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Abstract
This article deals with the fractional multi-dimensional Burgers equation in the sense
of the Caputo fractional derivative. An approximate analytical solution of the problem
is established by the homotopy perturbation method (HPM). Furthermore, the
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1 Introduction
The fractional calculus, a generality of arbitrary-order differentiation and integration, has
been an excellent instrument for the rational explanation of the real world problems of
science and engineering (for more details, see [23]). Furthermore, some publications ([1,
10], and [31]) suggest that the fractional calculus is the same as a memory function, which
is a powerful tool for describing the long-term state of the process dependent not only on
the current conditions but also on all of the historical conditions. These are the reasons
why fractional calculus has interested many researchers. Many applications of fractional
calculus arise in physics, biology, finance, and fluid mechanics, see [7, 15, 16, 26], and [32].

The Burgers equation is a simplified form of the Navier–Stokes equation. It is well known
that the Navier–Stokes equations describe the physics of many phenomena of scientific
and engineering interest. They may be used to model the weather prediction [22], fluid
flow in a pipe [11], air flow around a wing of aircraft [9], discharge of the granular silo [28]
and [33], etc. The Burgers equation has appeared frequently in various areas of applied
mathematics fields such as acoustic transmission, shockwave, and gas dynamics (refer to
[6, 8], and [18]). A classical Burgers equation is determined by the following form:

∂u
∂t

+ εu
∂u
∂x

= η
∂2u
∂x2 , (1)

where ε, η are constants. From [13, 17], and [27], the analytical solution of the Burgers
equation can be obtained by using the Backlund transformation method, the tanh-coth
method, the Hopf–Cole transformation, and the separation of variables method.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2197-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2197-y&domain=pdf
http://orcid.org/0000-0003-0605-0044
mailto:panumart.s@sci.kmutnb.ac.th


Sripacharasakullert et al. Advances in Difference Equations        (2019) 2019:252 Page 2 of 12

In 2006, Momani [21] modified the one-dimensional Burgers equation by substituting
the Caputo fractional derivative for the time and the space derivatives. He showed the ana-
lytical solutions for the generalized Burgers equation by Adomian decomposition method.

In 2014, Gomez [14] considered the Jumaries modified Riemann–Liouville fractional
derivative Burgers equation. He obtained the solution for the fractional Burgers equation
by using the fractional complex transform.

In 2017, Al-Sharif and Saad [25] applied the variational iteration method to solve the
time and space-time fractional Burgers equation for various initial conditions.

In this paper, we study the n-dimensional Burgers equation in which the time and space
derivatives are replaced by the Caputo fractional derivative. The modified Burgers equa-
tion is called fractional multi-dimensional Burgers equation. The HPM has successfully
been applied to solve many linear and nonlinear differential equations, see [2–5, 19, 29],
etc. It is well known that the homotopy perturbation method (HPM) is an effective method
which provides a simple solution without any assumption of linearization [12] and [20],
Therefore, we use the HPM technique to obtain the approximate analytical solution for
the fractional multi-dimensional Burgers equation.

The remaining part of the paper is organized as follows. Section 2 deals with the def-
initions and the properties of the fractional integration and differentiation. The idea for
applying the HPM to the fractional multi-dimensional Burgers equation is described in
Sect. 3. The existence of solutions for the fractional Burgers equation and the conver-
gence analysis of the HPM are established in Sects. 4 and 5, respectively. The approxi-
mate analytical solution for the fractional multi-dimensional Burgers equation in 1, 2, and
3 dimensions is shown in Sect. 6. The last section is about the conclusion of this arti-
cle.

2 Fractional calculus
In this section, we give the definitions and some properties of fractional-order integration
and differentiation used throughout this paper.

Definition 2.1 ([24]) The Riemann–Liouville fractional integral operator of order 0 < α <
1 for a function f : [0,∞) → R is defined by

Jα
t f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds,

where Γ denotes the gamma function.

Consequently, some properties of the Riemann–Liouville fractional integral operator
are as follows: for any α,ρ ≥ 0 and β > –1,

(1) JαJρ f (t) = Jα+ρ f (t), (2) JαJρ f (t) = JρJαf (t)

(3) Jαtβ =
Γ (1 + β)

Γ (1 + β + α)
tα+β .

Definition 2.2 ([24]) The Caputo fractional derivative operator of order 0 < α < 1 for a
function f : [0,∞) → R is given by

Dα
t f (t) =

1
Γ (1 – α)

∫ t

0
(t – s)–αf ′(s) ds.
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We next give some properties of the Caputo derivative.

Lemma 2.3 Let f be a continuous function on [0, a] with a > 0, and let 0 < α ≤ 1 and
β > α – 1, then

(1) Dα
t c = 0 for a constant c; (2) Jα

t Dα
t f (t) = f (t) – f (0);

(3) Dα
t Jα

t f (t) = f (t); (4) Dα
t tβ =

Γ (1 + β)
Γ (1 + β – α)

tβ–α .

3 The idea of the HPM
Let Ω ⊆ R

n be an opened and bounded domain, and let T be a positive constant with
0 < T ≤ ∞. To illustrate the idea of HPM technique, let us consider the fractional Burgers
equation: for any (�x, t) ∈ Ω × (0, T],

Dα
t u(�x, t) + εu(�x, t)

n∑
i=1

Dβ
xi

u(�x, t) = η

n∑
i=1

D2β
xi

u(�x, t), (2)

with the initial condition

u(�x, 0) = g(�x), �x ∈ Ω , (3)

where �x = (x1, x2, . . . , xn) ∈ Ω , ε and η are constants, g(�x) is a given function, Dα
t denotes

the Caputo fractional derivative with respect to t of the order α ∈ (0, 1], and Dβ
xi denotes

the Caputo fractional derivative with respect to xi for all i = 1, 2, 3, . . . of the order β ∈
( 1

2 , 1].
Applying the HPM technique, we first construct the homotopy function v by

v(�x, t; p) : Ω × [0, T] × [0, 1] →R,

and v satisfies the following:

H
(
v(�x, t; p), p

)
= (1 – p)

[
Dα

t v(�x, t; p) – Dα
t ũ0(�x, t)

]
+ p

[
Dα

t v(�x, t; p)

+ εv(�x, t; p)
n∑

i=1

Dβ
xi

v(�x, t; p) – η

n∑
i=1

D2β
xi

v(�x, t; p)

]

= 0, (4)

where 0 ≤ p ≤ 1 is an embedding parameter, ũ0(�x, t) is an approximate initial function of
Equation (4) which can be freely chosen. Equation (4) becomes

Dα
t v(�x, t; p) = Dα

t ũ0(�x, t) – p

[
Dα

t ũ0(�x, t) + εv(�x, t; p)
n∑

i=1

Dβ
xi

v(�x, t; p)

– η

n∑
i=1

D2β
xi

v(�x, t; p)

]
. (5)
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From Equation (5), we see that

p = 0: Dα
t v(�x, t; p) – Dα

t ũ0(�x, t) = 0,

p = 1: Dα
t v(�x, t; p) + εv(�x, t; p)

n∑
i=1

Dβ
xi

v(�x, t; p) – η

n∑
i=1

D2β
xi

v(�x, t; p) = 0.

From the HPM technique, the solution v(�x, t; p) is expressed as an infinite series

v(�x, t; p) =
∞∑

k=0

pkvk(�x, t). (6)

Substituting Equation (6) into Equation (5) and comparing the coefficients with the cor-
responding power of p, the iterative procedure is obtained in the following form:

p0: Dα
t v0(�x, t) = Dα

t ũ0(�x, t),

p1: Dα
t v1(�x, t) = –Dα

t ũ0(�x, t) – εv0(�x, t)
n∑

i=1

Dβ
xi

v0(�x, t)

+ η

n∑
i=1

D2β
xi

v0(�x, t),

p2: Dα
t v2(�x, t) = –ε

[
v0(�x, t)

n∑
i=1

Dβ
xi

v1(�x, t) + v1(�x, t)
n∑

i=1

Dβ
xi

v0(�x, t)

]

+ η

n∑
i=1

D2β
xi

v1(�x, t),

p3: Dα
t v3(�x, t) = –ε

[
v0(�x, t)

n∑
i=1

Dβ
xi

v2(�x, t) + v1(�x, t)
n∑

i=1

Dβ
xi

v1(�x, t)

+ v2(�x, t)
n∑

i=1

Dβ
xi

v0(�x, t)

]
+ η

n∑
i=1

D2β
xi

v2(�x, t),

...

or we have that

p0: Dα
t v0(�x, t) = Dα

t ũ0(�x, t),

p1: Dα
t v1(�x, t) = –Dα

t ũ0(�x, t) – εv0(�x, t)
n∑

i=1

Dβ
xi

v0(�x, t) + η

n∑
i=1

D2β
xi

v0(�x, t),

pk : Dα
t vk(�x, t) =

[
η

n∑
i=1

D2β
xi

vk–1(�x, t) – ε

n∑
i=1

k∑
j=0

vj(�x, t)Dβ
xi

vk–j(�x, t)

]
for k ≥ 2.

(7)
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Taking the Riemann–Liouville integral operator Jα
t on both sides of Equation (7) and using

Lemma 2.3, we then get

v0(�x, t) = Jα
t Dα

t ũ0(�x, t) + g(�x),

v1(�x, t) = –Jα
t Dα

t ũ0(�x, t) + Jα
t

[
–εv0(�x, t)

n∑
i=1

Dβ
xi

v0(�x, t) + η

n∑
i=1

D2β
xi

v0(�x, t)

]
,

vk(�x, t) = Jα
t

[
η

n∑
i=1

D2β
xi

vk–1(�x, t) – ε

n∑
i=1

k∑
j=0

vj(�x, t)Dβ
xi

vk–j(�x, t)

]
for k ≥ 2.

(8)

By the assumption that the solution v(�x, t; p) is in the form of the power series:

v(�x, t) = v0(�x, t) + pv1(�x, t) + p2v2(�x, t) + p3v3(�x, t) + · · · , (9)

when p converges to 1, the solution v converges to the solution u of problem (2) with initial
condition (3), that is,

u(�x, t) = v0(�x, t) + v1(�x, t) + v2(�x, t) + v3(�x, t) + · · · (10)

which is the analytical solution of problem (2) with initial condition (3).

4 Existence and uniqueness
In this section, we apply the Banach fixed point theorem to ensure that the fractional
multi-dimensional Burgers equation (2) with initial condition (3) has a unique solution.
We firstly introduce a Banach space C(Ω × [0, T]) with

C
(
Ω × [0, T]

)
=

{
u such that u is continuous on Ω × [0, T]

}

with its norm

‖u‖ = max
(�x,t)∈Ω×[0,T]

∣∣u(�x, t)
∣∣.

Lemma 4.1 If u(�x, t) and its partial derivatives are continuous on Ω × [0, T], then
Dα

t u(�x, t), Dβ
xi u(�x, t), and D2β

xi u(�x, t) are bounded for all i = 1, 2, 3, . . . .

Proof Let M1 = max0≤τ≤t≤T |t – τ |–α . We will show that Dα
t is bounded.

Consider

∣∣Dα
t u(�x, t)

∣∣ =
∣∣∣∣ 1
Γ (1 – α)

∫ t

0
(t – τ )–αuτ (�x, τ ) dτ

∣∣∣∣

=
∣∣∣∣ M1

Γ (1 – α)

∫ t

0
uτ (�x, τ ) dτ

∣∣∣∣
≤ M1

Γ (1 – α)
‖u‖ + max

�x∈Ω

∣∣u(�x, 0)
∣∣.
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There is a positive constant L1 such that max�x∈Ω |u(�x, 0)| ≤ L1‖u‖, we obtain

∣∣Dα
t u(�x, t)

∣∣ ≤ M1

Γ (1 – α)
‖u‖ + L1‖u‖ = L2‖u‖,

where L2 is a constant and L2 = M2
Γ (1–α) + L1. Similarly, we can show that ‖Dβ

xi u(�x, t)‖ ≤
L3‖u‖ and ‖D2β

xi u(�x, t)‖ ≤ L4‖u‖, where L3 and L4 are some positive constants for all i =
1, 2, 3, . . . . �

The following theorem deals with the existence and uniqueness of the solution of the
fractional multi-dimensional Burgers equation (2) with initial condition (3).

Theorem 4.2 Let f (u(�x, t)) = –u(�x, t)
∑n

i=1 Dβ
xi u(�x, t) satisfy the Lipschitz condition with the

Lipschitz constant L5, and let M2 = max0≤τ≤t≤T |t – τ |α–1. If 1
Γ (α) (ηL4 + εL5)M2T < 1, then

problem (2) with initial condition (3) has a unique solution u on Ω × [0, T].

Proof We define an operator F : C(Ω × [0, T]) → C(Ω × [0, T]) by

Fu(�x, t) = g(�x) +
1

Γ (α)

∫ t

0
(t – τ )α–1

(
η

n∑
i=1

D2β
xi

u(�x, τ ) + εf
(
u(�x, t)

))
dτ .

We will show that F is the contraction mapping. Let us consider that, for any u, v ∈ C(Ω ×
[0, T]),

∣∣Fu(�x, t) – Fv(�x, t)
∣∣ =

∣∣∣∣∣
1

Γ (α)

∫ t

0
(t – τ )α–1

(
η

n∑
i=1

D2β
xi

u(�x, τ ) + εf
(
u(�x, τ )

))
dτ

–
1

Γ (α)

∫ t

0
(t – τ )α–1

(
η

n∑
i=1

D2β
xi

v(�x, τ ) + εf
(
v(�x, τ )

))
dτ

∣∣∣∣∣

≤ 1
Γ (α)

(ηL4 + εL5)
∫ t

0
(t – τ )α–1∣∣u(�x, τ ) – v(�x, τ )

∣∣dτ

≤ 1
Γ (α)

(ηL4 + εL5)M2T‖u – v‖.

From the assumption of the theorem, this applies that F is the contraction mapping. By
the Banach fixed point theorem, we can conclude that the fractional multi-dimensional
Burgers equation (2) with initial condition (3) has a unique continuous solution u for any
(�x, t) ∈ Ω × [0, T]. �

5 Convergence analysis and error estimation
The convergence of HPM to solution for the fractional Burgers equation and error esti-
mation of HPM are given by the following two theorems.

Theorem 5.1 Let vn(�x, t) be the function in a Banach space C(Ω × [0, T]) defined by Equa-
tion (10) for any n ∈N. The infinite series

∑∞
k=0 vk(�x, t) converges to the solution u of Equa-

tion (2) if there exists a constant 0 < ζ < 1 such that vn(�x, t) ≤ ζvn–1(�x, t) for all n ∈N.
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Proof We define that {Sn}∞n=0 is the sequence of the partial sums of the series
∑∞

k=0 vk(�x, t)
as

S0 = v0(�x, t),

S1 = v0(�x, t) + v1(�x, t),

S2 = v0(�x, t) + v1(�x, t) + v2(�x, t),

...

Sn = v0(�x, t) + v1(�x, t) + v2(�x, t) + · · · + vn(�x, t).

We will show that {Sn}∞n=0 is a Cauchy sequence in the Banach space C(Ω × [0, T]). For all
n, m ∈N with n ≥ m, we have

|Sn – Sm| ≤ |Sn – Sn–1| + |Sn–1 – Sn–2| + · · · + |Sm+1 – Sm|
≤ ζ n‖v0‖ + ζ n–1‖v0‖ + ζ n–2‖v0‖ + · · · + ζ m+1‖v0‖

= ζ m+1
(

1 – ζ n–m

1 – ζ

)
‖v0‖. (11)

It follows from 0 < ζ < 1 that we have that 1 – ζ n–m < 1. Hence,

|Sn – Sm| ≤ ζ m+1

1 – ζ
‖u0‖. (12)

Since u0(�x, t) is bounded,

lim
m→∞‖Sn – Sm‖ = 0. (13)

Thus, {Sn}∞n=0 is a Cauchy sequence in the Banach space C(Ω × [0, T]); consequently, the
solution

∑∞
k=0 vk(�x, t) converges to u. �

Next, we give the theorem to truncate an inaccurate solution as follows.

Theorem 5.2 The maximum absolute error of the series solution, defined in Equation (10),
is estimated as

∣∣∣∣∣u(�x, t) –
m∑

k=0

vk(�x, t)

∣∣∣∣∣ ≤ ζ m+1

1 – ζ
‖v0‖.

Proof For n, m ∈N with n ≥ m, from Equation (11), we have

|Sn – Sm| = ζ m+1
(

1 – ζ n–m

1 – ζ

)
‖v0‖.

By Theorem 5.1, we obtain that Sn converges to u(�x, t) as n → ∞. So, the above equation
becomes

∣∣u(�x, t) – Sm
∣∣ ≤ ζ m+1

1 – ζ
‖v0‖.
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Since 0 < ζ < 1, we obtain 1 – ζ n–m < 1. Hence, the above inequality becomes

∣∣∣∣∣u(�x, t) –
m∑

k=0

vk(�x, t)

∣∣∣∣∣ ≤ ζ m+1

1 – ζ
‖v0‖.

The proof is completed. �

6 Application of HPM to the fractional multi-dimensional Burgers equations
Here, the approximate analytical solution of fractional one-, two-, and three-dimensional
Burgers equation is established by the HPM technique. Throughout this section, we
choose the function ũ0(�x, t) = 0.

Example 1 Consider the fractional one-dimensional Burgers equation: for any (x, t) ∈
(0, 1) × (0, T],

Dα
t u(x, t) = –εu(x, t)Dβ

x u(x, t) + ηD2β
x u(x, t), (14)

with an initial condition u(x, 0) = x for any x ∈ [0, 1].
From the HPM technique, the homotopy function v satisfies the following equation:

Dα
t v(x, t; p) = p

[
ηD2β

x v(x, t; p) – εv(x, t; p)Dβ
x v(x, t; p)

]
. (15)

Substituting Equation (9) and the initial condition into Equation (15) and equating the
coefficients with the corresponding power of p, the iterative procedure is given by

p0: Dα
t v0(x, t) = 0,

p1: Dα
t v1(x, t) = ηD2β

x v0(x, t) – εv0(x, t)Dβ
x v0(x, t),

p2: Dα
t v2(x, t) = ηD2β

x v1(x, t) – εv0(x, t)Dβ
x v1(x, t) – εv1(x, t)Dβ

x v0(x, t),

...

and so on. It follows from the above equations and Equation (8) that we obtain

v0(x, t) = x,

v1(x, t) = Jα
t
[
ηD2β

x v0(x, t) – εv0(x, t)Dβ
x v0(x, t)

]

= –
{

x1–βεtα

Γ (2 – β)Γ (α + 1)

}
x,

v2(x, t) = Jα
t
[
ηD2β

x v1(x, t) – εv0(x, t)Dβ
x v1(x, t) – εv1(x, t)Dβ

x v0(x, t)
]

=
{

Γ (3 – β)x2–2βε2t2α

Γ (3 – 2β)Γ (2α + 1)
+

x2–2βε2t2α

(Γ (2 – β))2Γ (2α + 1)

}
x,
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v3(x, t) = –
{

Γ (4 – 2β)Γ (3 – β)x3–βε3t3α

Γ (4 – 3β)Γ (3 – 2β)Γ (3α + 1)
+

Γ (4 – 2β)x(3 – 3β)ε3t3α

Γ (4 – 3β)(Γ (2 – β))2Γ (3α + 1)

+
Γ (3 – β)x3–3βε3t3α

Γ (2 – β)Γ (3 – 2β)Γ (3α + 1)
+

x3–3αε3t3α

(Γ (2 – β))3Γ (3α + 1)

–
Γ (3 – β)Γ (2α + 1)x3–3βε3t3α

(Γ (2 – β))2Γ (3 – 2β)(Γ (α + 1))2Γ (3α + 1)

}
x,

and so on. The remaining terms of the solution can be obtained in the same way. Thus, by
the HPM technique, the approximate analytical solution u of problem (14) and the initial
condition u(x, 0) = x is

u(x, t) = x –
{

x1–βεtα

Γ (2 – β)Γ (α + 1)

}
x

+
{

Γ (3 – β)x2–2βε2t2α

Γ (3 – 2β)Γ (2α + 1)
+

x2–2βε2t2α

(Γ (2 – β))2Γ (2α + 1)

}
x

–
{

Γ (4 – 2β)Γ (3 – β)x3–βε3t3α

Γ (4 – 3β)Γ (3 – 2β)Γ (3α + 1)
+

Γ (4 – 2β)x(3 – 3β)ε3t3α

Γ (4 – 3β)(Γ (2 – β))2Γ (3α + 1)

+
Γ (3 – β)x3–3βε3t3α

Γ (2 – β)Γ (3 – 2β)Γ (3α + 1)
+

x3–3αε3t3α

(Γ (2 – β))3Γ (3α + 1)

–
Γ (3 – β)Γ (2α + 1)x3–3βε3t3α

(Γ (2 – β))2Γ (3 – 2β)(Γ (α + 1))2Γ (3α + 1)

}
x + · · · .

In the particular case, when we substitute α = 1 and β = 1, the approximate solution of
Equation (14) for this case is in the closed form:

u(x, t) = x + (–εt)x + (–εt)2x + (–εt)3x + (–εt)4x + · · · =
x

1 + εt

which is the same analytical solution as in [30].

Example 2 Consider the fractional two-dimensional Burgers equation: for any (x, y, t) ∈
(0, 1) × (0, 1) × (0, T],

Dα
t u(x, y, t) = –εu

(
Dβ

x u + Dβ
y u

)
+ η

(
D2β

x u + D2β
y u

)
(16)

with the initial condition u(x, y, 0) = x + y for (x, y) ∈ [0, 1] × [0, 1].
Similar to the previous example, the values of vk(x, y, t) are obtained solving from the

iterative procedure with u(x, y, 0) = x + y as follows:

v0(x, y, t) = x + y,

v1(x, y, t) = –
{

(x1–β + y1–β )εtα

Γ (2 – β)Γ (α + 1)

}
(x + y),

v2(x, y, t) =
{

Γ (3 – β)(x2–2β + y2–2β )ε2t2α

Γ (3 – 2β)Γ (2 – β)Γ (2α + 1)
+

2(xy)1–βε2t2α

(Γ (2 – β))2Γ (2α + 1)

+
(x1–β + y1–β )2ε2t2α

(Γ (2 – β))2Γ (2α + 1)

}
(x + y),



Sripacharasakullert et al. Advances in Difference Equations        (2019) 2019:252 Page 10 of 12

and so on. Thus, the approximate analytical solution u of problem (16) is

u(x, y, t) = (x + y) –
{

(x1–β + y1–β )εtα

Γ (2 – β)Γ (α + 1)

}
(x + y)

+
{

Γ (3 – β)(x2–2β + y2–2β )ε2t2α

Γ (3 – 2β)Γ (2 – β)Γ (2α + 1)
+

2(xy)1–βε2t2α

(Γ (2 – β))2Γ (2α + 1)

+
(x1–β + y1–β )2ε2t2α

(Γ (2 – β))2Γ (2α + 1)

}
(x + y) + · · · .

In the special case, when α = 1 and β = 1, the approximate analytical solution of Equation
(16) with the initial condition u(x, y, 0) = x + y is of the following form:

u(x, y, t) = (x + y) + (–2εt)(x + y) + (–2εt)3(x + y) + · · · =
x + y

1 + 2εt

which is the same analytical solution as in [30].

Example 3 Consider the fractional three-dimensional Burgers equation: for any (x, y,
z, t) ∈ (0, 1) × (0, 1) × (0, 1) × (0, T],

Dα
t u(x, y, z, t) = –εu

(
Dβ

x u + Dβ
y u + Dβ

z u
)

+ η
(
D2β

x u + D2β
y u + D2β

z u
)

(17)

with the initial condition u(x, y, z, 0) = x + y + z for (x, y, z) ∈ [0, 1] × [0, 1] × [0, 1]. Similar
to Example 2, the values of vk(x, y, z, t) are obtained solving from the iterative procedure
with u(x, y, z, 0) = x + y + z as follows:

v0(x, y, z, t) = x + y + z,

v1(x, y, z, t) = –
{

(x1–β + y1–β + z1–β )εtα

Γ (2 – β)Γ (α + 1)

}
(x + y + z),

v2(x, y, z, t) =
{

Γ (3 – β)(x2–2β + y2–2β + z2–2β )ε2t2α

Γ (3 – 2β)Γ (2 – β)Γ (2α + 1)

+
(x1–β(y1–β + z1–β ) + y1–β (x1–β + z1–β ) + z1–β (x1–β + y1–β ))ε2t2α

(Γ (2 – β))2Γ (2α + 1)

+
(x1–β + y1–β + z1–β )2ε2t2α

(Γ (2 – β))2Γ (2α + 1)

}
(x + y + z),

and so on. Hence, the approximate analytical solution u of problem (17) with the initial
condition u(x, y, z, 0) = x + y + z is

u(x, y, z, t) = (x + y + z) –
{

(x1–β + y1–β + z1–β )εtα

Γ (2 – β)Γ (α + 1)

}
(x + y + z)

+
{

Γ (3 – β)(x2–2β + y2–2β + z2–2β)ε2t2α

Γ (3 – 2β)Γ (2 – β)Γ (2α + 1)

+
(x1–β(y1–β + z1–β ) + y1–β (x1–β + z1–β ) + z1–β (x1–β + y1–β ))ε2t2α

(Γ (2 – β))2Γ (2α + 1)

+
(x1–β + y1–β + z1–β )2ε2t2α

(Γ (2 – β))2Γ (2α + 1)

}
(x + y + z) + · · · .
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For the case α = 1 and β = 1, the analytical solution u is given by

u(x, y, z, t) = (x + y + z) + (–3εt)(x + y + z) + (–3εt)2(x + y + z) + · · ·

=
(x + y + z)

1 + 3εt

which is the same as in [30].

7 Conclusion
In this article, we consider the fractional n-dimensional Burgers equation based on the
Caputo-type fractional derivative with the initial condition. We show the existence and
uniqueness of the fractional n-dimensional Burgers equation by using the Banach fixed
point theorem. After that, we show the approximate analytical solution of the fractional
Burgers equation in 1, 2, and 3 dimensions by the HPM technique. It is indicated that the
HPM process is simple, easy, and effective.
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