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1 Introduction
In this paper, we consider the blow-up phenomenon of the following degenerate and sin-

gular parabolic equation with a nonlocal source:

up = (P WU™))x + fou uP(x,t)dx, (x,t) € (0,a) x (0,00),
u(0,t) = u(a,t) =0, t>0, (1)
u(x,0) =g, «x¢€l0,al,

where 8 € [0,1) and p > m > 1 and g satisfies the following hypotheses:

(H1) g e C*%(0,a) N C[0,a] withO<a <1,

(H2) g>00n(0,a),g(0) =g(a) =0,and g'(0) >0 and g'(a) < 0,

(H3) (xP(g™)) + [, g (x)dx >0 for x € (0,a),

(H4) limy o+ (xP(g™)) = - [ g (x) dx and lim,_, .- (x#(g™)') = - [ g" (%) dx,

(H5) (x#(g™)") <0 for x € (0,a).

We note that the idea for constructing the function g satisfying the assumptions (H1)-
(H5) is in the appendix of [14]. Since 8 € [0, 1), coefficients of terms u,, #,, may tend to
0 or oo as x converges to 0*. We thus can regard (1) as degenerate and singular. Let us

introduce the definition of blow-up in a finite time.

Definition 1.1 The solution u of (1) is said to show blow-up at the point x;, in a finite time
Ty (> 0) if there exists a sequence {(x,,t,)} in (0,a) x (0,00) such that (x,,£,) = (xp, Tp)
as n — 0o and lim,,_, , u(x,, t,) = 00. The point x; and the time T}, are called a blow-up
point and blow-up time, respectively. Furthermore, we call the set of all blow-up points
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to be the blow-up set, which is denoted by S. If S = [0, 4], we say that the solution u of (1)
shows global blow-up.

The first paper concerning the blow-up problem for the reaction-diffusion equation was
written by Fujita [9]. He studied the Cauchy problem: u; — Au = u'**, o > 0 and shown that
if 0 < Na < 2 (N is the space dimension), then the initial value problem had no non-trivial
global solutions while if N > 2, there were non-trivial global solutions. In this second
case, it was essential that the initial values were sufficiently small. After the publication
of Fujita’s paper, the blow-up phenomenon for the reaction-diffusion equations has been
the object of intensive research. Degenerate parabolic equations with/without nonlocal
source have been studied by under various types of initial and boundary conditions since
the early 1970s by many researchers ([1, 3, 5, 10-12] and [15]).

In 1997, Aderson and Deng [2] studied the following problem:

up = (W) + ey + aulully”",  (x%,t) € (0,1) x (0,00),
u(0,8) = u(1,£) =0, >0, (2)
u(x,0) = up(x), x€[0,1].

They showed that the solution of (2) blows up in a finite time for a sufficiently large data
uo if p > max{1, max{m,n}}. They, however, did not consider the blow-up profile of the
blow-up solution.

In 2001, Deng et al. [6] considered the following problem:

U= W) +a [ uldx, (%) € (<1,1) x (0,00),
u(-Lt)=u(l,t)=0, >0, (3)
u(x,0) = up(x), xe[-L1,

with/>0,a >0and g > m > 1. They established that, under certain conditions, the solution

of (3) either exists globally or blows up completely in a finite time. Moreover, they obtained
Ci(Tp — )™V < max, u(x,t) < Co(Tpp — )™V/@7 V.
xe|—L,

In 2003, Liu et al. [14] studied the following problem:

Uy = XU + o wP dx —kut,  (x,) € (0,a) x (0,00),
u(0,8) = u(a,£) =0, ¢>0, (4)
u(x,0) = up(x), x€][0,al,

and, under some assumptions, they proved the local existence and uniqueness of a classical
solution of (4) and obtained some sufficient conditions for blow-up in a finite time of a
solution of (4). Furthermore, they showed that the blow-up set of the solution is the whole
domain.

In 2003, Li et al. [13] considered the following problem:

ur = AW™) + ar? [,uldx, (x,t)€ 2 x(0,00),
ulx,t)=0, x€0d8,t>0, (5)
u(x,0) = up(x), x€ 8,
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where £ C RY is a bounded domain with sufficiently smooth boundary 3£2. They showed
that the solution of (5) either exists globally or blows up in a finite time. Moreover, if p + g >
m, then they showed

Cy(Tp — ) VP*D < max u(x,t) < Cy(T) — )" VD,
xe[-1L1]
This paper is organized as follows. In the next section, we establish local existence and
uniqueness of the solution of (1). We give some criteria for the solution of (1) to exist
globally or blow up in a finite time in Sect. 3. The blow-up set and blow-up profile of the
solution are presented in Sect. 4.

2 Local existence

Since (1) is degenerate and singular, the standard theory of parabolic type cannot be ap-
plied directly to obtain the existence and uniqueness of its classical solution. To investi-
gate the local existence of the solution of (1), we need some transformation. Let v = u™,
t= # and x = a£ in (1). Then (1) becomes

ve =V[(EPve)e +a®P [ VI(E, T)dE],  (£,7) €(0,1) x (0,00),
v(0,7)=v(1,7)=0, 7>0, (6)

V(f,O) = k(s)r E € [Or 1]:

where 0<r="1<1,g=L2>1, k=g" and k satisfies the following:
(H1") ke C**(0,1)NC[0,1] withO<a <1,
(H2') k>0 on (0,1), k(0) = k(1) = 0, and &'(0) > 0 and k'(1) <0,
(H3) (6PK) +a>* [, k(&) dg >0 for & € (0,1),
(H4) limg o (6K (8)) = —a>F [ k9(8) dE and lime - (EPK (§)) = -a>F [ k9(&) dE,
(H5") (£Pk’Y <O for & € (0,1).

In the part of showing the local existence of problem (6), we need the following lemma.

Lemma 2.1 Let b; is bounded and continuous and b;(§,t) > 0 on [0,1] x [0,T] for i =
1,2,3,4 and d(€,7) > 0 on [0,1] x [0, T] with 0 < T < 0o. Suppose that w € C>*((0,1) x
(0, 7)) N C([0,1] x [0, T) satisfies
1
we = (e, 1) we), = bowe +bow e by [ bane,0ds, (610, x 0.T),
0
w(0,7) >0, w(l,7) >0, 7€(0,T],
w(§,0)>0, £el0,1].

Thenw > 0omn [0,1] x [0, T].

Proof Suppose that there exists a point (&, 7o) in (0, 1) x (0, 7] such that w(&, 7o) < 0. Let
B; = maxg r)ejo1)x[0,7] bi(€, T) for i = 1,2,3,4 and let w(§, 7) = e v(§, 7) for (§,7) € [0,1] x
[0, T] where c is a positive constant and ¢ > By + B3B,s. Then we have, for any (§,7) €
(0,1) x (0, T1,

1
Ve —d(é,r)(g’ﬂvs)é —byve + (C—bz)\/—bg/ byv(€,7)dE > 0.
0
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It follows from w(&y, 7o) < 0 and w = e v that v(&,, 7o) < 0. Since v is non-negative on the
parabolic boundary and v € C>1((0,1) x (0, T)) N C([0,1] x [0, T]), there exists a point
(&1,71) in (0,1) x (0, T] such that v attains its negative minimum at the point (&1, 71). This
yields v(&1,71) < 0, vo(£1,71) = 0, ve (&1, 71) = 0 and vg£ (€1, 1) > 0. By the second mean value
theorem for integrals, we find that there exists a &, € (0, 1) such that

/01b4(é,r)v($,r)d$ = v(sz,r)/01b4($,r)d$ for any 7 € (0, T].
It is clear that v(£, 71) > v(&1,71). Let us consider that
ve(E1,m1) — (&1, 1) [E vee (B, m0) + BEL e (61, 10)] - ba (61, T )ve (61, 0)
+ (= ba(E1, 7)) v(Er, 11) = ba(Er, )V(ER, ) /0 b m) de

< (c—=Byv(&1,71) — BsByv(§1, 1)
= —v(&,71)[~(c - By) + B3Bu|

<0.

This contradiction implies that w(¢,t) > 0 for any (£, t) € [0, 1] x [0, T]. Hence, the proof
of Lemma 2.1 is completed. O

Since (6) is also degenerate, we will prove the local existence of the solution of (6) by
considering the following problem:

(1)e = (1 +8)[(EP(1)g)s + a®> P fol(vl)q(é,f)dél, (¢,7)€(0,1) x (0,00),
1(0,7;8) =v1(1,7;8) =0, ©>0, (7)
Vl(gr 0:8) = k(é)r S € [0’ 1]:

where § is a positive constant and § < 1. We note that the function v; = vi(x,¢; §) depends
on x, ¢t and 4. Let € be a positive constant and ¢ < §. To show the existence of the classical
solution of (7), we have to use the function given by Dunford and Schwartz [7]. There
exists a non-decreasing and continuously differentiable function p such that p =0if ¢ <0
and p=1if& > 1. Let

0, §<e,
p&;e) = ,0(%—1), e<&<2s,
1, & >2e,

and let k(&; ¢) = p(&; )k(&). We note that

8 0’ s E 8;
gk(E;S): —f—zp’(g—l)k(é), £ <& <2e,
0, &> 2e.

By the non-decreasing property of p, we have %k(é ;&) < 0. It follows from 0 < p < 1 that
k(&) > k(&;¢) and lim, o k(§; ) = k(§).
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We see that (7) is degenerate and singular. By the regularization technique again, we
consider the problem:

(v2)e = (Vs + ) [(EP (m)e)e +a®F [T(w)1dE],  (£,7) € (e, 1) x (0,00),
(0,7;8,8) =1v,(1,7;8,6) =0, >0, (8)
v2(£,0;6,¢) = k(§;¢), & €le1].

Now, the function v, = v»(§, 7;8,¢) depends on &, 7, § and ¢. It is clear that, since the zero
function is a lower solution of (8), that is, v, > 0. The next lemma show that the solution

v, of (8) is non-decreasing in 7.

Lemma 2.2 Let ¢ and § be any positive real number with ¢ <§ < 1. If %(5’3 %k(“g‘;e)) +
a’P f; k1(&;€)dE >0 for any & € (g,1), then (v2), > 0 for any (€,7) € [&,1] x [0,00).

Proof Let z = (v;);. Then we have, for any (&, 1) € (¢,1) x (0,00),

ze = (v +8)7 ((n):) + (v +8) (672),

1
+q(va +8)a®P / VZ_I(E, 7;0,6)z(§,7) d§.

Thus, the function z satisfies the following:

1
-+ 8 (62), Z a3/ [ e A, (60 € (1) x (0,00,

&

z(g,7) = (v2):(e,7;8,¢8) =0, z(1,7) = (v2):(1,7;8,6) =0, 7 >0,

[ 4 (54 5 [ 1
2(6,0) = (KEse) +0) | 2o (8 k50 ) +a fk(s;e)ds >0, £els 1],

Lemma 2.1 implies that (v;), > 0 for any (&, 1) € [¢,1] X [0, 00). O

The boundedness and monotonicity properties of v, are shown in Lemma 2.3 and
Lemma 2.4, respectively.

Lemma 2.3 There exist a time 1) and a function f € C'[0, 1] such that, for all &,5 > 0
with € < § < 1, (8) has a unique classical solution v, and 0 < v,(§,7;6,¢) < f(t) for any
(&,7) € [e,1] x [0, 74].

Proof Let us consider the following ordinary differential equation:

f(x)=a®Pfa(r)(f(r) + 1)), T>0, ©)

f(O) = maXge(o,1] k(&).
Then there exists a positive constant 7; such that (9) has a unique positive solution f on
[0, 71]. We next show that, for all €,§ > 0 with e <8 < 1, f(7) > v2(§, 7;6,¢) for any (§,7) €
[e,1] x [0,71]. Let z(§,T) = f(7) — va(&, 756, ¢) for (§,7) € [¢,1] x [0, 71]. We then consider
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that, for any (§,7) € (¢,1) x (0, 71],

1 1
z. > (f(r) + S)rag_ﬂ‘/. fUr)ds — (vy + 8)'[(&15(1/2)5)5 +a3_‘3/ vgdé]
= (f(r) + B)r(éﬂzg)g +rn vy + 8) ()2

1
+qa®P (f(r) + S)rf nd7'2(&, 1) d,

where 7; and 7, are some intermedlate values between / and v,. Thus, the function z
satisfies z, — (f (1) +8) (6P z¢)s > m_ (V)zr z+qa®P(f(r) +5)" fl 047 2(&, 7) dé forany (£,7) €

(va+8

(¢,1) x (0, 1] and on the parabolic boundary:

z(e,t) =f(7) >0, z(L,t)=f(r)>0, 71€(0,14],
z(£,0) =f(0) — (£, 0;8,¢) = max k(s) k(&;6) >0, £&elel].

Lemma 2.1 ensures that z > 0, thatis, v, < f forany (§, 7) € [¢,1] x [0, 71]. By modifying the
proof of Theorem A.1. in [6], we see that there exists a unique classical positive solution
vp of (8) and 0 < v, <f for all ¢ and 8. The proof of this lemma is completed. g

Lemma 2.4 Let 0 < &1 < &3 <8 < 1 and assume that v,(&,t;8,¢1) and v,(&,1;6, ;) are so-
lutions of (8). Then vo(&,7;38,81) > vo(&,7;8,82) for any (§,7) € [e2,1] X [0, 71].

Proof Letz(§,7) =vo(§,7;8,61) —va(§, 758, 82) on [9,1] X [0, 71]. We have, for any (§,7) €
(527 1) X (07 rl]r

1
z > (Vz(é,r;&sl)+B)r[(Sﬁ(Vz(é,r;&sl))s)s+a3'ﬂ/ VZ(E,t;é,sl)dE]

1
_ (vz(g,r;(s,sz)+5)’[(;ﬁ(v2(g,f;a,e2))€)s +a3—ﬂ/ Vg(.?;,t;&sz)dé}
= (n(€,1:8,61) + B)r(sﬁzé)S + )y (v2(5,738,80) +8) " (na(€, 758, 82)) 2

1
+qa3’ﬂ(v2(§,r;8,81)+8)rf nd2(€,7) de,

€2

where 713 and 7n, are some intermediate values between v,(&,1;8,£1) and v,(€,1;6, 62).
Then it follows from %k(é ;€) < 0 that the function z satisfies

- (&, 758,61) +8)' (£72),

- s (va(€, 758, 62)):
T (1a(E,1;8,8) + )

(gﬁt) € (82)1) X (Oy 7:1];
z(e2,T) = va(g2,7;8,€1) = 0, z(1,7)=0, 7€(0,71],

z(§,0) =k(§;61) —k(§;62) =0, § €[e,1].

1

z+qa3’ﬁ(v2(§,r;8,81)+6)r/ ni2(€, 1) de,

)
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By Lemma 2.1, we can conclude that v,(§,7;8,61) > 12(§, 756, &2) for any (§,7) € [&3,1] X
[0, 71]. The proof is completed. d

From Lemma 2.3 and Lemma 2.4, we can construct the function v; which is a good
candidate for the solution for (7), by

&, 1;8) = limgo+ v2(§,7;8,¢), (§,7) €(e,1] x [0,11], o
0. (&,7) € (0} x [0,],

for all § > 0. By modifying the proofs of Theorem 2.3 in [8] and Lemma 10 and Theorem 12
in [4], we obtain the existence result.

Theorem 2.5 Assume that (H1')—(H3') hold. The function vi(&,7;8) given by (10) is a
unique classical solution of (7) for any (§,7) € [0,1] x [0,71] and § > 0.

In the next step, we show the existence of solutions of (6). By using the same technique as
in Lemma 2.2 and Lemma 2.3, we can show that the solution v; of (7) satisfies %vl (x,88) >
0 for all § and k(£) < vi(§,7;8) <f(r) for any (£, 7) € [0,1] x [0, 71] where the function f
is given in Lemma 2.3. We give an additional property of v; which is the monotonicity

property with respect to §.

Lemma 2.6 Let 0< 8y <83 < 1 and suppose that v1(§,7;81) and v1(§, T;83) are solutions of
(7). Then v1(§,7;82) > v1(§,7;81) for any (§,7) € [0,1] x [0,71].

Proof Let z = v,(§,7;8;) —v1(§,7;61) for any (§,7) € [0,1] x [0,71]. By (7), we obtain, for
anY (S: 7:) € (01 1) X (0, tl];

1
ZrZ(Vl(s:f;(SZ)+52)r|:($ﬁ(vl(§:f;52))g)g+43_ﬂ/(; V?(E,r;éz)dé}

1
- (n(&,1361) +Sz)r[(éﬁ(m(ﬁf,r;51))§)g +a3’ﬁ/0 V’f(é,r;&)dé]
= (nE 1;8)+ 52)r(§ﬁzs)é +rns (i€, 7580 +681) T (niE, 7;61)),2

1
+qa> P (vi(&,7;8) +82)’/ nd 28, 7) dg,
0

where 715 and ng¢ are some intermediate values between 1;1(5, 7;81) and v1(€,1;65). Then
g (v1(§,7381))c
1 1 (1(&,7:81)+81)"
8)" J, ngf z(&,7)dé§ for (§,7) € (0,1) x (0, 71] and on the parabolic boundary: z(0, ) = 0,
z(1,7) =0 for 7 € (0,71] and z(£,0) = 0 for & € [0,1]. By Lemma 2.1, we have v1(§,7;83) >

v1(§,7;81) for any (§,7) € [0,1] x [0, 71]. O

the function z satisfies z; — (v1(&€,;8,) + 62)’(5’325)5 > z+qa*Pi(&,1;8,) +

By Lemma 2.6 and k(&) < v1(§,7;8) <f(t) forany (§,7) € [0,1] x [0, 71] and for all §, we
define the function v by

V(E, T) = ;i_I)I(l)Vl(E’ 7;8): (é,f) € (01 1) X (0¢ T1]~ (11)
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Based on Lemma 2.7 in [6], and Lemma 10 and Theorem 12 in [4], we get the following
theorem.

Theorem 2.7 Assume that (H1')—(H3') hold. The function v given by (11) is a unique clas-
sical solution of (6) on [0, 1] x [0, 71] for some positive constant ;.

Note that by the transformations v = 4™, t = —4= and x = a§ and Theorem 2.7, we find
the following.

Corollary 2.8 Assume that (H1)—(H3) hold. Then there exists a time Ty > 0 such that (1)
admits a unique non-negative classical solution on [0,a] x [0,7;].

3 Blow-up in a finite time
The sufficient condition for the occurrence of blow-up in a finite time of (1) is given in this
section. Let us consider the following problem:

~(£P'(€)) = 20(6), &€(0,1),

0(0) = p(1) = 0. (12

From [4], the eigenvalue problem (12) is solvable. Denote the first eigenvalue of (12) by
A1 > 0 and the corresponding eigenfunction by ¢, with the normalization ¢; > 0 in (0,1)
and maxge,1) ¢1(§) = 1. The next theorem deals with the condition that guarantee for the
occurrence of blow-up in a finite time depending on the value of the constant a.

Theorem 3.1 Suppose that the function k satisfies (H1')—(H3'). If the constant a satisfies

(o) (o) |
a > max T N =3 ,
Jo ¢1(8)dE Jo k(&) dg

then the solution v of (6) blows up in a finite time.

Proof Let H(t) = fol VI (&, 7)1 (£) dE. We then have
1 1 1 1
H = [ @ e©dsat [ e [ neds
-r 0 0 0

1 1 1
[ 3-p q
" /0 WE D)1 (E) dE +a /0 v d /o 01(8) dE.

1 1

From
1 L q -7
( I (S)dé‘)

1 1 ' 3-B.4
/Ov(fyt)wl(f)défm(/(; a vd’;‘)

1 by 7
B4
< a’Pvid ,
- ﬂ(s_ﬂ)/q (/0‘ s)

we obtain

1 A 13,3 : - 1 1
l_rH(t)z—m(/o a qux> +a /qudx/(; ¢1(&)dE.
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From v, > 0 and 4> fol k1(&)dg > 1, we obtain a>* fol vi(g, 1) dE > 1. It follows that
(L a*Pvide)t <a>P [1vA(E,7)dE with g> 1. Then

B
ooz A [ [ [ ned

1-r
A
_43—/3/0 Vq(gxf)dg[_m+[) (pl(g)ds:|

By the assumption that A; < a®~#/4 fol ©1(€) d&, we have — a(3 b+ fo @1(&) d& > no where
Ny is a positive constant. Thus,

1
S H () 2 e / Ve, 7) dE.
0

-
Since
[ enn@de < ([ vena) ([ @)
we get
1 1 % 1 7l
[ v nde= ([ vrennea)” /([ @) T
We then obtain

q q+r-1
i

'/(/Olwf*‘“(s)dg

1
o = ma ([ e e
- 0

> 779613751{% (),
that is,
(Hl’q/(l”)(t))/ <noa>P(l-r-gq). (13)
Integrating (13) over (0, t), we get
HY70(0) — H10(0) < noa® P (1-r - g)t

or

-1
H%(0) > H77O) .
1-noadP(g+r-1)HT="1(0)r

We can see that Hli—r’l(t) exists for t € [0, T},) but Hli—r’l(r) is unbounded as t converges
to T}, where

—(g+r-1)

 H ()
T nead g er—1)  nead ﬂ(q+r— 1)

( / K- V(swl(sws)
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Therefore, H blows up in a finite time. This implies that v blows up in a finite time. Then

the proof of this theorem is completed. O
By the transformation technique and Theorem 3.1, we obtain the following.

Corollary 3.2 Suppose that g satisfies (H1)—(H3). Then the solution u of (1) blows up in a
finite time if the constant a is sufficiently large.

In the following, we show that under some conditions, the solution v of (6) can exist
globally. To obtain the desired results, we need the following comparison theorem.

Lemma 3.3 Let v be the solution of (6) and suppose that a non-negative function w €
C*1((0,1) x (0, 7)) N C([0,1] x [0, T)) satisfies

1
we > (<) w’[(sf‘wg)S +a3“‘f wq(s,r)ds} (€,7)€(0,1) x (0,T),
0
w(0,7) > (=)0, w(l,7) > (=)0, 7€(0,T]
w(§,0) > (<) k(§), &e€l0,1].
Then w> (<)von[0,1] x [0, T].

Proof We first consider in the case “>" Let z(§,7) = w(§,7) — v(§,7) on [0,1] x [0, T]. It
is clear that, from Lemma 2.1 and (H2'), v > 0 in (0,1) x (0, T]. We then have, for any
(0,1) x (0, T7,

1
Z; = 1»1/’(5’3155)5{r +r v vz 4 qas_ﬂw’/ ng_lz(é', 1) dE,
0

where 717 and ng are some intermediate values between w and v. Then the function z sat-

isfies

1
ze - W (P2), =y WV vz + qa® W f ni'z(E, 1) dE,  (5,7)€(0,1) x (0, T],
0

z(0,7) >0, z(1,7) >0, 1€(0,T],

z(£,00>0, &€][0,1].

Lemma 2.1 implies that w(§, t) > v(§, t) for any (§,7) € [0,1] X [0, T]. By using the above
technique, we can get the result in the case “<”. The proof of this lemma is completed. [J

Let us consider the following boundary value problem:

~(£Py'()) =1, £€(0,1) and ¥(0)=y(1)=0.

The solution  is given by ¥ (§) = ﬁfl‘ﬂ(l — &) for & € (0,1). By direct computation, we
obtain fol Ya(E)dE = 1%/;);”“1) where B(l,m) is the Beta function which is defined by
B(l,m) = |, 01 g171(1-£)"1 d&. The following theorem deals with the global existence result.



Sukwong et al. Advances in Difference Equations (2019) 2019:264 Page 11 of 15

Theorem 3.4 Suppose that k satisfies (H1')—(H3'). Then the solution v of (6) exists globally

if a is small enough.

Proof Let z(§,t) = Miyr(§) on [0,1] x [0,00) where M; is a positive constant and

1
My (&) > k. We choose a < (W%)Q and then the function z satisfies

1
z —z’[(sﬂzs)g +a / zq(s,r)ds]
0

. g, qBl@l-B)+1,q+1)
:le(g)[Ml_“sﬂM? @-py ]

for any (¢,7) € (0,1) x (0,00). Thus, z, — 2" [(§Pz)s + a>? fol Z1(&,7)d€] > 0 for (€,7) €
(0,1) x (0,00). Furthermore, z(0,t) = z(1,7) = 0 for T > 0 and z(§,0) = My (&) > k(&) for
& €[0,1]. Lemma 3.3 implies that z > v on [0, 1] x [0, 00). We can conclude that the solu-
tion v of (6) exists globally. O

It follows from the transformation technique and Theorem 3.4 that we have the follow-

ing.

Corollary 3.5 Suppose that g satisfies (H1)—(H3). Then the solution u of (1) exists globally

if a is small enough.

4 Blow-up set and uniform blow-up profile
In this section, we assume that the solution u of (1) blows up at the blow-up time T}, Then
we discuss the set of blow-up points and the blow-up profile for the solution u« of (1). From
the assumptions (H1)—(H5), we know that there are a sufficiently small positive constant
&1 and a non-negative function 4(§; ¢) for 0 < ¢ < &7 such that:
(H1*) h(&;e) € C***(e,1-€)NCle,1—¢] with a € (0,1),
(H2*) h(g;e)=0and h(1 —¢;¢) =0,
(H3*) h(&;¢) < k(&) for & € (6,26) U(1 —2¢,1—¢) and h(&;¢) = k(§) for & € (2¢,1 - 2¢),
(He) (&Phe(;e))e <Ofor§ € (e,1-¢),
(H5*) h(&;e) is non-increasing with respect to & € (0, 1], limg . (§#he (&5 €))e = —a># x
[ (g £) dg and limg o (EPhe (&5 ) = —a>P [T H1(&;) diE,
(H6%) (EPhe(&;6)) +a®P f;_s hi(g;e)deé >0 fore € (0,6;] and & € (g,1 - ¢).
It is obvious that lim,_,¢ 4(§; ) = k(§). We next consider the following regularized prob-

lem:

we = (w+8) [(EPwe)s +a>P f:fs wi(E,1;8,¢) dE],
(§,7)e(e,1-¢) x(0,00),

w(e, 1;8,) =w(l -¢,7;8,6) =0, 1>0,

w(§,0;8,¢) = h(&;e), &€le,1-¢]

(14)

In the same way as before, it is not difficult to show that the regularized problem (14) has

a unique positive solution w and

lim Ow(é,r;&S) =v(, 1),

§—0,6—
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where v is the solution of (6). To find the blow-up set and blow-up profile of the blow-up
solution u of (1), we need the following lemma.

Lemma 4.1 Assume that k satisfies (H1')—(H5'). Before blow-up occurs, (Pvs)s < 0 for
(&,7) €(0,1) x [0, T}).

Proof Let ¢ and § be positive constants with & < § < 1. From (§#h¢)s + a®>F fgl_g hi(E;
€)dg > 0for& € (¢,1-¢),wehavew, > 0for (§,7) € (5,1-¢) x [0, Tj). Let z(€, 7) = (§P we )
for (§,7) € (6,1 — &) x [0, Tp). We consider that, for (§,7) € (¢,1 —¢) x (0, T}),

z. — (w+ 8)’(5’325)E —2r(w + 8)”15’3%25 —r(w+8)tw,z
=r(r-1)(w+8)2Pw, (w;)z.

This means that z, — (w + 8)"(§%z¢ ) — 2r(w + 8) 1P weze — r(w + 8)'w,z < 0. for (€,7) €
(¢,1-¢) x (0, T}). Furthermore, we have

1-¢
2(6,) = (Ew) e =0 [ wie,Tide)di <0
and
1-¢
z(1-¢&,7) = (EﬂwS)é leo1e = —a®> P / wi(g,1;8,€)dE < 0.

It follows from (H4*) that z(£,0) <0 for & € [¢,1 — €]. By applying Lemma 2.1, we obtain
z<0on [g1~¢] x [0,T}). Since ¢ and § are arbitrary, we have (§#v;); < 0 for (¢,7) €
(0,1) x [0, T,). Hence, the proof of this lemma is completed. O

From Lemma 4.1, we obtain the following corollary.

Corollary 4.2 Assume that g satisfies (H1)—(H5). Before blow-up occurs, (x* u?), <0 for
(x; t) € (0) 61) X [01 Tb)'

The next theorem states about the set of blow-up point of the solution u of (1). By mod-
ifying techniques in [16], we obtain this result.

Theorem 4.3 Assume that the solution u of (1) blows up in a finite time Tj,. Then S = [0, a].
Proof Let ¢ be any positive constant. We construct functions ¢ and @ by ¢(¢) =

Jo uP(x,t)dx and @(¢) = fotd)(s) ds. We set My = infyc(e 4 ) 1(x) Where p is the unique
positive solution of the following problem

d B d m —
—%(x T (x)) =1, x€(0,a),
w(0) = u(a) = 0.

Corollary 4.2 yields, for ¢ € (0, T}),

a a d d a—=&
m = M ) — 5P = M Bum
/0 u"(x,t) dx /0 u"™ (x,t) T <x el (x)> dx > —My /g (xPuy) , dx.
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We then obtain
0< tim MBI WDl o 0D
t=>Tp ¢(t) t—>T), fO up(x, t) dx

Jae (P ull')y dx

and this implies that lim,_, 7, = 10 =0. As ¢ — 0, we obtain

*Pu™),

Jim ")

=0 forxe (0,a). (15)
Integrating the first equation in (1) with respect to ¢ from 0 to ¢, we have

u(x,t) —glx) = /t(xﬁu;” (x,s))x ds + @ (t). (16)
0

Since u blows up at the finite time T}, lim,_, 7, u(x;,t) = 0o for some x;, € (0,4), and then
we obtain
‘ B
lim u(xp,t) — lim g(xp) = lim x, ' (xp,8)) ds+ lim @(¢
t—>TbM( b ) t—)Tbg( b) t—)Tb</0‘ ( bux( b ))x t—Ty ()
or

lim & () = co. (17)
t—Typ

It follows from (15) and (17) that

t B, m d
lim M =0 forxe(0,a). (18)
t—Tp @(t)

Let ¥ be a fixed point in (0,a). We have, by (16),

u@t) . g® [y GPulEs).ds

im = lim m + 1.
t—Tp ¢(t) t—Ty (D(t) t—Ty ¢(t)

Equations (17) and (18) imply

u(x,t)
1m =
t—Typ [} (t)

1 (19)

which means that the solution # of (1) blows up at the point ¥. Since ¥ is arbitrary in
(0,a), we can conclude that the solution u of (1) blows up everywhere in (0,a). For ¥ €
{0,a}, we can always find a sequence {(x,, t,)} in (0,a) x (0, Tj) such that (x,, ¢,) — {¥, T}
and lim,,_, o, u(x,, t,) = 00. Hence, the blow-up set is [0,4]. The proof of Theorem 4.3 is
completed. d

Finally, we consider the uniform blow-up profile of the solution « of (1).

Theorem 4.4 Assume that g satisfies (H1)—(H5).
1
Then u(x,t) ~ [a(p — 1)(Tp — )] 7T forany x € (0,a) as t — Tp.
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Proof Equation (19) tells us that, for any x € (0,4),

ulx,t) ~d(t) ast— Tp. (20)
Then we get
D'(t) = / uf (x,t)dx ~ ad?(t) ast— Tp. (21)
0

Integrating (21) over (¢, T), we have, by (17),

1
-1

D)~ [alp-1)(T, -] 7T ast— Tp. (22)

It follows from (20) and (22) that, as ¢ approaches the blow-up time T}, u(x, ) ~ [a(p —
1
1)(Tp — )] 7! for any x € (0,a). g

5 Conclusion

In this paper, we study a degenerate and singular parabolic problem with a nonlocal term.
We show that such a problem has a local classical solution. Furthermore, the conditions
that the solution exists globally or blows up in finite time are given. Finally, we demonstrate
the uniform blow-up profile of the blow-up solution.
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