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Abstract
In this paper, we introduce the extended r-central factorial numbers of the second
and first kinds and the extended r-central Bell polynomials, as extended versions and
central analogues of some previously introduced numbers and polynomials. Then we
study various properties and identities related to these numbers and polynomials and
also their connections.
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1 Introduction
For n ∈N∪ {0}, as is well known, the central factorials x[n] are defined by

x[0] = 1, x[n] = x
(

x +
n
2

– 1
)

· · ·
(

x –
n
2

+ 1
)

(n ≥ 1) (see [7–11, 18]). (1)

It is also well known that the central factorial numbers of the second kind T(n, k) are
defined by

xn =
n∑

k=0

T(n, k)x[k] (see [7, 8, 18]), (2)

where n is a nonnegative integer.
From (2), we can derive the generating function for T(n, k) (0 ≤ k ≤ n) as follows:

1
k!

(
e

t
2 – e– t

2
)k =

∞∑
n=k

T(n, k)
tn

n!
(see [7, 8, 11]). (3)

Recently, Kim and Kim [10] considered the central Bell polynomials given by

ex(e
t
2 –e– t

2 ) =
∞∑

n=0

B(c)
n (x)

tn

n!
. (4)

When x = 1, B(c)
n = B(c)

n (1) are called the central Bell numbers.
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From (4), we can find the Dobinski-like formula for B(c)
n (x):

B(c)
n (x) =

∞∑
l=0

∞∑
j=0

(
l + j

j

)
(–1)j 1

(l + j)!

(
l
2

–
j
2

)n

xl+j (see [10]). (5)

The Stirling numbers of the second kind are defined by

xn =
n∑

k=0

S2(n, k)(x)k (n ≥ 0) (see [2–4, 6, 13–15]), (6)

where (x)0 = 1, (x)n = x(x – 1)(x – 2) · · · (x – n + 1) (n ≥ 1).
From (6), we can easily derive the following equation (7):

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(k ≥ 0) (see [4, 16, 17]). (7)

In this paper, we introduce the extended r-central factorial numbers of the second and
first kinds and the extended r-central Bell polynomials, and study various properties and
identities related to these numbers and polynomials and their connections. The extended
r-central factorial numbers of the second kind are an extended version of the central fac-
torial numbers of the second kind and also a ‘central analogue’ of the r-Stirling numbers
of the second kind; the extended r-central Bell polynomials are an extended version of the
central Bell polynomials and also a central analogue of r-Bell polynomials; the extended
r-central factorial numbers of the first kind are an extended version of the central factorial
numbers of the first kind and a central analogue of the (unsigned) r-Stirling numbers of
the first kind. All of these numbers and polynomials were studied before (see [1, 5, 7, 8,
10, 12]).

2 Extended r-central factorial numbers of the second kind and extended
r-central Bell polynomials

Let us first note that, by (3) and (4),

∞∑
n=0

B(c)
n (x)

tn

n!
=

∞∑
k=0

xk 1
k!

(
e

t
2 – e– t

2
)k

=
∞∑

k=0

xk
∞∑

n=k

T(n, k)
tn

n!

=
∞∑

n=0

( n∑
k=0

xkT(n, k)

)
tn

n!
. (8)

Comparing the coefficients on both sides of (8), we have

B(c)
n (x) =

n∑
k=0

xkT(n, k) (n ≥ 0). (9)
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For any nonnegative integer r, we introduce the extended r-central factorial numbers of
the second kind given by

1
k!

ert(e
t
2 – e– t

2
)k =

∞∑
n=k

Tr(n + r, k + r)
tn

n!
(k ≥ 0). (10)

Remark 1 In [11], the extended central factorial numbers of the second kind were defined
as

1
k!

(
e

t
2 – e– t

2 + rt
)k =

∞∑
n=k

T (r)(n, k)
tn

n!
.

Note that these numbers are different from the extended r-central factorial numbers of
the second kind defined in (10).

From (3) and (10), we see that

∞∑
n=k

Tr(n + r, k + r)
tn

n!
=

1
k!

ert(e
t
2 – e– t

2
)k

=

( ∞∑
l=k

T(l, k)
tl

l!

)( ∞∑
m=0

rm tm

m!

)

=
∞∑

n=k

( n∑
l=k

(
n
l

)
T(l, k)rn–l

)
tn

n!
. (11)

Therefore, by comparing the coefficients on both sides of (10), the following identity holds.

Theorem 1 For n, k, r ∈ N∪ {0} with n ≥ k, we have

Tr(n + r, k + r) =
n∑

l=k

(
n
l

)
T(l, k)rn–l.

Next, we write e(r+x)t as follows:

e(r+x)t = ert
∞∑

k=0

(x)k
1
k!

(
e

t
2 – e– t

2
)ke

1
2 kt

=
∞∑

k=0

(x)k

∞∑
l=k

Tr(l + r, k + r)
tl

l!

∞∑
j=0

(
k
2

)j tj

j!

=
∞∑

k=0

(x)k

∞∑
n=k

( n∑
l=k

(
n
l

)
Tr(l + r, k + r)

(
k
2

)n–l
)

tn

n!

=
∞∑

n=0

( n∑
k=0

n∑
l=k

(x)k

(
n
l

)
Tr(l + r, k + r)

(
k
2

)n–l
)

tn

n!
. (12)
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On the other hand, e(r+x)t can be written as

e(r+x)t =
∞∑

n=0

(r + x)n tn

n!
. (13)

Therefore, by the two expressions in (12) and (13) for e(r+x)t , we obtain the following
identity.

Theorem 2 For n ≥ 0, we have

(r + x)n =
n∑

l=0

l∑
k=0

(x)k

(
n
l

)
Tr(l + r, k + r)

(
k
2

)n–l

.

In view of (4), we may now introduce the extended r-central Bell polynomials associated
with the extended r-central factorial numbers of the second kind given by

ertex(e
t
2 –e– t

2 ) =
∞∑

n=0

B(c,r)
n (x)

tn

n!
. (14)

Remark 2 In [11], the extended central Bell polynomials were defined as

ex(e
t
2 –e– t

2 +rt) =
∞∑

n=0

Bel(c,r)
n (x)

tn

n!
(r ∈R).

Observe here that these polynomials are different from the extended r-central Bell poly-
nomials in (14).

From (14), we note that

∞∑
n=0

B(c,r)
n (x)

tn

n!
= ertex(e

t
2 –e– t

2 )

=
∞∑

k=0

xk 1
k!

ert(e
t
2 – e– t

2
)k

=
∞∑

k=0

xk
∞∑

n=k

Tr(n + r, k + r)
tn

n!

=
∞∑

n=0

( n∑
k=0

xkTr(n + r, k + r)

)
tn

n!
. (15)

By the comparison of the coefficients on both sides of (15), we can establish the following
theorem.

Theorem 3 For n ≥ 0, we have that

B(c,r)
n (x) =

n∑
k=0

xkTr(n + r, k + r).
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Next, we observe that

1
k!

ert(e
t
2 – e– t

2
)k =

1
k!

k∑
l=0

(
k
l

)
(–1)k–le(l+r– k

2 )t

=
∞∑

n=0

(
1
k!

k∑
l=0

(
k
l

)
(–1)k–l

(
l + r –

k
2

)n
)

tn

n!
. (16)

By using the central difference operator δ, which is defined by

δf (x) = f
(

x +
1
2

)
– f

(
x –

1
2

)
, (17)

we can show that

δkf (x) =
k∑

l=0

(
k
l

)
(–1)k–lf

(
x + l –

k
2

) (
k ∈N∪ {0}). (18)

We combine (18) with (16) to derive an equation for e(r+x)t as follows:

1
k!

ert(e
t
2 – e– t

2
)k =

∞∑
n=0

1
k!

(
δkrn) tn

n!
. (19)

From (10) and (19), we note that

1
k!

(
δkrn) =

⎧⎨
⎩

Tr(n + r, k + r), if n ≥ k,

0, if n < k.
(20)

Therefore, by (20), we obtain the following theorem.

Theorem 4 For n, k ≥ 0, we have

1
k!

(
δkrn) =

⎧⎨
⎩

Tr(n + r, k + r), if n ≥ k,

0, if n < k.

By combining Theorems 3 and 4, we easily get

B(c,r)
n (x) =

n∑
k=0

xk 1
k!

(
δkrn). (21)

From (14), we have

∞∑
n=0

B(c,r)
n (x)

tn

n!
= ertex(e

t
2 –e– t

2 )

=

( ∞∑
l=0

B(c)
l (x)

tl

l!

)( ∞∑
m=0

rm tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
B(c)

n–l(x)rl

)
tn

n!
. (22)
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Therefore, by comparing the coefficients on both sides of (22), we get the following iden-
tity.

Theorem 5 For n ≥ 0, we have

B(c,r)
n (x) =

n∑
l=0

(
n
l

)
B(c)

n–l(x)rl.

By (14), it can be checked that

∞∑
n=0

B(c,r)
n (x)

tn

n!
= ertex(e

t
2 –e– t

2 )

=
∞∑

m=0

xm 1
m!

(
et – 1

)me(r– m
2 )t

=
∞∑

m=0

xm
∞∑

l=m

S2(l, m)
tl

l!

∞∑
k=0

(
r –

m
2

)k tk

k!

=
∞∑

m=0

xm
∞∑

n=m

( n∑
l=m

(
n
l

)
S2(l, m)

(
r –

m
2

)n–l
)

tn

n!

=
∞∑

n=0

( n∑
m=0

n∑
l=m

xm
(

n
l

)
S2(l, m)

(
r –

m
2

)n–l
)

tn

n!
. (23)

Therefore, by comparing the coefficients on both sides of (23), we establish the following
theorem.

Theorem 6 For n ≥ 0, we have

B(c,r)
n (x) =

n∑
l=0

l∑
m=0

xm
(

n
l

)
S2(l, m)

(
r –

m
2

)n–l

.

Now, we observe that

1
m!

ert(e
t
2 – e– t

2
)m 1

k!
(
e

t
2 – e– t

2
)k =

(m + k)!
m!k!

1
(m + k)!

ert(e
t
2 – e– t

2
)m+k

=
(

m + k
m

) ∞∑
n=m+k

Tr(n + r, m + k + r)
tn

n!
. (24)

On the other hand, it can be seen that

1
m!

ert(e
t
2 – e– t

2
)m 1

k!
(
e

t
2 – e– t

2
)k =

( ∞∑
l=m

Tr(l + r, m + r)
tl

l!

)( ∞∑
j=k

T(j, k)
tj

j!

)

=
∞∑

n=m+k

( n–k∑
l=m

(
n
l

)
Tr(l + r, m + r)T(n – l, k)

)
tn

n!
. (25)

Therefore, by (24) and (25), we obtain the following theorem.



Kim et al. Advances in Difference Equations        (2019) 2019:245 Page 7 of 11

Theorem 7 For m, n, k ≥ 0 with n ≥ m + k, we have

(
m + k

m

)
Tr(n + r, m + k + r) =

n–k∑
l=m

(
n
l

)
Tr(l + r, m + r)T(n – l, k).

It is known that the generating function of central factorial is given by

(
t
2

+
√

1
4

t2 + 1
)2x

=
∞∑

n=0

x[n] tn

n!
(see [7, 8]). (26)

If we let f (t) = 2 log( t
2 +

√
1 + t2

4 ), then we can easily show that

f –1(t) = e
t
2 – e– t

2 . (27)

By the simple computations with the expressions in (1) and (2), we can check that e(x+r)t

can be expressed as follows:

e(x+r)t = ertext

= erte2x log( e
t
2 –e– t

2
2 +

√
1+ (e

t
2 –e– t

2 )2
4 )

= ertelog( e
t
2 –e– t

2
2 +

√
1+ (e

t
2 –e– t

2 )2
4 )2x

= ert
(

e t
2 – e– t

2

2
+

√
1 +

1
4
(
e t

2 – e– t
2
)2

)2x

= ert
∞∑

k=0

x[k] 1
k!

(
e

t
2 – e– t

2
)k

=
∞∑

k=0

x[k]
∞∑

n=k

T(n + r, k + r)
tn

n!

=
∞∑

n=0

( n∑
k=0

T(n + r, k + r)x[k]

)
tn

n!
. (28)

Alternatively, the term e(x+r)t is also represented by

e(x+r)t =
∞∑

n=0

(x + r)n tn

n!
. (29)

Therefore, by (28) and (29), the following identity is obtained.

Theorem 8 For n ≥ 0, we have the following identity:

(x + r)n =
n∑

k=0

Tr(n + r, k + r)x[k]. (30)
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3 Extended r-central factorial numbers of the first kind
Throughout this section, we assume that r is any real number. The (unsigned) r-Stirling
numbers of the first kind S1,r(n + r, k + r) are defined by

(x + r)n =
n∑

k=0

S1,r(n + r, k + r)xk . (31)

Then

(1 + t)x+r = (1 + t)r
∞∑

k=0

1
k!

(
log(1 + t)

)kxk . (32)

Further, we also have

(1 + t)x+r =
∞∑

n=0

(x + r)n
tn

n!

=
∞∑

n=0

n∑
k=0

S1,r(n + r, k + r)xk tn

n!

=
∞∑

k=0

∞∑
n=k

S1,r(n + r, k + r)
tn

n!
xk . (33)

Combining (32) with (33), we obtain the generating function of S1,r(n + r, k + r):

(1 + t)r 1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1,r(n + r, k + r)
tn

n!
. (34)

The central factorial numbers of the first kind t(n, k) are defined by

x[n] =
n∑

k=0

t(n, k)xk (n ≥ 0). (35)

Using (26) and (35), we have

(
t
2

+
√

1 +
t2

4

)2x

=
∞∑

n=0

x[n] tn

n!

=
∞∑

n=0

n∑
k=0

t(n, k)xk tn

n!

=
∞∑

k=0

∞∑
n=k

t(n, k)
tn

n!
xk . (36)

On the other hand, we also have

(
t
2

+
√

1 +
t2

4

)2x

= e2x log( t
2 +

√
1+ t2

4 )

=
∞∑

k=0

1
k!

(
2 log

(
t
2

+
√

1 +
t2

4

))k

xk . (37)
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By combining (36) with (37), we get the generating function of t(n, k):

1
k!

(
2 log

(
t
2

+
√

1 +
t2

4

))k

=
∞∑

n=k

t(n, k)
tn

n!
. (38)

Let us define the extended r-central factorial numbers of the first kind as

(x + r)[n] =
n∑

k=0

tr(n + r, k + r)xk . (39)

Then we want to derive the generating function of the extended r-central factorial num-
bers of the first kind.

(
t
2

+
√

1 +
t2

4

)2(x+r)

=
∞∑

n=0

(x + r)[n] tn

n!

=
∞∑

n=0

n∑
k=0

tr(n + r, k + r)
tn

n!

=
∞∑

k=0

∞∑
n=k

tr(n + r, k + r)
tn

n!
xk . (40)

In addition, we also have

(
t
2

+
√

1 +
t2

4

)2(x+r)

=
(

t
2

+
√

1 +
t2

4

)2r

e2x log( t
2 +

√
1+ t2

4 )

=
∞∑

k=0

1
k!

(
t
2

+
√

1 +
t2

4

)2r(
2 log

(
t
2

+
√

1 +
t2

4

))k

xk . (41)

Now, from (40) and (41), we have the generating function for tr(n + r, k + r):

1
k!

(
t
2

+
√

1 +
t2

4

)2r(
2 log

(
t
2

+
√

1 +
t2

4

))k

=
∞∑

n=k

tr(n + r, k + r)
tn

n!
.

Finally, we want to show a recurrence relation for the extended r-central factorial num-
bers of the first kind.

n+1∑
k=0

tr(n + 1 + r, k + r)xk

= (x + r)[n+1] = (x + r)[n–1]
(

(x + r)2 –
(

n – 1
2

)2)

=
n–1∑
k=0

tr(n – 1 + r, k + r)xk
(

x2 + 2xr + r2 –
(

n – 1
2

)2)

=
n–1∑
k=0

tr(n – 1 + r, k + r)xk+2 + 2r
n–1∑
k=0

tr(n – 1 + r, k + r)xk+1
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+
(

r2 –
(

n – 1
2

)2) n–1∑
k=0

tr(n – 1 + r, k + r)xk

=
n+1∑
k=2

tr(n – 1 + r, k – 2 + r)xk + 2r
n∑

k=1

tr(n – 1 + r, k – 1 + r)xk

+
(

r2 –
(

n – 1
2

)2) n–1∑
k=0

tr(n – 1 + r, k + r)xk

=
n+1∑
k=0

{
tr(n – 1 + r, k – 2 + r) + 2rtr(n – 1 + r, k – 1 + r)

+
(

r2 –
(

n – 1
2

)2)
tr(n – 1 + r, k + r)

}
xk .

This verifies the following theorem.

Theorem 9 For any integers n, k with n – 1 ≥ k ≥ 0, we have the following recurrence
relation:

tr(n + 1 + r, k + r)

= tr(n – 1 + r, k – 2 + r) + 2rtr(n – 1 + r, k – 1 + r)

+
(

r2 –
(

n – 1
2

)2)
tr(n – 1 + r, k + r).

4 Conclusions and discussion
In recent years, quite a number of old and new special numbers and polynomials have at-
tracted attention of many researchers and have been studied by means of generating func-
tions, combinatorial methods, umbral calculus, differential equations, p-adic integrals, p-
adic q-integrals, special functions, complex analysis, and so on.

In this paper, we introduced the extended r-central factorial numbers of the second and
first kinds and the extended r-central Bell polynomials, and studied various properties and
identities related to these numbers and polynomials and their connections. This study was
done by making use of generating function techniques.

The extended r-central factorial numbers of the second kind are an extended version
of the central factorial numbers of the second kind and also a ‘central analogue’ of the
r-Stirling numbers of the second kind; the extended r-central Bell polynomials are an ex-
tended version of the central Bell polynomials and also a central analogue of r-Bell poly-
nomials; the extended r-central factorial numbers of the first kind are an extended version
of the central factorial numbers of the first kind and a central analogue of the (unsigned)
r-Stirling numbers of the first kind. All of these numbers and polynomials were studied
before (see [7, 8, 10, 12]).

As one of our next project, we would like to find some interesting applications of the
numbers and polynomials introduced in this paper.
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