et
al. [5] have gained some fractional integral inequalities by using Riemann–Liouville frac-
tional integral. In [11], the authors established Minkowski inequalities and some other in-
equalities by employing Katugampola fractional integral operators. In [10, 45], the authors
established the reverse Minkowski inequality for Hadamard fractional integral operators.
In [31], Mubeen et al. recently established the reverse Minkowski inequalities and some
related inequalities for generalized k-fractional conformable integrals.

This paper is organized as follows: In the second section, we present some known re-
sults and basic definitions. In the third section, the reverse Minkowski inequalities are pre-
sented. In the fourth section, some other related inequalities involving generalized non-
local proportional fractional integrals are presented.

2 Preliminaries
This section is devoted to some known definitions and results associated with the classical
Riemann–Liouville fractional integrals and their generalization involving the Riemann–
Liouville fractional integrals. Set et al. [40] presented Hermite–Hadamard and reverse
Minkowski inequalities for Riemann–Liouville fractional integrals. In [8], Bougoffa also
presented Hardy’s and reverse Minkowski inequalities. The following theorems involving
the reverse Minkowski inequalities are the motivation of work performed so far, involving
the classical Riemann integrals.

Theorem 2.1 ([40]) Let r ≥ 1 and let g , h be two positive functions on [0,∞). If 0 < m ≤
g(ρ)
h(ρ) ≤ M, ϑ ∈ [a, b], then the following inequality holds:

(∫ b

a
gr(ϑ) dϑ

)1/r

+
(∫ b

a
hr(ϑ) dϑ

)1/r

≤ 1 + M(m + 2)
(m + 1)(M + 1)

(∫ b

a
(g + h)r(ϑ) dϑ

)1/r

. (1)

Theorem 2.2 ([40]) Let r ≥ 1 and let g , h be two positive functions on [0,∞). If 0 < m ≤
g(ρ)
h(ρ) ≤ M, ϑ ∈ [a, b], then the following inequality holds:

(∫ b

a
gr(ϑ) dϑ

)2/r

+
(∫ b

a
hr(ϑ) dϑ

)2/r

≥
(

(M + 1)(m + 1)
M

– 2
)(∫ b

a
gr(ϑ) dϑ

)1/r(∫ b

a
hr(ϑ) dϑ

)1/r

. (2)

Definition 2.1 ([26, 34]) The left and right R-L fractional integrals of order λ are respec-
tively defined by

(
aI

λg
)
(ϑ) =

1
Γ (λ)

∫ ϑ

a
(ϑ – ρ)λ–1g(ρ) dρ, a < ϑ (3)
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and

(
I

λ
bg

)
(ϑ) =

1
Γ (λ)

∫ b

ϑ

(ρ – ϑ)λ–1g(ρ) dρ, ϑ < b, (4)

where λ ∈C and �(λ) > 0.

In [13], Dahmani introduced the following reverse Minkowski inequalities involving the
R-L fractional integral operators.

Theorem 2.3 ([13]) Let λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions on
[0,∞) such that, for all ϑ > 0, Iλgr(ϑ) < ∞, Iλhr(ϑ) < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M, ρ ∈ [a,ϑ],
then the following inequality holds:

(
I

λgr(ϑ)
)1/r +

(
I

λhr(ϑ)
)1/r ≤ 1 + M(m + 2)

(m + 1)(M + 1)
(
I

λ(g + h)r(ϑ)
)1/r . (5)

Theorem 2.4 ([13]) Let λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions on
[0,∞) such that, for all ϑ > 0, Iλgr(ϑ) < ∞, Iλhr(ϑ) < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M, ρ ∈ [a,ϑ],
then the following inequality holds:

(
I

λgr(ϑ)
)2/r +

(
I

λhr(ϑ)
)2/r

≥
(

(M + 1)(m + 1)
M

– 2
)(

I
λgr(ϑ)

)1/r(
I

λhr(ϑ)
)1/r . (6)

Definition 2.2 ([20]) The left and right generalized nonlocal proportional integral oper-
ators are respectively defined by

(
aI

λ,ηg
)
(ϑ) =

1
ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1g(ρ) dρ (7)

and

(
I

λ,η
b g

)
(ϑ) =

1
ηλΓ (λ)

∫ b

ϑ

exp

[
η – 1

η
(ρ – ϑ)

]
(ρ – ϑ)λ–1g(ρ) dρ, (8)

where η ∈ (0, 1] and λ ∈C and �(λ) > 0.

Remark 2.1 If we consider η = 1 in (7) and (8), then we get the left and right Riemann–
Liouville (3) and (4) respectively.

3 Reverse Minkowski inequalities via generalized proportional fractional
integral operator

In this section, we use generalized nonlocal proportional fractional integral operator to
develop reverse Minkowski integral inequalities. The reverse Minkowski fractional inte-
gral inequality is presented in the following theorem.

Theorem 3.1 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions
on [0,∞) such that, for all ϑ > 0, aI

λ,ηgr(ϑ) < ∞, aI
λ,ηhr(ϑ) < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M,
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ρ ∈ [a,ϑ], then the following inequality holds:

(
aI

λ,ηgr(ϑ)
)1/r +

(
aI

λ,ηhr(ϑ)
)1/r ≤ 1 + M(m + 2)

(m + 1)(M + 1)
(

aI
λ,η(g + h)r(ϑ)

)1/r. (9)

Proof Under the condition stated in Theorem 3.1, g(ρ)
h(ρ) ≤ M, ρ ∈ [0,ϑ], ϑ > 0, we have

(M + 1)rgr(ρ) ≤ Mr(g + h)r(ρ). (10)

Consider a function

F(ϑ ,ρ) =
1

ηλΓ (λ)
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1

=
1

ηλΓ (λ)
(ϑ – ρ)λ–1

[
1 +

η – 1
η

(ϑ – ρ) +
( η–1

η
(ϑ – ρ))2

2
+ · · ·

]
. (11)

We observe that the function F(ϑ ,ρ) remains positive for all ρ ∈ (a,ϑ), a < ϑ ≤ b, since
each term of the above function is positive in view of conditions stated in Theorem 3.1.

Multiplying both sides of (10) by F(ϑ ,ρ) and integrating the resultant inequality with
respect to ρ from a to ϑ , we have

(M + 1)r

ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1gr(ρ) dρ

≤ Mr

ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1(g + h)r(ρ) dρ,

which can be written as

aI
λ,ηgr(ϑ) ≤ Mr

(M + 1)r aI
λ,η(g + h)r(ϑ).

Hence, it follows that

(
aI

λ,ηgr(ϑ)
)1/r ≤ M

(M + 1)
(

aI
λ,η(g + h)r(ϑ)

)1/r . (12)

Now, using the condition mg(ρ) ≤ h(ρ), we have
(

1 +
1
m

)
h(ρ) ≤ 1

m
(
g(ρ) + h(ρ)

)
,

it follows that
(

1 +
1
m

)r

hr(ρ) ≤
(

1
m

)r(
g(ρ) + h(ρ)

)r . (13)

Multiplying both sides of (13) by F(ϑ ,ρ) and integrating the resultant inequality with re-
spect to ρ from a to ϑ , we have

(
aI

λ,ηhr(ϑ)
)1/r ≤ 1

(m + 1)
(

aI
λ,η(g + h)r(ϑ)

)1/r . (14)

Thus adding inequalities (12) and (14) yields the desired inequality. �
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Theorem 3.2 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions
on [0,∞) such that, for all ϑ > 0, aI

λ,ηgr(ϑ) < ∞, aI
λ,ηhr(ϑ) < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M,
ρ ∈ [a,ϑ], then the following inequality holds:

(
aI

λ,ηgr(ϑ)
)2/r +

(
aI

λ,ηhr(ϑ)
)2/r

≥
(

(M + 1)(m + 1)
M

– 2
)(

aI
λ,ηgr(ϑ)

)1/r(
aI

λ,ηhr(ϑ)
)1/r . (15)

Proof The multiplication of inequalities (12) and (14) yields

(
(M + 1)(m + 1)

M

)(
aI

λ,ηgr(ϑ)
)1/r(

aI
λ,ηhr(ϑ)

)1/r ≤ [(
aI

λ,η(g(ϑ) + h(ϑ)
)r)1/r]2. (16)

Now, applying the Minkowski inequality to the right-hand side of (16), we obtain

[(
aI

λ,η(g(ϑ) + h(ϑ)
)r)1/r]2

≤ [(
aI

λ,ηgr(ϑ)
)1/r +

(
aI

λ,ηhr(ϑ)
)1/r]2

≤ (
aI

λ,ηgr(ϑ)
)2/r +

(
aI

λ,ηhr(ϑ)
)2/r + 2

(
aI

λ,ηgr(ϑ)
)1/r(

aI
λ,ηhr(ϑ)

)1/r . (17)

Thus, from inequalities (16) and (17), we get the desired inequality (15). �

4 Certain related inequalities via generalized proportional fractional integral
operator

This section is devoted to deriving certain related inequalities involving a generalized pro-
portional fractional integral operator.

Theorem 4.1 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r > 1, 1/r + 1/s = 1, and let g , h be two positive
functions on [0,∞) such that aI

λ,η[g(ϑ)] < ∞, aI
λ,η[h(ϑ)] < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M < ∞,
ρ ∈ [a,ϑ], ϑ > a, we have

(
aI

λ,ηg(ϑ)
)1/r(

aI
λ,ηh(ϑ)

)1/s ≤
(

M
m

)1/rs(
aI

λ,η[g(ϑ)
]1/r[h(ϑ)

]1/s). (18)

Proof Since g(ρ)
h(ρ) ≤ M < ∞, ρ ∈ [a,ϑ], ϑ > a, therefore we have

[
h(ρ)

]1/s ≥ M–1/s[g(ρ)
]1/s. (19)

It follows that

[
g(ρ)

]1/r[h(ρ)
]1/s ≥ M–1/r[g(ρ)

]1/r[g(ρ)
]1/s

≥ M–1/s[g(ρ)
] 1

r +1/s

≥ M–1/r[g(ρ)
]
. (20)
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Multiplying both sides of (20) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11) and integrating
the resultant inequality with respect to ρ from a to ϑ , we have

1
ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1[g(ρ)

]1/r[h(ρ)
]1/s dρ

≥ M–1/r

ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1g(ρ) dρ. (21)

It follows that

aI
λ,η[[g(ϑ)

]1/r[h(ϑ)
]1/s] ≥ M

–1
r
[

aI
λ,ηg(ϑ)

]
. (22)

Consequently, we have

(
aI

λ,η[[g(ϑ)
]1/r[h(ϑ)

]1/s])1/r ≥ M
–1
rs

[
aI

λ,ηh(ϑ)
]1/r . (23)

On the other hand, mg(ρ) ≤ h(ρ), ρ ∈ [a,ϑ], ϑ > a, therefore we have

[
g(ρ)

]1/r ≥ m1/r[h(ρ)
]1/r. (24)

It follows that

[
g(ρ)

]1/r[h(ρ)
]1/s ≥ m1/r[g(ρ)

]1/r[h(ρ)
]1/s

≥ m1/r[h(ρ)
] 1

r +1/s

≥ m1/r[h(ρ)
]
. (25)

Again, multiplying both sides of (25) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11) and inte-
grating the resultant inequality with respect to ρ from a to ϑ , we have

1
ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1[g(ρ)

]1/r[h(ρ)
]1/s dρ

≥ m1/r

ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1h(ρ) dρ. (26)

Hence, we can write

(
aI

λ,η[[g(ϑ)
]1/r[h(ϑ)

]1/s])1/r ≥ m
1
rs
[

aI
λ,ηg(ϑ)

]1/s. (27)

Multiplying (23) and (27), we get the desired inequality. �

Theorem 4.2 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r > 1, 1
r + 1/s = 1, and let g , h be two positive

functions on [0,∞) such that aI
λ,η[gr(ϑ)] < ∞, aI

λ,η[hs(ϑ)] < ∞. If 0 < m ≤ g(ρ)r

h(ρ)s ≤ M < ∞,
ρ ∈ [a,ϑ], ϑ > a, we have

(
aI

λ,ηgr(ϑ)
)1/r(

aI
λ,ηhs(ϑ)

)1/s ≤
(

M
m

) 1
rs (

aI
λ,η[g(ϑ)

]1/r[h(ϑ)
]1/s). (28)
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Proof Replacing g(ϑ) and h(ϑ) by gr(ϑ) and hr(ϑ), a < ϑ ≤ b in Theorem 4.1, we get the
desired inequality (28). �

Theorem 4.3 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r > 1, 1
r + 1/s = 1, and let g , h be two positive

functions on [0,∞) such that aI
λ,η[gr(ϑ)] < ∞, aI

λ,η[hs(ϑ)] < ∞. If 0 < m ≤ gr (ρ)
hs(ρ) ≤ M < ∞

where m, M ∈R, ρ ∈ [a,ϑ], ϑ > a, then the following inequality for left generalized propor-
tional fractional integral holds:

aI
λ,η[g(ϑ)h(ϑ)

] ≤ 2r–1Mr

r(M + 1)r aI
λ,η[gr + hp](ϑ) +

2s–1

s(m + 1)s aI
λ,η[gs + hs](ϑ). (29)

Proof By the given hypothesis g(ρ)
h(ρ) ≤ M, we have

(M + 1)rgr(ρ) ≤ Mr[g + h]r(ρ). (30)

Multiplying both sides of inequality (30) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11) and
integrating the resultant identity with respect to ρ over (a,ϑ), we get

(M + 1)r

ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1gr(ρ) dρ

≤ Mr

ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1[g + h]r(ρ) dρ. (31)

It follows that

aI
λ,ηgr(ϑ) ≤ Mr

(M + 1)r aI
λ,η[g + h]r(ϑ). (32)

On the other hand, using m ≤ g(ρ)
h(ρ) , a < t < ϑ , we have

(m + 1)shs(ρ) ≤ [g + h]s(ρ). (33)

Again, multiplying both sides of inequality (33) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11)
and integrating the resultant identity with respect to ρ over (a,ϑ), we get

aI
λ,ηhs(ϑ) ≤ 1

(m + 1)s aI
λ,η[g + h]s(ϑ). (34)

Now, using Young’s inequality, we have

g(ρ)h(ρ) ≤ gr(ρ)
r

+
gs(ρ)

s
. (35)

Multiplying both sides of inequality (33) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11) and
integrating the resultant identity with respect to ρ over (a,ϑ), we get

aI
λ,ηg(ϑ)h(ϑ) ≤ 1

r
(

aI
λ,ηgr(ϑ)

)
+ 1/s

(
aI

λ,ηgs(ϑ)
)
. (36)
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With the aid of (32) and (34), (36) can be written as

aI
λ,ηg(ϑ)h(ϑ) ≤ 1

r
(

aI
λ,ηgr(ϑ)

)
+ 1/s

(
aI

λ,ηgs(ϑ)
)

≤ Mr

r(M + 1)r aI
λ,η[g + h]r(ϑ) +

1
s(m + 1)s aI

λ,η[g + h]s(ϑ). (37)

Now, using the inequality (ρ + ω)r ≤ 2s–1(ρr + ωr), r > 1, ρ,ω > 0, one can obtain

aI
λ,η[g + h]r(ϑ) ≤ aI

λ,η[gr + hr](ϑ) (38)

and

aI
λ,η[g + h]s(ϑ) ≤ aI

λ,η[gs + hs](ϑ). (39)

Hence the proof of (29) can follow from (37), (38), and (39). �

Theorem 4.4 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions
on [0,∞) such that aI

λ,η[gr(ϑ)] < ∞, aI
λ,η[hr(ϑ)] < ∞. If 0 < k < m ≤ g(ρ)

h(ρ) ≤ M < ∞, where
m, M ∈ R, ρ ∈ [a,ϑ], ϑ > a, then the following inequality for left generalized proportional
fractional integral holds:

M + 1
M – k

(
aI

λ,η[g(ϑ) – kh(ϑ)
]) ≤ (

aI
λ,ηgr(ϑ)

)1/r +
(

aI
λ,ηhr(ϑ)

)1/r

≤ m + 1
m – k

(
aI

λ,η[g(ϑ) – kh(ϑ)
])1/r . (40)

Proof Under the given hypothesis 0 < k < m ≤ gr (ρ)
hs(ρ) ≤ M < ∞, we have

mk ≤ Mk ⇒ mk + m ≤ mk + M ≤ Mk + M

⇒ (M + 1)(m – k) ≤ (m + 1)(M – k).

It can be written as

(M + 1)
(M – k)

≤ (m + 1)
(m – k)

.

Also, we have

m – k ≤ g(ρ) – kh(ρ)
h(ρ)

≤ M – k.

It follows that

(g(ρ) – kh(ρ))r

(M – k)r ≤ hr(ρ) ≤ (g(ρ) – kh(ρ))r

(m – k)r . (41)

Also, we have

1
M

≤ h(ρ)
g(ρ)

≤ 1
m

⇒ m – k
km

≤ g(ρ) – kh(ρ)
kg(ρ)

≤ M – k
kM

.
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It follows that

(
M

M – k

)r

≤ (
g(ρ) – kh(ρ)

)r ≤ gr(ρ) ≤
(

m
m – k

)r

≤ (
g(ρ) – kh(ρ)

)r . (42)

Multiplying both sides of inequality (41) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11) and
integrating the resultant identity with respect to ρ over (a,ϑ), we get

1
(M – k)rηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1(g(ρ) – kh(ρ)

)r dρ

≤ 1
ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1hr(ρ) dρ

≤ 1
(m – k)rηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1(g(ρ) – kh(ρ)

)r dρ.

It follows that

1
(M – k)

(
aI

λ,η(g(ϑ) – kh(ϑ)
)r)1/r ≤ (

aI
λ,ηhr(ϑ)

)1/r

≤ 1
(m – k)

(
aI

λ,η(g(ϑ) – kh(ϑ)
)r)1/r . (43)

Again, multiplying both sides of inequality (42) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11)
and integrating the resultant identity with respect to ρ over (a,ϑ), we get

(
M

M – k

)(
aI

λ,η(g(ϑ) – kh(ϑ)
)r)1/r ≤ (

aI
λ,ηgr(ϑ)

)1/r

≤
(

m
m – k

)(
aI

λ,η(g(ϑ) – kh(ϑ)
)r)1/r . (44)

Hence, by adding inequalities (43) and (44), we get the desired inequality (40). �

Theorem 4.5 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive func-
tions on [0,∞) such that aI

λ,η[gr(ϑ)] < ∞, aI
λ,η[hr(ϑ)] < ∞. If 0 ≤ α ≤ g(ρ) ≤ A and

0 ≤ σ ≤ h(ρ) ≤ B for all ρ ∈ [a,ϑ], ϑ > a, then the following inequality for left general-
ized proportional fractional integral holds:

(
aI

λ,ηgr(ϑ)
)1/r +

(
aI

λ,ηhr(ϑ)
)1/r ≤ A(α + B) + B(σ + A)

(A + σ )(B + α)
(

aI
λ,η[g + h]r(ϑ)

)1/r . (45)

Proof Under the given hypothesis, we have

1
B ≤ 1

h(ρ)
≤ 1

σ
. (46)

The product of inequality (46) with 0 ≤ α ≤ g(ρ) ≤A yields

α

B ≤ g(ρ)
h(ρ)

≤ A
σ

. (47)
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From (47), we obtain

hr(ρ) ≤
( B

α + B

)r(
g(ρ) + h(ρ)

)r (48)

and

gr(ρ) ≤
( A

σ + A

)r(
g(ρ) + h(ρ)

)r . (49)

Now, multiplying both sides of inequalities (48) and (49) respectively by F(ϑ ,ρ) where
F(ϑ ,ρ) is defined by (11) and integrating the resultant identity with respect to ρ over (a,ϑ),
we obtain

(
aI

λ,ηhr(ϑ)
)1/r ≤

( B
α + B

)(
aI

λ,η(g(ϑ) + h(ϑ)
)r)1/r (50)

and

(
aI

λ,ηgr(ϑ)
)1/r ≤

( A
σ + A

)(
aI

λ,η(g(ϑ) + h(ϑ)
)r)1/r . (51)

Hence, by adding (50) and (51), we get the desired proof. �

Theorem 4.6 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions
on [0,∞) such that aI

λ,η[g(ϑ)] < ∞, aI
λ,η[h(ϑ)] < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M where m, M ∈ R

for all ρ ∈ [a,ϑ], ϑ > a, then the following inequality for the left generalized proportional
fractional integral holds:

1
M

(
aI

λ,ηg(ϑ)h(ϑ)
) ≤ 1

(m + 1)(M + 1)
(

aI
λ,η(g(ϑ) + h(ϑ)

)2)

≤ 1
m

(
aI

λ,ηg(ϑ)h(ϑ)
)
. (52)

Proof Under the given hypothesis, 0 < m ≤ g(ρ)
h(ρ) ≤ M, we have

h(ρ)(m + 1) ≤ h(ρ) + g(ρ) ≤ h(ρ)(M + 1). (53)

Also, we have 1
M ≤ h(ρ)

g(ρ) ≤ 1
m , which gives

g(ρ)
(

M + 1
M

)
≤ g(ρ) + h(ρ) ≤ g(ρ)

(
m + 1

m

)
. (54)

The multiplication of (53) and (54) yields

g(ρ)h(ρ)
M

≤ (g(ρ) + h(ρ))2

(m + 1)(M + 1)
≤ g(ρ)h(ρ)

m
. (55)
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Now, multiplying both sides of inequality (55) by F(ϑ ,ρ) where F(ϑ ,ρ) is defined by (11)
and integrating the resultant identity with respect to ρ over (a,ϑ), we have

1
MηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1g(ρ)h(ρ) dρ

≤ 1
(m + 1)(M + 1)ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1(g(ρ) + h(ρ)

)2 dρ

≤ 1
mηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1g(ρ)h(ρ) dρ. (56)

It follows that

1
M

(
aI

λ,ηg(ϑ)h(ϑ)
) ≤ 1

(m + 1)(M + 1)
(

aI
λ,η(g(ϑ) + h(ϑ)

)2)

≤ 1
m

(
aI

λ,ηg(ϑ)h(ϑ)
)
,

which completes the desired proof. �

Theorem 4.7 Let η ∈ (0, 1], λ ∈ C, �(λ) > 0, r ≥ 1, and let g , h be two positive functions
on [0,∞) such that aI

λ,η[g(ϑ)] < ∞, aI
λ,η[h(ϑ)] < ∞. If 0 < m ≤ g(ρ)

h(ρ) ≤ M, where m, M ∈R

for all ρ ∈ [a,ϑ], ϑ > a, then the following inequality for the left generalized proportional
fractional integral holds:

(
aI

λ,ηgr(ϑ)
)1/r +

(
aI

λ,ηhr(ϑ)
)1/r ≤ 2

(
aI

λ,ηhr(g(ϑ), h(ϑ)
))

, (57)

where h(g(ϑ), h(ϑ)) = max{M[( M
m + 1)g(ρ) – Mh(ρ)], (m+M)h(ρ)–g(ρ)

m }.

Proof Under the given hypothesis 0 < m ≤ g(ρ)
h(ρ) ≤ M, where ρ ∈ [a,ϑ], ϑ > a, we have

0 < m ≤ M + m –
g(ρ)
h(ρ)

(58)

and

M + m –
g(ρ)
h(ρ)

≤ M. (59)

From (58) and (59), we have

h(ρ) <
(M + m)h(ρ) – g(ρ)

m
≤ h

(
g(ρ), h(ρ)

)
, (60)

where h(g(ϑ), h(ϑ)) = max{M[( M
m + 1)g(ρ) – Mh(ρ)], (m+M)h(ρ)–g(ρ)

m }. Also, from the given
hypothesis 0 < 1

M ≤ h(ρ)
g(ρ) ≤ 1

m , we have

1
M

≤ 1
M

+
1
m

–
h(ρ)
g(ρ)

(61)



Rahman et al. Advances in Difference Equations        (2019) 2019:287 Page 12 of 14

and

1
M

+
1
m

–
h(ρ)
g(ρ)

≤ 1
m

. (62)

From (61) and (62), we obtain

1
M

≤ ( 1
M + 1

m )g(ρ) – h(ρ)
g(ρ)

≤ 1
m

. (63)

It follows that

g(ρ) = M
(

1
M

+
1
m

)
g(ρ) – Mh(ρ)

=
M(M + m)g(ρ) – M2mh(ρ)

mM

=
(

M
m

+ 1
)

g(ρ) – Mh(ρ)

= M
[(

M
m

+ 1
)

g(ρ) – Mh(ρ)
]

≤ h
(
g(ρ), h(ρ)

)
. (64)

From (60) and (64), we can write

gr(ρ) ≤ h
(
g(ρ), h(ρ)

)
(65)

and

hr(ρ) ≤ hr(g(ρ), h(ρ)
)
. (66)

Now, multiplying both sides of inequalities (65) and (62) respectively by F(ϑ ,ρ) where
F(ϑ ,ρ) is defined by (11) and integrating the resultant identity with respect to ρ over (a,ϑ),
we get

1
ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1gr(ρ) dρ

≤ 1
ηλΓ (λ)

∫ ϑ

a
exp

[
η – 1

η
(ϑ – ρ)

]
(ϑ – ρ)λ–1h

(
g(ρ), h(ρ)

)
dρ. (67)

It follows that

(
aI

λ,ηgr(ϑ)
)1/r ≤ (

aI
λ,ηh

(
g(ϑ), h(ϑ)

))1/r . (68)

Similarly, from (62), we obtain

(
aI

λ,ηhr(ϑ)
)1/r ≤ (

aI
λ,ηhr(g(ϑ), h(ϑ)

))1/r . (69)

Hence, by adding (68) and (69), we get the desired proof. �
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5 Concluding remarks
In this paper, we presented the Minkowski inequalities and some other related inequalities
via generalized nonlocal proportional fractional integral operators. The results exhibited
in Sect. 3 generalized the work earlier done by Dahmani [13] for Riemann–Liouville frac-
tional integral operator. Also, the special cases of the results presented in Sect. 3 are found
in [40]. The inequalities established in Sect. 4 generalized the inequalities earlier obtained
by Suliman [44]. Also, our result will reduce to some classical results which are found in
the work of Sroysang [43].
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