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Abstract
Drug resistance has become a problem of grave concern for members of the medical
profession for many decades. More and more bacterial infections cannot be
contained. Therefore it is of imperative importance for us to be able to keep drug
resistance under control. Mathematical models can help us to discover possible
treatment strategies that could alleviate the problem. In this paper, the dynamic
behavior of drug resistance is investigated by studying a model system of differential
equations incorporating a delay in the process whereby the sensitive bacteria
(bacteria that antibiotics can still attack) is converted into the resistant bacterial strain
through plasmid transfers. We give the conditions under which a Hopf bifurcation
occurs, leading to a periodic solution. The result indicates that the conversion rate
and the delay play a significant role in the development of drug resistance. Also, the
impact of periodic antibiotic intakes is taken into account, making the model an
impulsive one. Each time a patient takes antibiotics, a fraction μ (0 <μ < 1) of
sensitive bacteria dies, but resistant bacteria are left to grow and multiply in periodic
bursts. Analysis is carried out on the impulsive system to find the stability criteria for
the steady-state solution where bacterial strains are washed out. Numerical
simulation is carried out to support our theoretical predictions.

Keywords: Drug resistance; Impulsive system; Delayed model; Hopf bifurcation;
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1 Introduction
According to [1], emergence of microorganisms resistant to multidrug has become a global
concern. The problem is compounded by the fact that resistance pattern of organism not
only varies from one country to another but also within the same country. Moreover, “an-
tibiotic resistance is no longer a prediction for the future; it is happening right now, across
the world, and is putting at risk the ability to treat common infections in the community
and hospitals” [1]. Urgent, coordinated action is crucial for the world to be prepared for
the postantibiotic era, in which it will not be as easy to treat or control common infections
and minor injuries, as we have been able to do for decades [2]. To complicate matters, the
development and spread of antibiotic resistance is multifactorial, so that any studies to try
to cope with the situation must as a consequence utilize all possible tools and advanced
techniques available. The global evolutionary consequence of antimicrobial utilization is
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an extremely complex problem not only intrinsically connected to public health and hu-
man functions, but also embroiled in animal health, food production, nutrition, farming,
and the environment.

Penicillin was discovered in 1928 by Alexander Fleming, giving rise to a medical rev-
olution whereby a medication and cure of previously life-threatening infections became
possible [3]. He also later foretold the risks of antimicrobial resistance (AMR), pointing
out the danger that the ignorant man may easily underdose himself and become resistant
to it by exposing his microbes to nonlethal quantities of the drug.

Southeast Asia has been proposed as an epicenter for emerging infectious diseases, and
that makes the region a focal region for the emergence of AMR due to the fact that it
is a highly dynamic region characterized by swift but uneven economic development. It
has been reported by the WHO that a lack of systematic collection of data concerning
AMR, and associated morbidity, mortality, and economic cost, in Southeast Asia is the
risk factor that creates the “burgeoning and often neglected” problem [3]. Surveillance
of AMR across Southeast Asia is currently carried out in the healthcare framework, but
hospital-associated incidence accounts for only a fraction of the total antimicrobial resis-
tance burden. This has left large gaps in thorough knowledge and understanding on the
AMR development and evolution in the human community and in animals cultured for
food production.

Apart from data surveillance and analyses, mathematical modeling, for its power of pre-
diction and ability to potentially portray nonlinear dynamic behavior of the process, is able
to play a crucial role in improving our understanding of antibiotic resistance. Spicknal et
al. [4] review the literature on antibiotic-resistance modeling published between 1993 and
2011. The models’ structures are classified into one or more of six categories based on the
assumptions made in regards to within-host and population-level competition between
antibiotic-sensitive and antibiotic-resistant strains. They explained that each model cate-
gory has varying dynamic implications in terms of how the use of antibiotic affects resis-
tance persistence, and consequently each may lead to different conclusions about optimal
treatment protocols that could minimize resistance. Their paper provides valuable insight
into model selection.

To investigate the population dynamics of bacterial infection under antibiotic resistance
pressure, in 2007, Puttasontiphot et al. [5] proposed a mathematical model describing the
dynamics of the resistant bacterial strain, sensitive strain, and the amount of available nu-
trients in the gastrointestinal tract, as functions of time. Later, Chayapham and Lenbury
[6] considered a nonlinear model of interaction between resistant and sensitive strains of
bacteria, extended to account for the delay in the process of plasmid transfer during the
sensitivity to resistant conversion [7, 8]. In this paper, we extend our understanding of
AMR by analyzing further the delay differential equation model of drug resistance pro-
posed in [6] for its stability and Hopf bifurcation development. The model is then mod-
ified to take into account the impulsive antibacterial drug treatment, which periodically
reduces the level of sensitive strain which is susceptible to the drugs, as well as the sudden
increases in the resistant strain as the susceptible population being killed by the antibi-
otics leaves the resistant strain to grow, on the limiting nutrients, and multiply in periodic
bursts. Numerical simulations of this model will be conducted to support theoretical pre-
dictions.
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2 Model system
In 2011, Sirinukunwattana et al. [9] analyzed a model that assumes nutrient abundance
and incorporates a delay in drug resistant and wild-type strains interaction, consisting of
the following equations:

dS
dt

= ψsS(t) – H
(
S(t)

)
S(t)R(t – τ ) – dsS(t) – KS(t) + I,

dR
dt

= ψR
(
r – R(t)

)
R(t – τ ) + H

(
S(t)

)
S(t)R(t – τ ) – dRR(t – τ ),

where S and R stand for the densities of susceptible and resistant strains, respectively,
ψSS(t) and ψR(r – R(t))R(t – τ ) represent the growth rates of susceptible and resistant
strains, respectively, H(S(t))S(t)R(t – τ ) incorporates the bacterial conversion from the
susceptible population into the resistant population, dSS(t) and dRR(t – τ ) are the death
rates of susceptible and resistant strains, respectively, and KS(t) accounts for the killing
rate by administered drugs; I accounts for the constant increase in the susceptible strain
due to infection, and τ is the maturation delay. However, this model did not take into
account the delay in the process by which the susceptible bacteria is converted into a re-
sistant bacteria through plasmid transfer, as observed and reported by Andrup et al. [7]
and Dostal et al. [8].

Later, in 2013, Chayapham and Lenbury [6] considered a nonlinear model of interaction
between resistant and sensitive strains of bacteria, extended later to account for the delay
mechanism mentioned in [7, 8] resulting in the following model system:

dx
dt

=
a1x(t)z(t)(γ – x(t))

KS + z(t)
– a2x(t) –

εγ x(t)y(t)
Kγ + x(t)

– ω1x(t), (1)

dy
dt

=
ψRy(t)z(t)
KR + z(t)

+
εγ e–μ1τ x(t – τ )y(t – τ )

Kγ + x(t – τ )
– ω2y(t), (2)

dz
dt

=
(
z∗ – z(t)

)
ω3 –

a3x(t)z(t)
KS + z(t)

–
a4y(t)z(t)
KR + z(t)

, (3)

where x(t), y(t), and z(t) are the levels of sensitive strain, resistant strain, and limiting
nutrient, respectively, with initial condition

(
x(t), y(t), z(t)

)
=

(
ϕ1(t),ϕ2(t),ϕ3(t)

) ∈ C+
3 ,

ϕi(0) > 0, i = 1, 2, 3,
(4)

and C+
3 = C([–τ , 0],�+

3 ).
The first term on the right of (1) represents the rate of growth of sensitive strain, which

increases with increasing nutrient concentration but saturates to a logistic growth rate
when there is an abundance of nutrients (z → ∞). The last term in (1), ω1x, is the natural
removal rate of sensitive strain, whereas the second term is the death rate of this strain, a1

being the death rate constant. The term εγ x(t)y(t)
Kγ +x(t) represents the rate at which the sensitive

train is converted into the resistant population. This saturates to εγ y(t) when there is an
abundance of the resistant population, εγ being the conversion constant of variation.

The first term on the right of (2) is the growth rate of resistant strain, which is assumed to
be a Monod-type function that saturates to ψRy(t) when there is an abundance of nutrients
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(z → ∞), ψR being the saturation constant. The second term here is the rate at which the
resistant strain increases from conversion of the sensitive strain. The model takes into
account the conversion delay τ by this second term on the right of (2), where e–μ1τ takes
into account the probability that a resistant bacteria survives from the time t – τ to the
time t. Here we assume the simplest possible survival distribution obtained by assuming a
constant risk over time, so the hazard μ1 is constant for all time [10]. The corresponding
survival function is then σ (t) = e–μ1t . The last term on the right of (2) is the removal rate
of resistant strain by natural means.

In (3) the term z∗ω3 represents the constant rate of increase of nutrients from food
intakes. Nutrients are removed by natural means at the rate ω3z, utilized for growth of
sensitive strain and the resistant strain according to the second and last terms of (3), re-
spectively.

In [6] the conditions are given that ensure the existence and local asymptotical stability
of the bacteria free equilibrium E∗ = (0, 0, z∗), the sensitive bacteria-free equilibrium E0 =
(0, y0, z0), and the resistant bacteria-free equilibrium E1 = (x1, 0, z1) of (1)–(3), where

y0 =
(z∗ – z0)ω3ψR

a4ω2
,

z0 =
ω2KR

ψR – ω2
,

x1 =
(z∗ – z1)ω3(KS + z1)

a3z1
,

z1 =
(ω1 + a2)KS

a1(γ – x1) – (a2 + ω1)
.

The next theorem [6] provides the conditions for the stability of the endemic equillibrium
E2 = (x2, y2, z2), where

x2 =
[(

z∗ – z2
)
ω3 +

a4y2z2

KR + z2

]
KS + z2

a3z2
,

y2 =
[

a1z2(γ – x2)
KS + z2

– a2 – ω1

]
Kγ + x2

εr
,

z2 =
KRω2Kγ + (ω2 – εre–μ1τ )KRx2

Kγ (ψR – ω2) + (ψR – ω2 + εre–μ1τ )x2
.

For convenience, we first introduce the following parameters:

b1 =
a1x2z2

KS + z2
–

εγ x2y2

(Kγ + x2)2 , b2 =
εγ x2

Kγ + x2
, (5)

b3 =
a1KSx2(γ – x2)

(KS + z2)2 , b4 =
εγ Kγ y2σ

(Kγ + x2)2 , (6)

b5 =
ψRKRy2

(KR + z2)2 , b6 =
a3z2

KS + z2
, (7)

b7 =
a4z2

KR + z2
, b8 =

a3KSx2

(KS + z2)2 +
a4KRy2

(KR + z2)2 + ω3, (8)

B1 = b1 + b8, B2 = b1b8 + b3b6 + b5b7, B3 = (b3b7 + b2b8)b4,

B4 = b2b4, B5 = (b1b7 – b2b6)b5,
(9)
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d1 = B2
1 – 2B2, d2 = B2

2 – 2B1B5 – B2
4, d3 = B2

5 – B2
3, (10)

σ in (6) being the survival function introduced earlier.

Theorem 1 ([6]) If

a1x2z2

KS + z2
>

εγ x2y2

Kγ + x2
, (11)

d2
1 – 3d2 < 0, (12)

and

(b3b7 + b2b8)b4 + (b1b7 – b2b6)b5 > 0, (13)

then the endemic equilibrium E2 = (x2, y2, z2) is locally asymptotically stable for τ ≥ 0.

In the next section, we investigate the possibility of the endemic equilibrium E2 =
(x2, y2, z2) losing its stability giving rise to limit cycles emerging from it through a Hopf
bifurcation.

3 Hopf bifurcation
We now establish the conditions on the system parameters that ensure that a Hopf bifur-
cation occurs.

The characteristic equation of (1)–(3) at the endemic equilibrium can be written as

λ3 + B1λ
2 + B2λ + (B3 + B4λ)e–λτ + B5 = 0, (14)

where the coefficients are defined in (9). Substituting λ(τ ) = α(τ ) + i� (τ ) into (14), we
obtain

(
α(τ ) + i� (τ )

)3 + B1
(
α(τ ) + i� (τ )

)2 + B2
(
α(τ ) + i� (τ )

)

+ e–ατ (cos�τ – i sin�τ )
(
B3 + B4

(
α(τ ) + i� (τ )

))
+ B5 = 0. (15)

From the proof of Theorem 1 given in [6] we know that E2 is locally asymptotically stable
for τ = 0, which means that α(0) < 0. By the continuity of the function α(τ ) we are ensured
that α(τ ) < 0 for values of τ such that 0 < τ < τc for some τc > 0. That is, E2 remains locally
asymptotically stable for these values of τ .

Now suppose that α(τc) = 0 for some τc > 0 and α(τ ) < 0 for values of 0 < τ < τc. Then E2

may lose its stability at τ = τc, where λ(τ ) = i� (τc). However, i� is a solution of (14) if and
only if

–i� 3 – B1�
2 + iB2� + (B3 + B4i� )(cos�τ – i sin�τ ) + B5 = 0. (16)

Equating the real and imaginary parts in (16) to zero, we obtain

B1�
2 – B5 = B3 cos�τ + B4� sin�τ , (17)

–� 3 + B2� = –B4� cosωτ + B3 sin�τ . (18)
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Squaring and adding (17) and (18), we obtain

(
B1�

2 – B5
)2 +

(
B2� – � 3)2 = B2

3 + B2
4�

2. (19)

Letting θ = � 2 in (19) leads to the equation in θ as follows:

H(θ ) ≡ θ3 + d1θ
2 + d2θ + d3 = 0, (20)

where d1, d2, and d3 are as defined in (10).
To prove our result, we state the following lemma based on [11].

Lemma 1 Let θ∗ = –d1+
√

d2
1–3d2

3 . If d2 < 0 and H(θ∗) < 0, then (20) has at least one positive
solution.

Proof Since d3 > 0, H(0) = d3 > 0. To locate the critical points of H(θ ), we equate the
derivative of H(θ ) to 0 to obtain

3θ2 + 2d1θ + d2 = 0,

whose roots are θ1,2 = –d1±
√

d2
1–3d2

3 . If d2 < 0, then we have

θ∗ =
–d1 +

√
d2

1 – 3d2

3
> 0.

But, H(θ∗) < 0 and H(θ ) → ∞ as θ → ∞. This means that the graph of H(θ ) crosses the
positive horizontal axis at least once. Therefore H(θ ) has at least one positive solution.

We can see that if the conditions in Lemma 1 hold, then equation (20) has at least one
positive solution. Depending on the values of di, i = 1, 2, 3, (20) can have up to three pos-
itive solutions. Without loss of generality, the positive solutions of equation (20) may be
denoted by θ1, θ2, and θ3. Then, writing �i =

√
θi, i = 1, 2, 3„ and substituting � = �i in

equations (17) and (18), we obtain

B1�
2
i – B5 = B3 cos�iτ + B4�i sin�iτ ,

–� 3
i + B2�i = –B4�i cos�iτ + B3 sin�iτ .

Solving for τ ,

B1�
2
i – B5

–� 3
i + B2�i

=
B3 cos�iτ + B4�i sin�iτ

–B4�i cos�iτ + B3 sin�iτ
,

which yields

tan�iτ =
(B1�

2
i – B5)B4�i – B3(� 3

i – B2�i)
(B1�

2
i – B5)B3 + B4�i(� 3

i – B2�i)
, i = 1, 2, 3.

Therefore

τ
(n)
i =

1
�i

tan–1
[

(B1w2
i – B5)B4�i – B3(� 3

i – B2�i)
(B1�

2
i – B5)B3 + B4�i(� 3

i – B2�i)

]
+

2π (n – 1)
�i

, (21)

where i = 1, 2, 3 and n = 1, 2, 3, . . . .
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Let τc > 0 denote the smallest of such τ , namely

τc = min
{
τ

(n)
i > 0, 1 < i < 3, n ≥ 1

}
,

and denote by �c the corresponding value of � at this point. We will show that a Hopf
bifurcation occurs by establishing that

d(Reλ)
dτ

∣
∣∣
∣
τ=τc


= 0. (22)

To accomplish this, we further introduce for convenience the following parameters:

k1 = B4�cτc, k2 = B4 – B3τc,

Ω1 = B2 – 3� 2
c – k1 sin�cτc + k2 cosωcτc,

Ω2 = 2B1�c – k1 cos�cτc – k2 sin�cτc,

Ω3 = μ1B4�c + B3�c,

Ω4 = B4�
2
c – μ1B3,

(23)

W1 = Ω1Ω3 + Ω2Ω4, W2 = Ω2Ω3 – Ω1Ω4. (24)�

Theorem 2 For the critical time lag τc and the corresponding �c, suppose the conditions
in Lemma 1 hold. Also, suppose the following conditions are satisfied:

(i) Ω1 
= 0;
(ii) Ω2 
= 0;

(iii) W1 sin�cτc + W2 cos�cτc 
= 0.
Then (22) holds, and a Hopf bifurcation occurs as τ increases passed τc.

Proof Equating real and imaginary parts to zero in (15), we obtain

α3 – 3α� 2 + B1α
2 – B1�

2 + B5 + B2α

+ e–ατ
(
B4� sin�τ + (B3 + B4α) cos�τ

)
= 0, (25)

3α2� – � 3 + 2B1α� + B2� + e–ατ
(
B4� cos�τ – (B3 + B4α) sin�τ

)
= 0, (26)

where the coefficients Bi, i = 1, 2, . . . , 5, are as defined in (5)–(10).
Differentiating (25) with respect to τ and evaluating at τ = τc, we obtain

(
B2 – 3� 2

c
)dα

dτ

∣∣
∣∣
τ=τc

– 2B1�c
d�

dτ

∣∣
∣∣
τ=τc

=
[
(B4�cτc) sin�cτc – (B4 – B3τc) cos�cτc

]dα

dτ

∣∣
∣∣
τ=τc

–
[
(B4�cτc) cos�cτc + (B4 – B3τc) sin�cτc

]d�

dτ

∣
∣∣∣
τ=τc

+
[
(μ1B4�c + B3�c) sin�cτc –

(
B4�

2
c – μ1B3

)
cos�cτc

]
. (27)
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Here we have used the fact that α(τc) = 0, so that

dα3

dτ

∣
∣∣
∣
τ=τc

= 3α2 dα

dτ

∣
∣∣
∣
τ=τc

= 0,

whereas σ = e–μ1τ , which is the survival function, appears in B3 and B4, so that

dB3

dτ

∣∣
∣∣
τ=τc

=
dB3

dσ

dσ

dτ

∣∣
∣∣
τ=τc

= –μ1B3

∣∣
∣∣
τ=τc

,

and similarly for B4.
Equivalently, (27) can be written as

Ω1
dα

dτ

∣∣∣
∣
τ=τc

– Ω2
d�

dτ

∣∣∣
∣
τ=τc

= Ω3 sin�cτc – Ω4 cos�cτc (28)

using (23). Similarly, from equation (26) we have

(
B2 – 3� 2

c
)d�

dτ

∣
∣∣
∣
τ=τc

+ 2B1�c
dα

dτ

∣
∣∣
∣
τ=τc

=
[
(B4�cτc) sin�cτc – (B4 – B3τc) cos�cτc

]d�

dτ

∣
∣∣
∣
τ=τc

+
[
(B4�cτc) cos�cτc + (B4 – B3τc) sin�cτc

]dα

dτ

∣
∣∣
∣
τ=τc

+
[
(μ1B4�c + B3�c) cos�cτc +

(
B4�

2
c – μ1B3

)
sin�cτc

]
(29)

or, equivalently,

Ω1
d�

dτ

∣∣
∣∣
τ=τc

+ Ω2
dα

dτ

∣∣
∣∣
τ=τc

= Ω4 sin�cτc + Ω3 cos�cτc (30)

using (23). Eliminating d�
dτ

|τ=τc from (28) and (30) and solving for dα
dτ

|τ=τc , we obtain

(
Ω2

1 + Ω2
2
)dα

dτ

∣
∣∣
∣
τ=τc

= (Ω1Ω3 + Ω2Ω4) sin�cτc + (Ω2Ω3 – Ω1Ω4) cos�cτc.

Therefore we have

dα

dτ

∣∣
∣∣
τ=τc

=
W1 sin�cτc + W2 cos�cτc

Ω2
1 + Ω2

2
(31)

using (24). Thus by conditions (i)–(iii) we obtain dα
dτ

|τ=τc 
= 0.
Hence a Hopf bifurcation occurs when τ passes through the critical value τc, and this

completes the proof. �

In Fig. 1, we show a numerical simulation of (1)–(3), in which the parameters satisfy
the conditions in Theorem 2 and τ > τc. The solution trajectory, seen here projected onto
the (x, y)-plane, is observed here to tend toward a limit cycle surrounding the endemic
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Figure 1 Solution trajectory. Numerical simulation
of the model system (1)–(3) showing solution
trajectory, projected onto the (x, y)-plane, tending
toward a limit cycle surrounding the endemic
equilibrium point. Here, x(0) = 0.3, y(0) = 0.4,
z(0) = 0.5, a1 = 2.407407, a2 = 0.023077,
a3 = 0.00196, a4 = 0.0007, ω1 = 0.7, ω2 = 0.7,
ω3 = 0.7Ks = 0.7, Kγ = 4.3, KR = 5.0, εr = 0.9, γ = 4.0,
μ = 0.01, z∗ = 5.0, and ψR = 1.2

equilibrium as time progresses. The corresponding time series of the sensitive strain x(t),
resistant strain y(t), and nutrient concentration z(t) are shown in Fig. 2. It is well known
that the amplitude of such a bifurcating periodic solution grows with

√|τ | (see [12] for
the details of how the constant of variation in the relationship between the amplitude and
τ can be derived).

In the next section, we consider the impact of periodic drug treatments on the develop-
ment of resistance to discover how the drug’s killing efficacy and the time period between
treatments could be appropriately tuned to possibly influence the dynamic behavior of the
bacterial interaction under AMR pressure.

4 Impulsive drug intakes
We incorporate the effect of a treatment protocol, in which drugs are usually prescribed
in a periodic fashion by considering the following impulsive system of delayed differential
equations:

dx
dt = a1x(t)z(t)(γ –x(t))

Ks+z(t) – a2x(t) – εrx(t)y(t)
kγ +x(t) – ω1x(t),

dy
dt = ψRy(t)z(t)

KR+z(t) + εre–μ1τ x(t–τ )y(t–τ )
kγ +x(t–τ ) – ω2y(t),

dz
dt = ω3z∗ – a3x(t)z(t)

Ks+z(t) – a4y(t)z(t)
KR+z(t) – ω3z

⎫
⎪⎪⎬

⎪⎪⎭
t 
= tn = nT , n = 1, 2, 3, . . . , (32)

x
(
t+
n
)

= (1 – r)x(tn),

y
(
t+
n
)

= (1 + p)y(tn), tn = nT , n = 1, 2, . . . ,

z
(
t+
n
)

= z(tn),

(33)

(x(t), y(t), z(t)) = (ϕ1(t),ϕ2(t),ϕ3(t)) ∈ C+
3 , ϕi(0) > 0, i = 1, 2, 3, where C+

3 = C([–τ , 0],�+
3 ),

and x(t+), y(t+), and z(t+) are the right limits of x(t), y(t), and z(t) at time t, respectively.
Here T is the period of drug treatments, and r, 0 < r < 1, represents the drug’s efficacy

in killing the susceptible strain, whereas the positive constant p represents the sudden
multiple increase in the resistant strain since the sensitive members being killed by the
antibiotics leaves the resistant strain to grow and multiply at a burst on the more readily
available nutrients. It is possible for p to be bigger than 1, considering that the resistant
bacterial population may multiply very quickly and each member can reproduce many
progenies at a time.

The global existence and uniqueness of solution to the model system (32)–(33) are guar-
anteed by the smoothness properties of the right-hand sides of the system equations (32)–
(33) based on [13].
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Figure 2 Time series. Numerical simulation of our model showing the time series of (a) level of sensitive
bacteria, (b) level of resistant bacteria, and (c) nutrient concentration, corresponding to the case seen in Fig. 1.
Here, x(0) = 0.3, y(0) = 0.4, z(0) = 0.5, a1 = 2.407407, a2 = 0.023077, a3 = 0.00196, a4 = 0.0007, ω1 = 0.7,
ω2 = 0.7, ω3 = 0.7Ks = 0.7, Kγ = 4.3, KR = 5.0, εr = 0.9, γ = 4.0, μ = 0.01, z∗ = 5.0, and ψR = 1.2

We can show the following result in a straight forward manner.

Lemma 2 (Nonnegativity) Suppose (x(t), y(t), z(t)) is a solution of (32)–(33) with ϕi(0) ≥ 0,
i = 1, 2, 3. Then x(t) ≥ 0, y(t) ≥ 0, and z(t) ≥ 0 for all t ≥ 0.
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Proof Suppose x(t) (or y(t), or z(t)) becomes negative at some point. Then there must
be t∗ > 0 such that x(t∗) = 0 (or y(t∗) = 0, or z(t∗) = 0) and dx

dt |t=t∗ < 0 (or dy
dt |t=t∗ < 0, or

dz
dt |t=t∗ < 0).

Let t∗
1 be the smallest such t∗, so that x(t∗

1 ) = 0 and x(t) > 0 for all 0 < t < t∗
1 . However,

when x = 0, t 
= nT , the first equation of (32) gives

dx
dt

∣
∣∣
∣
t=t∗1

= 0,

which contradicts the condition that dx
dt |t=t∗ < 0. Also, r < 1. Therefore we have x(t) ≥ 0 for

all t.
Next, let t∗

2 be the smallest of the t∗ such that y(t∗
2 ) = 0 and y(t) > 0 for all 0 < t < t∗

2 .
However, when y = 0, t 
= nT , the second equation of (32) gives

dy
dt

∣∣
∣∣
t=t∗2

=
εre–μ1τ x(t∗

2 – τ )y(t∗
2 – τ )

kγ + x(t∗
2 – τ )

,

which is nonnegative because of the definition of t∗
2 , and x being non-negative. This con-

tradicts the condition that dy
dt |t=t∗ < 0. Also, p > 0. Therefore, we have y(t) ≥ 0 for all t.

Finally, let t∗
3 be the smallest of the t∗ such that z(t∗

3 ) = 0, and z(t) > 0 for all 0 < t < t∗
3 .

However, when z = 0, t 
= nT , the third equation of (32) gives

dz
dt

∣
∣∣
∣
t=t∗3

= ω3z∗ > 0.

This is a contradiction. Hence, we have x(t) ≥ 0, y(t) ≥ 0, and z(t) ≥ 0 for all t ≥ 0. This
completes the proof. �

We note that system (32)–(33) has the same equilibrium solutions as (1)–(3) whenever
they exist and now determine the local asymptotic stability of the bacterial-free solution
(0, 0, z∗) of system (32)–(33). This is the desirable outcome, a situation where no bacteria
persist in the system. To do this, we let

T1 =
KS + z∗

a1γ z∗ – (KS + z∗)(a2 + ω1)
log

1
(1 – μ)

, (34)

T2 ≡ KR + z∗

ω2KR – (ψR – ω2)z∗ log(1 + p). (35)

Theorem 3 Suppose T1 > T2 and

a1γ z∗

KS + z∗ – a2 – ω1 > 0, (36)

ψRz∗

KR + z∗ – ω2 < 0, (37)

a1γ z∗ – a2 – ω1 + ω3 
= 0, (38)

ψRz∗

KR + z∗ – ω2 + ω3 
= 0. (39)
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Then the bacterial-free solution (0, 0, z∗) of system (32)–(33) is locally asymptotically stable
for τ ≥ 0, provided that

T1 > T > T2. (40)

Proof The local stability of the solution (0, 0, z∗) may be determined by considering the
behavior of small amplitude perturbations of this solution. If we define

x(t) = s(t), y(t) = r(t), z(t) = v(t) + z∗,

then we obtain the following linearized system:

⎡

⎢
⎣

s′(t)
r′(t)
v′(t)

⎤

⎥
⎦ =

⎡

⎢⎢
⎣

a1γ z∗
KS+z∗ – a2 – ω1 0 0

0 ψRz∗
KR+z∗ – ω2 0

–a3z∗
KS+z∗

–a4z∗
KR+z∗ –ω3

⎤

⎥⎥
⎦

⎡

⎢
⎣

s(t)
r(t)
v(t)

⎤

⎥
⎦ . (41)

The corresponding characteristic equation is given by

(
a1γ z∗

KS + z∗ – a2 – ω1 – λ

)(
ψRz∗

KR + z∗ – ω2 – λ

)
(ω3 + λ) = 0.

Consequently, the eigenvalues are

λ1 =
a1γ z∗

KS + z∗ – a2 – ω1,

λ2 =
ψRz∗

KR + z∗ – ω2,

λ3 = –ω3.

The eigenvectors corresponding to the eigenvalues λ1, λ2, and λ3 are (1, 0, l), (0, 1, m), and
(0, 0, 1), respectively, where

l = –
a3z∗

(KS + z∗)(ω3 + a1γ z∗
KS+z∗ – a2 – ω1)

and

m = –
a4z∗

(KR + z∗)(ω3 + ψRz∗
KR+z∗ – ω2)

,

which are defined since (38) and (39) hold.
Letting

P =

⎡

⎢
⎣

1 0 0
0 1 0
l m 1

⎤

⎥
⎦
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and

L1(t) =

⎡

⎢
⎣

eλ1t 0 0
0 eλ2t 0
0 0 e–ω3t

⎤

⎥
⎦ ,

the fundamental solution matrix of (32) is then given by

φ(t) = PL1(t) =

⎡

⎢
⎣

1 0 0
0 1 0
l m 1

⎤

⎥
⎦

⎡

⎢
⎣

eλ1t 0 0
0 eλ2t 0
0 0 e–ω3t

⎤

⎥
⎦ =

⎡

⎢
⎣

eλ1t 0 0
0 eλ2t 0

leλ1tm eλ2t e–ω3t

⎤

⎥
⎦ .

When t = nT , the linearization of (33) is

⎡

⎢
⎣

s(t+)
r(t+)
v(t+)

⎤

⎥
⎦ =

⎡

⎢
⎣

1 – μ 0 0
0 1 + p 0
0 0 1

⎤

⎥
⎦

⎡

⎢
⎣

s(t)
r(t)
v(t)

⎤

⎥
⎦ . (42)

The stability of the solution (0, 0, z∗) is determined by the eigenvalues of

Φ =

⎡

⎢
⎣

1 – μ 0 0
0 1 + p 0
0 0 1

⎤

⎥
⎦φ(T) =

⎡

⎢
⎣

(1 – μ)eλ1T 0 0
0 (1 + p)eλ2T 0

leλ1tm eλ2T e–ω3T

⎤

⎥
⎦ .

We have

det(Φ – ηI) =

∣
∣∣
∣∣
∣∣

(1 – μ)eλ1T – η 0 0
0 (1 + p)eλ2T – η 0

leλ1t meλ2T e–ω3T – η

∣
∣∣
∣∣
∣∣

= 0,

where η denotes the eigenvalues of Φ , so that the three eigenvalues are

η1 = (1 – μ)eλ1T ,

η2 = (1 + p)eλ2T ,

and

η3 = e–ω3T .

We have |η1| < 1 and |η2| < 1 since (40) holds, whereas |η3| < 1 since ω3 > 0. Hence,
from the Floquet theory of impulsive differential equations, the solution (0, 0, z∗) is locally
asymptotically stable.

We next investigate possible periodic solutions and their stability in the case that the
nutrient is nonlimiting and there is enough supply of nutrient, so that its level remains at
a constant level. �
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4.1 Nonlimiting nutrient
To identify periodic solutions and their stability conditions, we will consider the case in
which the nutrient is nonlimiting and its level has tended relatively quickly to a fixed equi-
librium level z = z0 at E0, where it remains with

ω3z∗ –
a3xz0

Ks + z0
–

a4yz0

KR + z0
– ω3z0 = 0,

where dz
dt = 0. For convenience, we let x1(t) = x(t), x2(t) = y(t) and

â1 =
a1z0

KS + z0
, ψ̂R =

ψRz0

KR + z0
,

ω̂1 = a2 + ω1, ω̂2 = ω1 – ψ̂R.

With these substitutions, (32)–(33) are reduced to

dx1
dt = â1x1(γ – x1) – εrx1(t)x2(t)

kγ +x1(t) – ω̂1x1,
dx2
dt = εre–μ1τ x1(t–τ )x2(t–τ )

kγ +x1(t–τ ) – ω̂2x2

⎫
⎬

⎭
, t 
= tn = nT , n = 1, 2, 3, . . . , (43)

x1(t+
n ) = (1 – r)x1(tn),

x2(t+
n ) = (1 + p)x2(tn)

}

, tn = nT , n = 1, 2, 3, . . . . (44)

We will first find a periodic solution to a reduced system of (43)–(44) under the assumption
of nonlimiting nutrient and then use this solution to write a solution to the full system
(43)–(44). We the will investigate the stability of these solutions. Accordingly, we first put
x1(t) ≡ 0 for all t to obtain

dx2

dt
= –ω̂2x2, t 
= tn, (45)

x2
(
t+
n
)

= (1 + p)x2(tn), tn = nT , n = 0, 1, 2, . . . , (46)

x2
(
0+) ≡ x20 . (47)

Then we can easily see that a periodic solution of (45)–(46) is

x̃2(t) = (1 + p)ne–ω̂2(t–nT), nT < t < (n + 1)T , n = 0, 1, 2, . . . ,

with x̃2(0+) = 1, provided that

(1 + p)e–ω̂2T = 1. (48)

Thus a positive solution of (45)–(47) is

x̂2(t) = (x20 – 1)e–ω̂2t + x̃2(t), nT < t < (n + 1)T , n = 0, 1, 2, . . . .

Therefore, if (48) holds, then system (43)–(44) has a periodic solution at the vanishing
sensitive strain:

(
0, x̃2(t)

)
=

(
0, (1 + p)ne–ω̂2(t–nT)), (n – 1)T < t < nT .
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Theorem 4 The solution (0, x̃2(t)) of (43)–(44) is locally asymptotically stable, provided
that

(1 – r) exp
∫ T

0

(
a1γ –

εr

kγ

x̃2(s) – ω̂1

)
ds < 1, (49)

(1 + p)e–ω̂2T < 1. (50)

Proof Consider a small perturbation from the solution (0, x̃2(t)):

x1(t) = u(t),

x2(t) = x̃2(t) + v(t).

We will show that as time progresses, the perturbation from the solution (0, x̃2(t)) becomes
smaller, and (u(t), v(t)) → (0, 0), as long as the initial point for (u(t), v(t)) is close enough
to (0, 0). The fundamental matrix of (43) satisfies

dΦ

dt
=

(
a1γ – εr

kγ
x̃2 – ω̂1 0

∗ –ω̂2

)

Φ .

Thus

Φ =

(
exp

∫ t
0 (a1γ – εr

kγ
x̃2(s) – ω̂1) ds 0

∗ exp(–
∫ t

0 ω̂2 ds)

)

,

where it is not necessary to know the exact expression for ∗ since it does not come into
later analysis.

Linearizing (44), we obtain

(
u(t+)
v(t+)

)

=

(
1 – r 0

0 1 + p

)(
u(t)
v(t)

)

.

By the Floquet theory the stability of (0, x̃2(t)) depends on the eigenvalues of

M0 =

(
1 – r 0

0 1 + p

)

Φ .

For asymptotic stability of (0, x̃2(t)), we need the multipliers to be smaller than 1 in absolute
values, which is guaranteed by (49) and (50). Thus, by the Floquet theory of impulsive
differential equations, (0, x̃2(t)) is locally asymptotically stable. This completes the proof. �

We observe here that if (50) holds, then (0, x̃2(t)) is not periodic since (48) is violated.
Thus, if we assume (48), then one of the multipliers is equal to one, and we can only es-
tablish local stability, not asymptotical stability, of the periodic solution (0, x̃2(t)) in this
case.

In Fig. 3, we present a numerical simulation of the model system (32)–(33) showing
the jumps in the time series of bacterial populations every interval of T = 3. Here the
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Figure 3 Time series solution under impulsive drug
treatments and delay. Numerical solution of
(32)–(33) where the sensitive and resistant strains
undergo impulsive jumps every time drug treatment
is applied. Here, x(0) = 0.3, y(0) = 0.4, z(0) = 0.5,
a1 = 2.407407, a2 = 0.023077, a3 = 0.00196,
a4 = 0.0007, ω1 = 0.7, ω2 = 0.7, ω3 = 0.7, KS = 0.7,
Kγ = 4.3, KR = 5.0, εr = 0.9, γ = 4.0, μ = 0.01, z∗ = 5.0,
τ = 0.1 and ψR = 0.5, r = 0.1, p = 1.0, T = 3

Figure 4 Controlled resistance under impulses and
delay. Time series solution of (32)–(33) where the
resistant strain remains under a controllable level.
x(0) = 0.3, y(0) = 0.4, z(0) = 0.5, a1 = 2.407407,
a2 = 0.023077, a3 = 0.00196, a4 = 0.0007, ω1 = 0.7,
ω2 = 0.7, ω3 = 0.7, εr = 0.9KS = 0.7, Kγ = 4.3, KR = 5.0,
γ = 4.0, μ = 0.01, z∗ = 5.0, τ = 0.1 and ψR = 0.5,
r = 0.1, p = 0.1, T = 3

multiplication factor p is high, in which case the resistant strain is seen here to increase
unboundedly as time passes. In Fig. 4, on the other hand, p is small relative to T , so that
(38) is satisfied, and the resistant strain in kept to a low level z0. Beyond the point where z
has reached z0, the system can be modeled by (43)–(44).

5 Discussion and conclusion
We have analyzed a model of microbial resistance to drugs to investigate how the dynamic
behavior of the system may be affected by a delay in the process of plasmid transfer. Specif-
ically, the existence of sustained oscillations in solutions of the model has been of interest,
since such oscillatory behavior has been commonly observed in clinical data. We have
found that under suitable conditions, a Hopf bifurcation can occur leading to limit cycles
emanating from the endemic equilibrium solution, ensuring that the infection is endemic
but fluctuates periodically.

Since resistance is expected if prolonged drug use is the practice, we investigate whether
this can be managed in a more efficient manner if deeper understanding is gained. The
base model has been extended to incorporate impulsive drug prescription, which, apart
from killing a fraction of the sensitive bacterial strain, also allows the resistant strain to
benefit from the abundance of nutrients to multiply in periodic bursts at the same time.
This model system (32)–(33) is shown to possess an equilibrium solution, where the bac-
terial strains are washed out, which is locally asymptotically stable, provided that inequal-
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ities (34) and (37) are satisfied. Suppose we define the basic reproductive number R0 as

R0 = max

{
ψRz∗

ω2(KR + z∗)
,

(a2 + ω1)(KS + z∗)
a1γ z∗

}
.

Then, if the density of each of the bacterial strains does not start out from too high a value,
then bacterial infection will be eradicated, provided that

R0 < 1 (51)

and

T1 > T > T2 (52)

with T1 and T2 given in (34) and (35). That is, the local stability of the washout equilibrium
can be ensured under suitable conditions.

Condition (51) is satisfied if the resistant bacterial strain removal rate ω2 is sufficiently
high, or the half saturation constant KR is large enough, or ψR and killing rate of the sen-
sitive strain a1 are relatively high compared to ω1, a2, or KS .

Condition (52) can be accomplished if the interval between drug intakes is in the proper
range. If the fraction p at which the resistant bacterial strain can multiply itself taking the
advantage of deaths in the sensitive strain due to drug intakes is too high, then we see that
this condition (52) will not be achievable as T2 could be bigger than T1 so that we would
not be able to find T between T1 and T2 that satisfies (52), in which case the bacterial
strains may diverge away from the washout equilibrium state.

Now, p reflects how efficiently the resistant bacteria can multiply in bursts, each time
drug treatment is applied (because sensitive bacteria are killed off making the resources
more abundant for the resistant strain). So, if p is relatively high, then T must not be too
small, because the bursts in resistant bacterial growth will be too frequent, resulting in the
environment being overgrown with resistant strain. Namely, if we keep T long enough so
that T > T2 (preventing resistant strain from bursts of growth that are too frequent) but
short enough so that T < T1 (killing off the sensitive bacteria frequently enough), then the
bacterial populations can be eradicated, provided that their levels are not too high to begin
with.

From our discussion we can see that mathematical models construction and analyses
can provide insights into the outcomes of interventions under a set of underlying struc-
tural and procedural assumptions. Modeling different mechanisms involving within-host
competition permits the considerations of different intervention protocols and targets.
The presence of strain coexistence, types of infection, resource limitation and availability,
strain conversion, and delays affects the choice of model structure. With increasing con-
cern about the spread of antibiotic resistance, the use of mathematical models should be
made to yield valuable insights and better understanding of the mechanisms behind this
spread.
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