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Abstract
In this paper, an efficient mass conservative domain decomposition method is
developed for solving the unsaturated soil water flow over non-overlapping multiple
sub-domains. In the first step, the predicted interface fluxes are computed by the
semi-implicit flux scheme. In the second step, the interior water content and fluxes in
the interiors are computed by the coupled solution and flux implicit scheme. The
interface fluxes are finally recomputed by the implicit scheme. The important features
of our proposed scheme are mass conserved and unconditionally stable by defining
global fluxes which contain the diffusivity and hydraulic conductivity. We prove that
the scheme has the error estimate of O(�t + (�z)2 + (�t)2

(�z)
3
2
) in L2-norm.

Keywords: Unsaturated soil water; Water content; Mass conservative; Domain
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1 Introduction
The unsaturated soil water flow (see [1–7]) is an important form of flow in porous me-
dia and is widely used in atmospheric science, soil science, agricultural engineering, en-
vironment engineering and groundwater hydrology, etc. Because of the nonlinearity of
water content equations and the complexity of physical parameters and boundary condi-
tions, it is very difficult and impossible to obtain its analytical solution. Some numerical
schemes [5, 8–10] are been developed for solving the unsaturated soil water flow problem.
Reference [5] presented the general difference methods for one-dimensional unsaturated
soil water flow problem. Reference [9] proposed the efficient reduced-order finite vol-
ume element formulation based on proper orthogonal decomposition method for solving
two-dimensional unsaturated soil water flow problem. By the Crank–Nicolson extrapo-
lation method, [10] presented the time second-order proper orthogonal decomposition
method. Reference [11] considered conforming finite element discretizations based on
a multiscale formulation along with recently developed, local postprocessing schemes.
Reference [12] proposed the enriched Galerkin method, which augments piecewise con-
stant functions to the classical continuous Galerkin finite element method. By employing
a coarse partition of the fine grids and multiscale basis function for mapping the fine-scale
information to the coarse-scale unknowns, [13] proposed a multiscale locally conservative
Galerkin (MsLCG) method to accurately simulate multiphase flow in heterogeneous and
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fractured porous media. Reference [14] proposed an element based post-processing tech-
nique through which local conservation can be established. Using the property of local
conservation at steady state conditions to define a numerical flux at element boundaries,
Reference [15] proposed a locally conservative Galerkin (LCG) finite element method for
two-phase flow simulations in heterogeneous porous media.

Recently, non-overlapping domain decomposition methods have been studied to solve
large scale and nonlinear partial differential equations, and allow the reduction of the
sizes of problems by decomposing domains into smaller sub-domains on which the sub-
problems can be solved by multiple computers in parallel. The explicit–implicit domain
decomposition (EIDD) algorithms over non-overlapping sub-domains as shown for solv-
ing linear parabolic equations in [16–20], etc. Reference [16] proposed the mixed/hybrid
schemes, where the interior solutions were solved by the implicit schemes in sub-domains
while interface solutions were solved by the explicit schemes on interfaces. Reference [21]
developed the EIDD methods by either a multi-step explicit scheme or a high-order ex-
plicit scheme on the interfaces which relaxed the stability conditions. Due to the stability
requirements, [22–24] proposed stabled explicit–implicit domain decomposition meth-
ods, in which the explicit predictors are first used to get the interface values, then the
interior values of sub-domains are solved by implicit schemes, and finally the interface
values are corrected by implicit schemes. By combining with the operator splitting tech-
nique, [25, 26] developed an efficient explicit–implicit splitting domain decomposition
method (S-DDM) for solving parabolic equations and for solving compressible contami-
nation fluid flows in porous media over multiple non-overlapping block-divided domain
decompositions. However, these previous explicit–implicit domain decomposition meth-
ods do not satisfy the physical law of mass conservation over the whole domain.

The numerical schemes that preserve the mass of the model (see [27–30], etc.) are
important and also required for parallel computations in long time simulations. Refer-
ence [27] presented an explicit–implicit conservative domain decomposition procedure
for parabolic equations, where the fluxes at the sub-domains interfaces were calculated by
an average operator from the solutions at the previous time level. Combining the oper-
ator splitting technique and the solution-flux coupled scheme on staggered meshes, [28]
developed the mass-preserving S-DDM scheme for solving parabolic equations over mul-
tiple block-divided domain, where the interface fluxes were computed by the semi-implicit
flux scheme, the solutions and fluxes in the interiors of sub-domains were computed by
the splitting one-dimensional implicit scheme, and further the interface fluxes were cor-
rected on interfaces. Further, by the conservative modified-upwind technique, [29] pro-
posed a mass-preserving and modified-upwind S-DDM scheme over non-overlapping
multi-block sub-domains for solving time-dependent convection-diffusion equations. By
the local multi-point weighted average schemes, [31] analyzed the new and efficient mass-
conserving S-DDM scheme for solving two-dimensional variable coefficient parabolic
equations. By the time extrapolation and the Crank–Nicolson method, [32–34] proposed
the time second-order conservative domain decomposition method and they are condi-
tionally stable.

References [35–37] analyzed the explicit–implicit domain decomposition algorithms for
parallel approximation of semilinear parabolic problems and gave the existence and prior
estimates of numerical solutions by the fixed point technique. References [38, 39] pro-
posed the stability domain decomposition methods for nonlinear parabolic systems. But
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the domain decomposition method for solving the nonlinear parabolic equations are not
conserved. Although [40] presented a conservative domain decomposition method for
nonlinear diffusion equations, the stability and error estimates were not given.

To date, there is few research on mass conservative domain decomposition method for
the unsaturated soil water flow. Since soil water content is an important climate factor,
and its seasonal change has an important influence on weather and climate at mid-high
latitudes. Thus, it is an important task to develop and analyze the efficient domain de-
composition methods, which is mass conservative, for solving the unsaturated soil water
flow.

In this paper, we propose the unconditionally stable conservative domain decomposition
method for solving the unsaturated soil water flow over non-overlapping multiple sub-
domains. Three steps method is used to compute the water content on each sub-domain
at every time step. Firstly, the predicted interface fluxes are computed by the semi-implicit
flux scheme on the interfaces of sub-domains. Secondly, the interior solutions and fluxes
in the interiors are computed by the solution and flux coupled implicit scheme. Finally,
the interface fluxes are recomputed by the implicit (or explicit) scheme. The important
features of our proposed scheme are that the defined global fluxes which contain diffusiv-
ity and hydraulic conductivity ensure the scheme mass conservative and unconditionally
stable. We prove theoretically that our scheme preserves mass conservation and is uncon-
ditionally stable in discrete L2-norm. We prove that the scheme has the error estimate of
O(�t + (�z)2 + (�t)2

(�z)
3
2

) in L2-norm. Numerical experiments test the theoretical analysis.

The rest of this paper is organized as follows. In Sect. 2, the unsaturated soil water flow
problem are considered. In Sect. 3, we propose the mass conservative domain decom-
position scheme and prove it to satisfy mass conservation. In Sect. 4, the stability of our
scheme is analyzed. In Sect. 5, we analyze the convergence and prove the error estimate
in the discrete L2-norm. Numerical experiments are presented in Sect. 6.

2 The unsaturated soil water flow problem
Soil water content is an important climate factor, and its seasonal change has an impor-
tant influence on weather and climate at mid-high latitudes. Hydraulic processes at sur-
face and subsurface, such as precipitation, evaporation, and evapotranspiration, seepage
of surface water, and capillary elevation of deep-level water, absorption in root zone and
liquid moisture flow of groundwater, all can be reduced to unsaturated flow problems.
In fact, in all studies (see [1–5]) of the unsaturated zone, the fluid motion is assumed to
obey the classical Richards equation. Based on horizontal resolution of a general circula-
tion model, liquid moisture flow in soil along horizontal direction may be ignored. The
one-dimensional unsaturated soil water flow equations with the absorption rate of root
are considered as

⎧
⎪⎪⎨

⎪⎪⎩

∂θ
∂t – ∂

∂z (D(θ ) ∂θ
∂z – K(θ )) = Sr , (x, t) ∈ (0, L) × (0, T),

K(θ ) – D(θ ) ∂θ
∂z = q(t), if z = 0 or z = L, t > 0,

θ (z, 0) = θ0(z), x ∈ (0, L),

(1)

where θ (z, t) is soil moisture, D(θ ) is the soil water diffusivity, K(θ ) is the unsaturated
hydraulic conductivity, –Sr is the absorption rate of root zone, and q(t) is the infiltra-
tion or evaporation rate. Reference [4] gave the nonoscillatory solution and evade a non-
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physics solution for the unsaturated flow problem by using the mass-lumped finite ele-
ment method. References [5, 8–10] proposed the generalized difference, mixed finite ele-
ment methods, and the classical finite volume element scheme with the proper orthogonal
decomposition (POD) for solving the unsaturated soil water flow problem. Considering
the nonlinearity of water content equations and the complexity of physical parameters
and boundary conditions, it is an important work to develop the mass-conserved domain
decomposition method for solving the unsaturated water flow problem.

Assume that the domain Ω will be divided into multiple non-overlapping sub-domains
Ωα , and each sub-domain will be further discretized. Let Γα be the interface point sets of
all points on {ziα+ 1

2
}, where α is the interface index.

For simplicity, define a uniform conforming mesh on domain Ω = [0, L] with �z = L
I and

introduce the staggered mesh points zi and zi+ 1
2

as

zi+ 1
2

= ih, i = 0, 1, . . . , I, zi =
(

i –
1
2

)

h, i = 1, 2, . . . , I.

The time interval (0, T] is discretized uniformly by tn = n�t, n = 0, 1, . . . , M, where �t = T
M .

Let φn
i = φ(zi, tn), φn

i+ 1
2

= φ(zi+ 1
2

, tn) denote the function φ at the mesh points (zi, tn) and
(zi+ 1

2
, tn). Define the following difference operators:

δzφ
n
i+ 1

2
=

φn
i+1,j – φn

i,j

�z
, δzφ

n
i =

φn
i+ 1

2 ,j
– φn

i– 1
2 ,j

�z
, ∂tφ

n+1
i =

φn+1
i – φn

i
�t

.

3 Conservative domain decomposition method
Let q(z, t) be the flux of problem (1) defined as q = D(θ ) ∂θ

∂z – K(θ ) which ensure that our
proposed scheme is mass conservative. We approximate both the solution and its flux on
the staggered meshes of sub-domains. The numerical solutions {Θn

i } and numerical fluxes
{Qn

i+ 1
2
} to denote the numerical approximations to solution θ (zi, tn) and fluxes q(zi+ 1

2
, tn),

respectively. Let Θi+ 1
2

= Θi+Θi+1
2 and f = Sr .

Our mass-conserving domain decomposition method is described as follows.
Step 1: The predicted interface fluxes {Q̃n+1

iα+ 1
2
} over Γα are computed as

Q̃n+1
iα+ 1

2
– Qn

iα+ 1
2

�t
= Dn+1

iα+ 1
2

Qn
iα+ 3

2
– 2Q̃n+1

iα+ 1
2

+ Qn
iα– 1

2

(�z)2 + ∂tDn+1
iα+ 1

2
δzΘ

n
iα+ 1

2

– ∂tKn+1
iα+ 1

2
+ Dn+1

iα+ 1
2
δzf n+1

iα+ 1
2

, (2)

where iα is the location index number of the interface and Dn
iα+ 1

2
= D(Θn

iα+ 1
2

).

Step 2: The intermediate solutions {Θn+1
i } are computed by the coupled implicit scheme,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Θn+1
i –Θn

i
�t = δzQn+1

i + f n+1
i , xi ∈ Ωα ,

Qn+1
i+ 1

2
= Dn+1

i+ 1
2
δzΘ

n+1
i+ 1

2
– Kn+1

i+ 1
2

, xi+ 1
2

∈ Ωα ,

Qn+1
iα+ 1

2
= Q̃n+1

iα+ 1
2

, xiα+ 1
2

∈ Γα ,

(3)

where Dn+1
i+ 1

2
= D(Θn+1

i+ 1
2

) and Kn+1
i+ 1

2
= K(Θn+1

i+ 1
2

).
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Step 3: The interface fluxes {Q̃n+1
iα+ 1

2
} are recomputed by

Qn+1
iα+ 1

2
= Dn+1

i+ 1
2
δzΘ

n+1
iα+ 1

2
– Kn+1

iα+ 1
2

. (4)

The boundary conditions are approximated by

Qn+1
1
2

= qn+1
1
2

, Qn+1
I+ 1

2
= qn+1

I+ 1
2

, (5)

and the initial values are computed by

Θ0
i = θ0(xi). (6)

Next, we will give the theoretical analysis when Qn+1
1
2

= Qn+1
I+ 1

2
= 0, and it easily extends to

more general boundary problems.

Theorem 1 The scheme (2)–(6) satisfies mass conservation over the global domain with
f (Θ) = 0, i.e.,

I∑

i=1

Θn
i �z =

I∑

i=1

Θ0
i �z, n = 1, . . . , M. (7)

Proof Multiplying the first equation of (3) with �z and summing i from 1 to I , respectively,
we have

I∑

i=1

Θn+1
i – Θn

i
�t

�z =
I∑

i=1

δzQn+1
i �z. (8)

Applying the boundary condition Qn+1
1
2

= Qn+1
I+ 1

2
= 0, we have

I∑

i=1

δzQn+1
i = 0. (9)

Substituting (9) into (8), we obtain

I∑

i=1

Θn+1
i �z –

I∑

i=1

Θn
i �z = 0. (10)

We thus complete the proof. �

Remark 3.1 The mass-conserved domain decomposition method (2)–(6) is proposed for
solving unsaturated soil water flow problems. The three steps are used to compute the
solutions {Θn+1

i } at time interval. Firstly, the predicted interface fluxes are computed by
the semi-implicit flux scheme on the interfaces of sub-domains. Secondly, the interior
solutions and fluxes in the interiors are computed by the solution and flux coupled implicit
scheme. Finally, the interface fluxes are recomputed by the explicit scheme.
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Remark 3.2 The important features of our proposed scheme are that the defined global
fluxes which contain diffusivity and hydraulic conductivity ensure the scheme is mass con-
servative.

4 Stability
4.1 Assumptions

(I) The problem (1) has a unique smooth solution θ (x, t) and satisfies the regularity
condition, i.e.,

θ ∈ C0([0, T]; C5(Ω)
) ∩ C2([0, T]; C1(Ω)

)
. (11)

(II) One has a positive constant D0, such that, for any ξ and θ ,

(
ξ , D(x, t, θ )ξ

) ≥ D0|ξ |2. (12)

(III) The coefficients D(x, t, θ ), K(x, t, θ ). and f (x, t, θ )ξ are continuous with respect to x,
t, and continuously differentiable with respect to θ , i.e.,

max
{|Dθθ |, |Kθθ |, |fθ |

} ≤ G. (13)

When the conditions (I)–(III) hold, we provide the analysis of the stability and conver-
gence of the scheme (2)–(6) as follows.

Lemma 1 If Θ = {Θi} and Q = {Qi+ 1
2
} satisfy the condition Q 1

2
= QI+ 1

2
= 0, we have

(δzQ,Θ) = –‖Q‖2
1
D

+
I–1∑

i=1

1
Di+ 1

2

Qi+ 1
2

Ki+ 1
2
�z. (14)

Proof Applying the boundary conditions Q 1
2

= 0, QI+ 1
2

= 0, we have

(δzQ,Θ) = –
I–1∑

i=1

1
Di+ 1

2

Qi+ 1
2

(Di+ 1
2
δzΘi+ 1

2
)�z

= –
I–1∑

i=1

1
Di+ 1

2

Qi+ 1
2

(Qi+ 1
2

+ Ki+ 1
2

)�z

= –‖Q‖2
1
D

–
I–1∑

i=1

1
Di+ 1

2

Qi+ 1
2

Ki+ 1
2
�z. (15)

�

Without loss of generality, we will prove our scheme stability and convergence on two
sub-domains. Equations (3) are rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Θn+1
i –Θn

i
�t =

Qn+1
i+ 1

2
–Qn+1

i– 1
2

�z + f n+1
i +

Q̃n+1
i1+ 1

2
–Qn+1

i1+ 1
2

�z , i = i1,

Θn+1
i –Θn

i
�t =

Qn+1
i+ 1

2
–Qn+1

i– 1
2

�z + f n+1
i +

Qn+1
i1+ 1

2
–Q̃n+1

i1+ 1
2

�z , i = i1 + 1,

Θn+1
i –Θn

i
�t =

Qn+1
i+ 1

2
–Qn+1

i+ 1
2

�z + f n+1
i , i �= i1, i1 + 1,

(16)

where Dn+1
i+ 1

2
= D(Θn+1

i+ 1
2

) and Kn+1
i+ 1

2
= K(Θn+1

i+ 1
2

).
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Lemma 2 Let Θ = {Θi} and Q = {Qi+ 1
2
} be the solution of Scheme (2)–(6). We have

1
�t

(∥
∥Θn+1∥∥2 –

∥
∥Θn∥∥2) +

I–1∑

i=1,i�=i1

1
2Dn+1

i+ 1
2

∣
∣Qn+1

i+ 1
2

∣
∣2

�z +
1

2Dn+1
i1+ 1

2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2

�z

+
�t
�z

(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Qn+1

i1+ 3
2

∣
∣2 –

(∣
∣Qn

i1– 1
2

∣
∣2 +

∣
∣Qn

i1+ 3
2

∣
∣2))

≤ ∥
∥Θn+1∥∥2 +

∥
∥Kn+1∥∥2

1
D1

+
∥
∥f n+1∥∥2 + M

(�t)2

�z
(∣
∣f n+1

i1

∣
∣2 +

∣
∣f n+1

i1+1
∣
∣2), (17)

where M > 0 is a positive constant.

Proof Multiplying both sides of Eqs. (3) by Θn+1
i �x, respectively, and summing them up

for i from 1 to I , we obtain

(
∂tΘ

n+1,Θn+1) =
(
δzQn+1,Θn+1) +

(
f n+1,Θn+1) + R, (18)

where

R =
(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)
δzΘ

n+1
i1+ 1

2
�z. (19)

Applying the definition, we have

R =
(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)Dn+1
i1+ 1

2
δQn+1

i1+ 1
2

Dn+1
i1+ 1

2

�z

=
(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)Dn+1
i1+ 1

2
δΘn+1

i1+ 1
2

Dn+1
i1+ 1

2

�z =
(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)Qn+1
i1+ 1

2
+ Kn+1

i1+ 1
2

Dn+1
i1+ 1

2

�z

=
�z

Dn+1
i1+ 1

2

(∣
∣Qn+1

i1+ 1
2

∣
∣2 –

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) –

�z
Dn+1

i1+ 1
2

(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)
Q̃n+1

i1+ 1
2

+
�z

Dn+1
i1+ 1

2

(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)
Kn+1

i1+ 1
2

. (20)

Subtracting the first equation from the second equation of Eqs. (16), it is easy to obtain

δzΘ
n+1
i1+ 1

2
– δzΘ

n
i1+ 1

2

�t
=

Qn+1
i1+ 3

2
– 2Q̃n+1

i1+ 1
2

+ Qn+1
i1– 1

2

(�z)2 + δzf n+1
i1+ 1

2
. (21)

Multiplying both sides of (21) with Dn+1
i1+ 1

2
, we get

Dn+1
i1+ 1

2
δzΘ

n+1
i1+ 1

2
– Dn

i1+ 1
2
δzΘ

n
i1+ 1

2

�t

= ∂tDn+1
i1+ 1

2
δzΘ

n
i1+ 1

2
+ Dn+1

i1+ 1
2

Qn+1
i1+ 3

2
– 2Q̃n+1

i1+ 1
2

+ Qn+1
i1– 1

2

(�z)2 + Dn+1
i1+ 1

2
δzf n+1

i1+ 1
2

. (22)
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Adding both sides of (22) with –∂tKn+1
i1+ 1

2
, we have

Qn+1
i1+ 1

2
– Qn

i1+ 1
2

�t
= Dn+1

i1+ 1
2

Qn+1
i1+ 3

2
– 2Q̃n+1

i1+ 1
2

+ Qn+1
i1– 1

2

(�z)2 + ∂tDn+1
i1+ 1

2
δzΘ

n
i1+ 1

2

– ∂tKn+1
i1+ 1

2
+ Dn+1

i1+ 1
2
δzf n+1

i1+ 1
2

. (23)

Subtracting (2) from (23), we have

Qn+1
i1+ 1

2
– Q̃n+1

i1+ 1
2

= Dn+1
i1+ 1

2

�t
(�z)2

(
Qn+1

i1– 1
2

+ Qn+1
i1+ 3

2

)
– Dn+1

i1+ 1
2

�t
(�z)2

(
Qn

i1– 1
2

+ Qn
i1+ 3

2

)
(24)

and

(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)
Q̃n+1

i1+ 1
2

=
(

Dn+1
i1+ 1

2

�t
(�z)2

(
Qn+1

i1– 1
2

+ Qn+1
i1+ 3

2

)
– Dn+1

i1+ 1
2

�t
(�z)2

(
Qn

i1– 1
2

+ Qn
i1+ 3

2

)
)

Q̃n+1
i1+ 1

2
. (25)

Applying the complete square formula, we get

�t
(�z)2 Qn+1

i1– 1
2

Q̃n+1
i1+ 1

2
=

�t
2(�z)2

(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) –

�t
2

( Q̃n+1
i1+ 1

2
– Qn+1

i1– 1
2

�z

)2

. (26)

By the first equation of Eqs. (16), we have

( Q̃n+1
i1+ 1

2
– Qn+1

i1– 1
2

�z

)2

=
(

f n+1
i1 –

Θn+1
i1 – Θn

i1
�t

)2

=
(

∣
∣f n+1

i1

∣
∣2 – 2f n+1

i1

Θn+1
i1 – Θn

i1
�t

+
∣
∣
∣
∣

Θn+1
i1 – Θn

i1
�t

∣
∣
∣
∣

2)

=
(

∣
∣f n+1

i1

∣
∣2 – 2f n+1

i1

(

f n+1
i1 +

Q̃n+1
i1+ 1

2
– Qn+1

i1– 1
2

�z

)

+
∣
∣
∣
∣

Θn+1
i1 – Θn

i1
�t

∣
∣
∣
∣

2)

=
∣
∣
∣
∣

Θn+1
i1 – Θn

i1
�t

∣
∣
∣
∣

2

–
∣
∣f n+1

i1

∣
∣2 – 2

Q̃n+1
i1+ 1

2
– Qn+1

i1– 1
2

�z
f n+1
i1 . (27)

By (26) and (27), we have

�t
(�z)2 Qn+1

i1– 1
2

Q̃n+1
i1+ 1

2
=

�t
2(�z)2

(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) –

�t
2

∣
∣
∣
∣

Θn+1
i1 – Θn

i1
�t

∣
∣
∣
∣

2

+
�t
2

∣
∣f n+1

i1

∣
∣2 +

�t
�z

(
Q̃n+1

i1+ 1
2

– Qn+1
i1– 1

2

)
f n+1
i1 . (28)

Similarly, we have

�t
(�z)2 Qn+1

i1+ 3
2

Q̃n+1
i1+ 1

2
=

�t
2(�z)2

(∣
∣Qn+1

i1+ 3
2

∣
∣2 +

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) –

�t
2

∣
∣
∣
∣

Θn+1
i1+1 – Θn

i1+1

�t

∣
∣
∣
∣

2

+
�t
2

∣
∣f n+1

i1+1
∣
∣2 +

�t
�z

(
Qn+1

i1+ 3
2

– Q̃n+1
i1+ 1

2

)
f n+1
i1+1. (29)
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By (28)–(29), we can obtain

–1
Dn+1

i1+ 1
2

(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)
Q̃n+1

i1+ 1
2

=
�t
2

(∣
∣
∣
∣

Θn+1
i1 – Θn

i1
�t

∣
∣
∣
∣

2

+
∣
∣
∣
∣

Θn+1
i1+1 – Θn

i1+1

�t

∣
∣
∣
∣

2

–
∣
∣f n+1

i1

∣
∣2 –

∣
∣f n+1

i1+1
∣
∣2

)

–
�t

2(�z)2

(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Qn+1

i1+ 3
2

∣
∣2 + 2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2)

–
�t
�z

(
f n+1
i1

(
Q̃n+1

i1+ 1
2

– Qn+1
i1– 1

2

)
+ f n+1

i1+1
(
Qn+1

i1+ 3
2

– Q̃n+1
i1+ 1

2

))

+
�t

(�z)2

(
Qn

i1– 1
2

+ Qn
i1+ 3

2

)
Q̃n+1

i1+ 1
2

. (30)

Applying the ε-inequality for the third terms of Eq. (30), we have

�t
�z

(
f n+1
i1

(
Q̃n+1

i1+ 1
2 ,j – Qn+1

i1– 1
2

)
+ f n+1

i1+1
(
Qn+1

i1+ 3
2

– Q̃n+1
i1+ 1

2

))

≤ ε
(∣
∣Qn+1

i1+ 3
2

∣
∣2 +

∣
∣Qn+1

i1– 1
2

∣
∣2 + 2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) + M

(�t)2

(�z)2

(∣
∣f n+1

i1

∣
∣2 +

∣
∣f n+1

i1+1
∣
∣2). (31)

For the fourth terms of Eq. (30), by the Hölder inequality, we obtain

�t
(�z)2

(
Qn

i1– 1
2

+ Qn
i1+ 3

2

)
Q̃n+1

i1+ 1
2

≤ �t
2(�z)2

(∣
∣Qn

i1– 1
2

∣
∣2 +

∣
∣Qn

i1+ 3
2

∣
∣2 + 2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2). (32)

Substituting (30)–(32) into (20), we obtain

R ≤ �z
Dn+1

i1+ 1
2

(∣
∣Qn+1

i1+ 1
2

∣
∣2 –

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) +

�z
Dn+1

i1+ 1
2

(
Qn+1

i1+ 1
2

– Q̃n+1
i1+ 1

2

)
Kn+1

i1+ 1
2

+
�t�z

2

(∣
∣
∣
∣

Θn+1
i1 – Θn

i1
�t

∣
∣
∣
∣

2

+
∣
∣
∣
∣

Θn+1
i1+1 – Θn

i1+1

�t

∣
∣
∣
∣

2)

–
�t

2�z
(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Qn+1

i1+ 3
2

∣
∣2 –

(∣
∣Qn

i1– 1
2

∣
∣2 +

∣
∣Qn

i1+ 3
2

∣
∣2))

+ ε
(∣
∣Qn+1

i1+ 3
2

∣
∣2 +

∣
∣Qn+1

i1– 1
2

∣
∣2 + 2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2)

�x + M
(�t)2

�z
(∣
∣f n+1

i1

∣
∣2 +

∣
∣f n+1

i1+1
∣
∣2). (33)

Substituting (33) into Eq. (18) and applying Lemma 1, we have

1
2�t

(∥
∥Θn+1∥∥2 –

∥
∥Θn∥∥2) +

∥
∥Qn+1∥∥2

1
D1

+
�t

2�z
(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Qn+1

i1+ 3
2

∣
∣2 –

(∣
∣Qn

i1– 1
2

∣
∣2 +

∣
∣Qn

i1+ 3
2

∣
∣2))

≤ �z
Dn+1

i1+ 1
2

(∣
∣Qn+1

i1+ 1
2

∣
∣2 –

∣
∣Q̃n+1

i1+ 1
2

∣
∣2) –

I–1∑

i=1,i�=i1

�z
Di+ 1

2

Qn+1
i+ 1

2
Kn+1

i+ 1
2

–
�z

Di+ 1
2

Q̃n+1
i1+ 1

2
Kn+1

i1+ 1
2

+ ε
(∣
∣Qn+1

i1+ 3
2

∣
∣2 +

∣
∣Qn+1

i1– 1
2

∣
∣2 + 2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2)

�z

+ M
(�t)2

�z
(∣
∣f n+1

i1

∣
∣2 +

∣
∣f n+1

i1+1
∣
∣2) +

(
f n+1,Θn+1). (34)
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Applying the Hölder inequality, we further obtain

1
2�t

(∥
∥Θn+1∥∥2 –

∥
∥Θn∥∥2) +

1
2
∥
∥Qn+1∥∥2

1
D1

–
�z

2Dn+1
i1+ 1

2

(∣
∣Qn+1

i1+ 1
2

∣
∣2 –

∣
∣Q̃n+1

i1+ 1
2

∣
∣2)

+
�t

2�z
(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Qn+1

i1+ 3
2

∣
∣2 –

(∣
∣Qn

i1– 1
2

∣
∣2 +

∣
∣Qn

i1+ 3
2

∣
∣2))

≤ 1
2
∥
∥Θn+1∥∥2 +

1
2
∥
∥Kn+1∥∥2

1
D1

+
1
2
∥
∥f n+1∥∥2

+ ε
(∣
∣Qn+1

i1+ 3
2

∣
∣2 +

∣
∣Qn+1

i1– 1
2

∣
∣2 + 2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2)

�x + M
(�t)2

�z
(∣
∣f n+1

i1

∣
∣2 +

∣
∣f n+1

i1+1
∣
∣2). (35)

Letting ε ≤ 1
8 , we have

1
2�t

(∥
∥Θn+1∥∥2 –

∥
∥Θn∥∥2) +

I–1∑

i=1,i�=i1

1
4Dn+1

i+ 1
2

∣
∣Qn+1

i+ 1
2

∣
∣2

�z +
1

4Dn+1
i1+ 1

2

∣
∣Q̃n+1

i1+ 1
2

∣
∣2

�z

+
�t

2�z
(∣
∣Qn+1

i1– 1
2

∣
∣2 +

∣
∣Qn+1

i1+ 3
2

∣
∣2 –

(∣
∣Qn

i1– 1
2

∣
∣2 +

∣
∣Qn

i1+ 3
2

∣
∣2))

≤ 1
2
∥
∥Θn+1∥∥2 +

1
2
∥
∥Kn+1∥∥2

1
D1

+
1
2
∥
∥f n+1∥∥2 + M

(�t)2

�z
(∣
∣f n+1

i1

∣
∣2 +

∣
∣f n+1

i1+1
∣
∣2). (36)

Thus (17) is proved. �

Summing (18) up with respect to n and applying the boundary condition, then we will
obtain the stability theorem

Theorem 2 (Stability) The scheme (2)–(6), is unconditionally stable in the sense of discrete
L2-norm, i.e.,

∥
∥Θn+1∥∥2 ≤ ∥

∥Θ0∥∥2 + �t
n∑

l=0

(∥
∥Θ l+1∥∥2 +

∥
∥Kl+1∥∥2

1
D1

+
∥
∥f l+1∥∥2)

+ M�t
n∑

l=0

(�t)2

�z
(∣
∣f l+1

i1

∣
∣2 +

∣
∣f l+1

i1+1
∣
∣2), (37)

where M > 0 is a positive constant.

Remark 4.1 From Theorem 2, our scheme is proved to be unconditionally stable, and de-
pendent of solution of the problem on the initial condition θ0, absorption term Sr and
hydraulic conductivity K(θ ).

5 Error estimation
In this section, we will analyze the convergence and prove error estimate of the mass-
conserving domain decomposition scheme in discrete L2-norm. Let θn

i = θ (zi, tn), θ̄n
i+ 1

2
=

θn
i +θn

i+1
2 and the fluxes qn

i+ 1
2

= D(θ̄n
i+ 1

2
)δzθ

n
i+ 1

2
– K(θ̄n

i+ 1
2

).
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5.1 Truncation errors
We first give the truncation error equations of the scheme (2)–(6). Assume that θ ∈
C0([0, T]; C4(Ω)) ∩ C2([0, T]; C0(Ω)). We have the following truncation error equations:

θn+1
i – θn

i
�t

= δzqn+1
i + f n+1

i + on+1
i , (38)

where o = O(�t + (�z)2). Now, we give the simple proof.

Proof From (38), we have

on+1
i =

θn+1
i – θn

i
�t

–
qn+1

i+ 1
2

– qn+1
i– 1

2

�z
– f n+1

i . (39)

Applying the Taylor formula for the first term of the right-hand side of (39), i.e.,

θn+1
i – θn

i
�t

= (θt)n+1
i –

�t
2

(θtt)n1
i . (40)

For the second term of (39), we have

qn+1
i+ 1

2
= D

(
θ̄n+1

i+ 1
2

)θn+1
i+1 – θn+1

i
�z

– K
(
θ̄n+1

i+ 1
2

)

= D
(
θ̄n+1

i+ 1
2

)
(

(θz)n+1
i+ 1

2
+

(�z)2

24
(θzzz)n+1

t0

)

– K
(
θ̄n+1

i+ 1
2

)

=
(
D

(
θn+1

i+ 1
2

)
+ Dθ

(
θ̄n+1

i+ 1
2

– θn+1
i+ 1

2

))
(

(θz)n+1
i+ 1

2
+

(�z)2

24
(θzzz)n+1

t0

)

–
(
K

(
θn+1

i+ 1
2

)
+ Kθ

(
θ̄n+1

i+ 1
2

– θn+1
i+ 1

2

))

=
(

D
(
θn+1

i+ 1
2

)
+

(�z)2

8
Dθ (θzz)n+1

t1

)(

(θz)n+1
i+ 1

2
+

(�z)2

24
(θzzz)n+1

t0

)

–
(

K
(
θn+1

i+ 1
2

)
+

(�z)2

8
Kθ (θzz)n+1

t2

)

= D
(
θn+1

i+ 1
2

)
(θz)n+1

i+ 1
2

– K
(
θn+1

i+ 1
2

)
+ O

(
(�z)2 + (�z)4). (41)

Similarly, we have

qn+1
i– 1

2
= D

(
θn+1

i– 1
2

)
(θz)n+1

i– 1
2

– K
(
θn+1

i– 1
2

)
+ O

(
(�z)2 + (�z)4). (42)

Applying the Taylor formula, we have

K
(
θn+1

i+ 1
2

)
= K

(
θn+1

i
)

+ Kθ

(
θn+1

i+ 1
2

– θn+1
i

)
+

1
2

Kθθ

(
θn+1

i+ 1
2

– θn+1
i

)2

= K
(
θn+1

i
)

+ Kθ

(
�z
2

(θz)n+1
i

)

+
(�z)2

8
(θzz)n+1

t3 ) +
1
2

Kθθ

(
�z
2

(θz)n+1
t4

)

)2

= K
(
θn+1

i
)

+
�z
2

(Kθ θz)n+1
i + O

(
(�z)2) (43)
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and

K
(
θn+1

i– 1
2

)
= K

(
θn+1

i
)

–
�z
2

(Kθ θz)n+1
i + O

(
(�z)2). (44)

By (41)–(44), we have

qn+1
i+ 1

2
– qn+1

i– 1
2

�z
=

(
∂

∂z

(

D(θ )
∂θ

∂z

))n+1

i
– (Kθ θz)n+1

i

+
(�z)2

24

(
∂3

∂z3

(

D(θ )
∂θ

∂z

))n+1

t3

+ O
(
(�z)2). (45)

Substituting (40) and (45) into (39), it follows that

on+1
i = (θt)n+1

i –
(

∂

∂z

(

D(θ )
∂θ

∂z

))n+1

i
+ (Kθ θz)n+1

i – f n+1
i + O

(
�t + (�z)2)

=
(

θt –
∂

∂z

(

D(θ )
∂θ

∂z

)

+
∂K
∂z

– f
)n+1

i
+ O

(
�t + (�z)2)

= O
(
�t + (�z)2). (46)

Similarly, if θ ∈ C0([0, T]; C5(Ω)) ∩ C2([0, T]; C1(Ω)), we obtain δzon+1
i+ 1

2
= O(�t + (�z)2).

�

5.2 Convergence
Let

ρn
i = θn

i – Θn
i , ρn

i+ 1
2

= θ̄n
i+ 1

2
– Θn

i+ 1
2

,

ζ n
i+ 1

2
= qn

i+ 1
2

– Qn
i+ 1

2
, i �= i1, ζ̃ n

i1+ 1
2

= qn
i1+ 1

2
– Q̃n

i1+ 1
2

,
(47)

for i �= i1, i.e.,

ζ n
i+ 1

2
= D

(
θ̄n

i+ 1
2

)
δzθ

n
i+ 1

2
– K

(
θ̄n

i+ 1
2

)
–

(
D

(
Θn

i+ 1
2

)
δzΘ

n
i+ 1

2
– K

(
Θn

i+ 1
2

))

=
(
D

(
θ̄n

i+ 1
2

)
– D

(
Θn

i+ 1
2

))
δzθ

n
i+ 1

2
+ D

(
Θn

i+ 1
2

)
δzρ

n
i+ 1

2
–

(
K

(
θ̄n

i+ 1
2

)
– K

(
Θn

i+ 1
2

))

= D
(
Θn

i+ 1
2

)
δzρ

n
i+ 1

2
+ Dθ δzθ

n
i+ 1

2
ρn

i+ 1
2

– Kθρ
n
i+ 1

2
(48)

and, when i = i1, we have

ζ̃ n+1
i1+ 1

2
= ζ n

i1+ 1
2

+ �tD
(
Θn+1

i1+ 1
2

)ζ n
i1– 1

2
– 2ζ n+1

i1+ 1
2

+ ζ n
i1+ 3

2

(�z)2 + �t∂tD
(
Θn+1

i1+ 1
2

)
δzρ

n
i1+ 1

2

– �t∂t
(
Kθρ

n+1
i1+ 1

2

)
+ O

(

(�t)2 + �t(�z)2 +
(�t)2

(�z)2

)

+ �t
(
Dθ δ

2
z qn+1

i1+ 1
2
ρn+1

i1+ 1
2

+ Dθ δzf n+1
i1+ 1

2
ρn+1

i1+ 1
2

+ ∂t
(
Dθρ

n+1
i1+ 1

2

)
δzθ

n
i1+ 1

2

)
. (49)

Next, we give the proof of (49).
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Proof Taking the derivative of q with respect to the time t, we have

∂q
∂t

= D(θ )δz

(
∂θ

∂t

)

+
∂(D(θ ))

∂t
δzθ –

∂(K(θ ))
∂t

= D(θ )δz

(
∂q
∂z

+ f
)

+
∂(D(θ ))

∂t
δzθ –

∂(K(θ ))
∂t

. (50)

By the Taylor formula, we have

qn+1
i1+ 1

2
– qn

i1+ 1
2

= �tD
(
θn+1

i1+ 1
2

)
δ2

z qn+1
i1+ 1

2
+ �tD

(
θn+1

i1+ 1
2

)
δzf n+1

i1+ 1
2

+ �t∂tD
(
θn+1

i1+ 1
2

)
δzθ

n
i1+ 1

2

– �t∂tK
(
θn+1

i1+ 1
2

)
+ O

(
(�t)2 + �t(�z)2)

= �tD
(
Θn+1

i1+ 1
2

)
δ2

z qn+1
i1+ 1

2
+ �tD

(
Θn+1

i1+ 1
2

)
δf n+1

i1+ 1
2

+ �t∂tD
(
Θn+1

i1+ 1
2

)
δzθ

n
i1+ 1

2

– �t∂tK
(
θn+1

i1+ 1
2

)
+ O

(
(�t)2 + �t(�z)2)

+ �tDθ δ
2
z qn+1

i1+ 1
2
ρn+1

i1+ 1
2

+ �tDθ δzf n+1
i1+ 1

2
ρn+1

i1+ 1
2

+ �t∂t
(
Dθρ

n+1
i1+ 1

2

)
δzθ

n
i1+ 1

2

= �tD
(
Θn+1

i1+ 1
2

)qn
i1– 1

2
– 2qn+1

i1+ 1
2

+ qn
i1+ 3

2

(�z)2 + �tD
(
Θn+1

i1+ 1
2

)
δzf n+1

i1+ 1
2

+ O
(

(�t)2

(�z)2

)

+ �t∂tD
(
Θn+1

i1+ 1
2

)
δzθ

n
i1+ 1

2
– �t∂tK

(
θn+1

i1+ 1
2

)
+ O

(
(�t)2 + �t(�z)2)

+ �tDθ δ
2
z qn+1

i1+ 1
2
ρn+1

i1+ 1
2

+ �tDθ δzf n+1
i1+ 1

2
ρn+1

i1+ 1
2

+ �t∂t
(
Dθρ

n+1
i1+ 1

2

)
δzθ

n
i1+ 1

2
, (51)

where we assume that ‖Θ‖∞ ≤ C. Subtracting (2) from (51), we complete the proof. �

Subtracting the first equations of Eqs. (16) from Eqs. (39), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρn+1
i –ρn

i
�t =

ζn+1
i+ 1

2
–ζn+1

i– 1
2

�z + on+1
i +

ζ̃n+1
i1+ 1

2
–ζn+1

i1+ 1
2

�z , i = i1,

ρn+1
i –ρn

i
�t =

ζn+1
i+ 1

2
–ζn+1

i– 1
2

�z + on+1
i +

ζn+1
i1+ 1

2
–ζ̃n+1

i1+ 1
2

�z , i = i1 + 1,

ρn+1
i –ρn

i
�t =

ζn+1
i+ 1

2
–ζn+1

i+ 1
2

�z + on+1
i , i �= i1, i1 + 1.

(52)

By (48), (49) and (52), we have

ζ n+1
i1+ 1

2
– ζ̃ n+1

i1+ 1
2

= D
(
Θn+1

i1+ 1
2

) �t
(�z)2

(
ζ n+1

i1– 1
2

+ ζ n+1
i1+ 3

2

)
– D

(
Θn+1

i1+ 1
2

) �t
(�z)2

(
ζ n

i1– 1
2

+ ζ n
i1+ 3

2

)

+ �tδzon+1
i+ 1

2
+ O

(

(�t)2 + �t(�z)2 +
(�t)2

(�z)2

)

– (�t)2∂t
(
Dθρ

n+1
i1+ 1

2

)(
∂tδzθ

n+1
i1+ 1

2

)

+ �t
(
Dθ δ

2
z qn+1

i1+ 1
2

+ Dθ δzf n+1
i1+ 1

2
+ ∂t

(
δzθ

n+1
i1+ 1

2

)
Dθ

)
ρn+1

i1+ 1
2

. (53)

Let ρ = {ρi} and ζ = {ζi+ 1
2
} be the solution of Scheme (52). Similar to the proof of Lemma 2,

we obtain the following convergence.
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Theorem 3 Assume that θ ∈ C0([0, T]; C5(Ω)) ∩ C2([0, T]; C1(Ω)) and satisfy the condi-
tions (I)–(III). We have

∥
∥θn – Θn∥∥ ≤ M

(

�t + (�z)2 +
(�t)2

(�z) 3
2

)

, (54)

for n ≥ 1, where M > 0 is a constant.

Next, applying the inverse estimation, we give the estimation of ‖Θ‖∞ as

‖Θ‖∞ ≤ ‖θ‖∞ + ‖θ – Θ‖∞ ≤ ‖θ‖∞ + (�z)– 1
2 ‖θ – Θ‖

≤ θs + M
(

�t
(�z) 1

2
+ (�z)

3
2 +

(�t)2

(�z)2

)

. (55)

If �t = o(�z), we have ‖Θ‖∞ → θs(�z → 0).

Remark 5.1 From Theorem 3, it is clear that our scheme is convergent of O(�t + (�z)2 +
(�t)2

(�z)
3
2

). It reaches the first-order error of O(�t) in time step under mesh ratios �z = (�t) 2
3

and first-order error of O(�z)2 in space step under mesh ratios �t = (�z)2.

6 Numerical experiments
We present numerical experiments to test our scheme to meet the properties as conserva-
tion, stability and error estimation in the first experiment. In the second experiment, we
will test our efficiency.

6.1 Experiment 1
The nonlinear diffusion equations are described as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂θ
∂t – ∂

∂z (D(θ ) ∂θ
∂z ) = e–2D0t cos 2x, (x, t) ∈ (0,π ) × (0, T),

D(θ ) ∂θ
∂z = 0, if z = 0 or z = π , t > 0,

θ (z, 0) = cos x, x ∈ (0,π ),

(56)

Let the diffusion coefficient D(θ ) = D0 +θ . We can solve the exact solution u = e–D0t cos x.
Assume that the domain is divided into two sub-domains in the following tables.

The space orders of convergence and mass errors of the scheme are shown in Table 1
and we take �t = 1

10,000 . Let mass error = |MassN – Mass0|.

Mass0 =
N∑

i=1

Θ0
i h, MassN =

N∑

i=1

Θn
i h + �t

n–1∑

l=0

f l+1
i h. (57)

From Table 1, we can find that the space-order convergence is of second order in L2-norm.
The errors of mass reach the accuracy of 10–15, i.e. the machine precision. We test the time
orders of convergence by taking �t = 10

π2 h2 in Table 2. It is clear that the scheme is of first-
order convergence in time step and shows mass conservation.

In Table 3, we give the stability condition and mass error of the scheme, where h = π/100.
From Table 3, it is clear that we can find when �t = 1

100 , the stability condition Dmax
�t
h2 = 30

and our scheme is still stable. Almost, our scheme keeps stable with the time increasing.
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Table 1 The space order of convergence and mass errors of the scheme

t h π /10 π /20 π /30 π /40

0.1 L2-norm- 2.7344E–3 6.8471E–4 3.0517E–4 1.7291E–4
order – 1.9977 1.9931 1.9747
mass error 5.6209E–15 3.0334E–15 4.1574E–16 1.100E–15

0.2 L2-norm- 3.5663E–3 8.9895E–4 4.0760E–4 2.3666E–4
order – 1.9881 1.9507 1.8898
mass error 4.4101E–15 6.2306E–15 3.7128E–16 2.9389E–15

0.5 L2-norm- 3.7909E–3 9.7838E–4 4.5906E–4 2.7762E–4
order – 1.9541 1.8663 1.7482
mass error 4.3134E–15 4.8924E–15 7.4806E–16 6.0204E–15

Table 2 The time order of convergence and mass errors of the scheme

t �t 1/250 1/1000 1/2000 1/4000

0.1 L2-norm- 1.0671E–3 2.5095E–4 1.2075E–4 6.3302E–5
order – 1.0441 1.0554 0.9317
mass error 1.2228E–15 2.6583E–16 1.3142E–16 1.8414E–15

0.2 L2-norm- 1.4099E–3 3.7218E–4 1.7956E–4 9.7289E–5
order – 0.9608 1.0515 0.8841
mass error 5.4347E–16 1.3609E–15 1.2970E–15 2.1003E–16

0.5 L2-norm- 1.5520E–3 4.5392E–4 2.1815E–4 1.2226E–4
order – 0.8868 1.0571 0.8354
mass error 1.4268E–15 3.9946E–15 2.2446E–16 1.0600E–15

Table 3 The stability and mass errors of the scheme

t �t 1/100 1/200 1/500 1/1000

0.1 L2-norm- 8.9592E–3 2.1893E–3 5.3842E–4 2.5095E–4
mass error 4.0854E–15 1.7581E–15 2.1940E–15 2.6583E–16

0.2 L2-norm- 8.0124E–3 2.1446E–3 7.0027E–4 3.7218E–4
mass error 6.2661E–15 2.3825E–15 1.6151E–15 1.3609E–15

0.5 L2-norm- 4.9804E–3 1.2775E–3 7.4550E–4 4.5391E–2
mass error 3.0825E–15 4.4886E–15 6.4891E–17 3.9946E–15

Table 4 The space order of convergence and mass errors of the scheme for u0(x) = cos 4x

t h π /10 π /20 π /30 π /40

0.01 L2-norm- 5.6678E–2 1.3473E–2 5.9676E–3 3.3558E–3
order – 2.0726 2.0085 2.0010
mass error 6.7035E–15 4.1767E–15 5.6799E–18 1.5305E–15

0.2 L2-norm- 6.8241E–2 1.5387E–2 6.7852E–3 3.8226E–3
order – 2.1489 2.0194 1.9946
mass error 7.9878E–15 2.4906E–15 2.2245E–15 1.8313E–15

0.5 L2-norm- 5.4733E–2 1.3158E–2 5.8475E–3 3.3109E–3
order – 2.0565 2.0002 1.9772
mass error 8.4530E–15 9.1308E–15 4.9728E–15 1.7777E–15

In general, the time order of convergence of the scheme is tested for the high frequency
problem for the initial condition u0(x) = cos 4x, where f = 16e–64t cos 8x and the time step
� = 1

100,000 . In Table 4, the numerical results show our scheme can work efficiently for the
high frequency problem.
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6.2 Experiment 2
In the following, we will simulate the model (1), where the absorption rate of root zone
Sr = 0, the infiltration or evaporation rate D(θ ) = – bKsφs

θs
( θ
θs

)b+2 and K(θ ) = Ks( θ
θs

)2b+3, θs =
0.54, φs = –200 mm, Ks = 3.2 × 10–3 mm/s, b = 7.6, L = 100 cm. The initial conditions are

θ (z, 0) =

⎧
⎨

⎩

0.54 × 0.419 + 0.54 × (1 – 0.419) × 10–z
z , z ∈ [0, 10],

0.54 × 0.419, z ∈ [10, 100].
(58)

The boundary conditions are

⎧
⎨

⎩

θ = 0.54, z = 0,
∂θ
∂z = 0, z = L.

(59)

The space step size is h = 2 mm and the time step size is �t = 36 s. The surface of the water
content at t = 10, 20, 30 and 40 h are given as follows. From Fig. 1, when the water content
crosses the interface of the domain, there is no numerical oscillation and our scheme can
simulate the problem well.

Figure 1 The surface plots of the water content at t = 10, 20, 30, 40 h
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Table 5 The space order of convergence and mass errors of the scheme

t h π /10 π /20 π /40 π /60

t = 0.01 L2-norm- 7.2729E–4 1.8295E–4 4.5442E–5 1.9918E–5
order – 1.9911 2.0094 2.0342
mass error 5.9008E–15 1.9856E–15 1.8239E–16 3.7283E–16

t = 0.02 L2-norm- 1.3843E–3 3.4802E–4 8.6450E–5 3.7907E–5
order – 1.9919 2.0092 2.0333
mass error 1.5327E–14 3.6242E–15 1.4922E–15 4.8240E–16

t = 0.05 L2-norm- 3.0027E–3 7.5398E–4 1.8734E–4 8.2224E–5
order – 1.9937 2.0089 2.0309
mass error 2.0386E–14 2.5691E–15 1.7195E–15 1.8908E–17

Table 6 The time order of convergence and mass errors of the scheme

t �t 1/250 1/1000 1/4000 1/16000

0.01 L2-norm- 6.0696E–3 7.0985E–5 1.7420E–5 4.3418E–6
order – 3.2090 1.0134 1.0022
mass error 2.3822E–16 7.5664E–17 6.3878E–17 2.4554E–16

0.02 L2-norm- 5.2884E–4 1.3012E–4 3.2490E–5 8.1346E–6
order – 1.0115 1.0009 0.9989
mass error 2.4307E–16 3.8470E–16 6.4907E–17 5.0431E–16

0.05 L2-norm- 5.4237E–3 2.7173E–4 6.8298E–5 1.7125E–5
order – 2.1595 0.9961 0.9979
mass error 4.2901E–16 4.4524E–16 1.0077E–16 1.5782E–15

6.3 Experiment 3
In the subsection, two-dimensional nonlinear diffusion equations are considered as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂θ
∂t – ∇ · (D∇θ ) = e–4t(cos2 y cos 2x + cos2 x cos 2y),

(x, y, t) ∈ [0,π ] × [0,π ] × (0, T),

D(θ )∇θ · �n = 0, x ∈ ∂Ω ,

θ (x, y, 0) = cos x cos y, (x, y) ∈ Ω ,

(60)

where D = 1 + θ . The operator splitting technique is used to solve the two-dimensional
equations, (see [28, 29, 34]). In Tables 5 and 6, we take the uniform mesh partitions and
the domain is divided into 2 × 2 sub-domains. The time step �t is taken as 1/100,000. and
the space step h is taken as π/10, π/20, π/40 and π/60. We can find that our scheme is of
second-order convergence in space. In Table 6, we take �t = 10

π2 h2. By Table 6, we can find
that the time-convergence order is first order when the time step �t becomes small.

7 Conclusion
By computing the interface flux scheme by the semi-implicit scheme, an efficient mass
conservative domain decomposition method is developed for solving the unsaturated soil
water flow. By introducing the definition of the whole fluxes q = D(θ ) ∂θ

∂z – K(θ ), and com-
puting the interface fluxes explicitly on the interface, our scheme keeps mass conserva-
tion. We prove strictly our scheme meet mass conservation and unconditional stability.
The scheme has the optional error estimate of O(�t + (�z)2) in L2-norm by the numerical
experiment.
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