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Abstract
In this paper, we study existence and nonexistence of positive solutions for a class of
Riemann–Stieltjes integral boundary value problems of fractional differential
equations with parameters. By using the fixed point index theory, some new
sufficient conditions for the existence of at least one, two and the nonexistence of
positive solutions are obtained. The results we obtain show the influence of
parameter λ and parameter a on the existence of positive solutions. Finally, some
examples are given to illustrate our main results.
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1 Introduction
In this paper, we investigate existence and nonexistence of positive solutions for a class of
Riemann–Stieltjes integral boundary value problems of fractional differential equations
with parameters

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ (p(t)Dβ

0+ u(t)) + λf (t, u(t)) = 0, t ∈ (0, 1),

limt→0+ t2–βu(t) = a, u(1) =
∫ 1

0 u(s) dA(s),

limt→0+ t1–αp(t)Dβ

0+ u(t) = 0,

(1.1)

where Dα
0+ and Dβ

0+ are the Riemann–Liouville fractional derivatives with 0 < α ≤ 1, 1 <
β ≤ 2. The parameters λ > 0, a ≥ 0, p ∈ C([0, 1], (0, +∞)), f : [0, 1]× [0, +∞) → [0, +∞) are
given functions, and f may be discontinuous but satisfies the Lq-Carathéodory conditions.
∫ 1

0 u(s) dA(s) denotes the Riemann–Stieltjes integral with respect to A.
By using the fixed point index theory, some new sufficient conditions for the existence

of at least one, two and the nonexistence of positive solutions are obtained. The theorems
we obtain show the influence of parameter λ and parameter a on the existence of positive
solutions.

In recent decades, with the wide applications of fractional differential equations in
physics, engineering, biology, chemistry, and many other fields, researchers have been
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paying more and more attention to them, see [1–12] and the references therein. At the
same time, many problems of fluid mechanics, bioengineering, chemical engineering, and
so on could be attributed to the integral boundary value problems, which are nonlocal
problems. Therefore, a lot of meaningful research results have been obtained, see [13–20]
and the references therein. The eigenvalue problem is a relatively active part of the differ-
ential equation theory, and there have been many results, see [21–30] and the references
therein. Nowadays, when solving many practical problems, there will inevitably be errors
and those errors will often affect the existence of the solution to a large extent. Therefore,
it is meaningful to study the boundary value problem of fractional differential equations
with disturbance parameters, see [31–35] and the references therein.

As a generalization of classical Riemann integral, Riemann–Stieltjes integral boundary
value problem has a stronger applicability, which not only contains the classical Riemann
integral boundary value problem, but also includes two-point boundary value and multi-
point boundary value. In this paper, we investigate existence and nonexistence of positive
solutions for a class of Riemann–Stieltjes integral boundary value problems of fractional
differential equations with parameters (1.1).

The paper is organized as follows. In Sect. 2, we present some necessary definitions
and lemmas which will be used to prove our main results. We study the properties of
integral kernels and obtain inequalities about the integral kernels. We prove the complete
continuity of operators. In Sect. 3, we investigate the existence of at least one positive
solution for boundary value problem (1.1). In Sect. 4, sufficient conditions for the existence
of at least two positive solution of boundary value problem (1.1) and the nonexistence of
positive solution of boundary value problem (1.1) are established. In Sect. 5, we give some
examples to illustrate our main result.

Throughout this paper, we assume that A(t) is a monotone increasing function,
∫ 1

0 sβ–2 dA(s) exists, and

1 –
∫ 1

0
sβ–1 dA(s) > 0.

f satisfies the Lq-Carathéodory conditions, that is,
(1) f (·, u) is measurable for all u ∈ [0, +∞);
(2) f (t, ·) is continuous for a.e. t ∈ [0, 1];
(3) for every r > 0, there exists ϕr ∈ Lq[0, 1] such that

∣
∣f

(
t, tβ–2u

)∣
∣ ≤ ϕr(t) for all u ∈ [0, r] and a.e. t ∈ [0, 1],

where q > 1
α

if 0 < α < 1 and q = 1 if α = 1.
For Lq[0, 1], we denote the norm ‖ϕ‖Lq = (

∫ 1
0 |ϕ(t)|q dt)

1
q .

2 Preliminaries
The definitions of fractional integral and fractional derivative and the related lemmas can
be found in [3, 4].
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Lemma 2.1 (See [3], Theorem 2.4 and [4], Lemma 2.5) Let p > 0 and n = �p	 = min{z ∈
Z : z ≥ p}. If u ∈ L1[0, 1] and In–p

0+ u ∈ ACn[0, 1], then the equality

Ip
0+

(
Dp

0+ u
)
(t) = u(t) –

n∑

k=1

cktp–k

holds a.e. on [0, 1].

Lemma 2.2 If 0 < α < 1, Dα
0+ u ∈ L1[0, 1] and limt→0+ t1–αu(t) = c, where c is a constant,

then I1–α
0+ u ∈ AC1[0, 1].

Proof Since limt→0+ t1–αu(t) = c, then for any ε > 0, there exists a constant δ > 0 such that
|t1–αu(t) – c| < ε

Γ (α) whenever 0 < t < δ, and

∣
∣I1–α

0+ u(t) – cΓ (α)
∣
∣ =

∣
∣I1–α

0+ u(t) – cI1–α
0+ tα–1∣∣

≤ 1
Γ (1 – α)

∫ t

0
(t – s)–α

∣
∣u(s) – csα–1∣∣ds

=
1

Γ (1 – α)

∫ t

0
(t – s)–αsα–1∣∣s1–αu(s) – c

∣
∣ds

< ε.

Hence, we have limt→0+ I1–α
0+ u(t) = cΓ (α).

Let φ(t) = Dα
0+ u(t) = d

dt I1–α
0+ u(t), then φ ∈ L1[0, 1] and

I1–α
0+ u(t) = cΓ (α) +

∫ t

0
φ(s) ds.

Therefore, I1–α
0+ u ∈ AC1[0, 1]. �

Let

E := C2–β [0, 1] =
{

u ∈ C(0, 1] : t2–βu(t) ∈ C[0, 1]
}

,

then E is a Banach space with the norm ‖u‖ = supt∈[0,1] t2–β |u(t)|.

Definition 2.1 A function u = u(t) is called a solution of fractional boundary value prob-
lem (1.1) if u ∈ E and satisfies (1.1). Furthermore, u = u(t) is called a positive solution of
fractional boundary value problem (1.1) if u(t) > 0, t ∈ (0, 1).

Lemma 2.3 For any y ∈ Lq[0, 1], the fractional differential initial value problem
⎧
⎨

⎩

Dα
0+ v(t) + y(t) = 0, t ∈ (0, 1),

limt→0+ t1–αv(t) = 0
(2.1)

has a unique solution

v(t) = –
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds. (2.2)
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Proof Suppose that v = v(t) is a solution of initial value problem (2.1). Since y ∈ Lq[0, 1],
then Dα

0+ v ∈ L1[0, 1]. Because limt→0+ t1–αv(t) = 0, it follows I1–α
0+ v ∈ AC1[0, 1] from

Lemma 2.2. Thus, by Lemma 2.1, we have

v(t) = –Iα
0+ y(t) + c1tα–1. (2.3)

The initial condition limt→0+ t1–αv(t) = 0 implies that c1 = 0. Thus,

v(t) = –
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds.

On the other hand, if v = v(t) satisfies (2.2), we can easily show that v satisfies the equa-
tion of initial value problem (2.1).

Next, we show that limt→0+ t1–αv(t) = 0.
Let

φ1(t) =

⎧
⎨

⎩

tα–1, 0 < t ≤ 1,

0, else,
and φ2(t) =

⎧
⎨

⎩

y(t), 0 ≤ t ≤ 1,

0, else.

F(t) is given by the convolution form, that is,

F(t) = (φ1 ∗ φ2)(t) =
∫ +∞

–∞
φ1(t – s)φ2(s) ds.

If 0 < α < 1, since q > 1
α

, we have q(α–1)
q–1 > –1 and φ1 ∈ L

q
q–1 (R). Hence,

lim

t→0+

∫

R

∣
∣φ1(s + 
t) – φ1(s)

∣
∣

q
q–1 ds = 0.

In view of φ2 ∈ Lq(R), we can get that

∣
∣F(t + 
t) – F(t)

∣
∣ =

∣
∣
∣
∣

∫

R

φ1(t + 
t – s)φ2(s) ds –
∫

R

φ1(t – s)φ2(s) ds
∣
∣
∣
∣

≤
∫

R

∣
∣φ1(t + 
t – s) – φ1(t – s)

∣
∣
∣
∣φ2(s)

∣
∣ds

≤
(∫

R

∣
∣φ1(s + 
t) – φ1(s)

∣
∣

q
q–1 ds

) q–1
q

(∫

R

∣
∣φ2(s)

∣
∣q ds

) 1
q

≤ ‖y‖Lq

(∫

R

∣
∣φ1(s + 
t) – φ1(s)

∣
∣

q
q–1 ds

) q–1
q

→ 0 (
t → 0).

If α = 1, it is obvious that |F(t + 
t) – F(t)| → 0 (
t → 0).
Hence, F(t) is uniformly continuous on R, then we can get that

lim
t→0

t1–αF(t) = 0.
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Because

F(t) = v(t) =
∫ t

0
(t – s)α–1h(s) ds, 0 ≤ t ≤ 1.

Then we have limt→0+ t1–αv(t) = 0. �

Remark 2.1 For any y ∈ Lq[0, 1], v = v(t), which satisfies (2.2), is uniformly continuous on
[0, 1].

For convenience, we denote

g(t) =
(

1 –
∫ 1

0
sβ–1 dA(s)

)–1(∫ 1

0
sβ–2 dA(s) – 1

)

tβ–1 + tβ–2. (2.4)

Lemma 2.4 For any h ∈ C[0, 1], the integral boundary value problem of linear fractional
differential equation

⎧
⎨

⎩

Dβ

0+ u(t) = h(t), t ∈ (0, 1),

limt→0+ t2–βu(t) = a, u(1) =
∫ 1

0 u(s) dA(s)
(2.5)

has a unique solution

u(t) = –
∫ 1

0
G1(t, s)h(s) ds + ag(t), (2.6)

where

G1(t, s) = K(t, s) +
tβ–1

1 –
∫ 1

0 sβ–1 dA(s)

∫ 1

0
K(τ , s) dA(τ ), (2.7)

K(t, s) =
1

Γ (β)

⎧
⎨

⎩

tβ–1(1 – s)β–1 – (t – s)β–1, 0 ≤ s < t ≤ 1,

tβ–1(1 – s)β–1, 0 ≤ t ≤ s ≤ 1.
(2.8)

Proof Suppose that u = u(t) is a solution of boundary value problem (2.5). Since h ∈
C[0, 1], then I2–β

0+ u ∈ AC2[0, 1]. Thus, by Lemma 2.1, we have

u(t) = Iβ

0+ h(t) + c1tβ–1 + c2tβ–2. (2.9)

The boundary condition limt→0+ t2–βu(t) = a implies that c2 = a. Then

u(t) = Iβ

0+ h(t) + c1tβ–1 + atβ–2.

Hence

u(1) =
1

Γ (β)

∫ 1

0
(1 – s)β–1h(s) ds + c1 + a,
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∫ 1

0
u(s) dA(s) =

1
Γ (β)

∫ 1

0

(∫ s

0
(s – τ )β–1h(τ ) dτ

)

dA(s)

+ c1

∫ 1

0
sβ–1 dA(s) + a

∫ 1

0
sβ–2 dA(s).

By the boundary condition u(1) =
∫ 1

0 u(s) dA(s), we obtain that

c1 =
1

1 –
∫ 1

0 sβ–1 dA(s)

(
1

Γ (β)

∫ 1

0

(∫ s

0
(s – τ )β–1h(τ ) dτ

)

dA(s)

–
1

Γ (β)

∫ 1

0
(1 – s)β–1h(s) ds + a

∫ 1

0
sβ–2 dA(s) – a

)

.

Substituting c1 and c2 into (2.9), we can get that

u(t) =
1

Γ (β)

∫ t

0
(t – s)β–1h(s) ds + c1tβ–1 + c2tβ–2

=
1

Γ (β)

∫ t

0
(t – s)β–1h(s) ds

+
tβ–1

1 –
∫ 1

0 sβ–1 dA(s)

(
1

Γ (β)

∫ 1

0

(∫ s

0
(s – τ )β–1h(τ ) dτ

)

dA(s)

–
1

Γ (β)

∫ 1

0
(1 – s)β–1h(s) ds + a

∫ 1

0
sβ–2 dA(s) – a

)

+ atβ–2

=
1

Γ (β)

∫ t

0
(t – s)β–1h(s) ds

–
(

tβ–1

Γ (β)

∫ 1

0
(1 – s)β–1h(s) ds +

tβ–1 ∫ 1
0 τβ–1 dA(τ )

∫ 1
0 (1 – s)β–1h(s) ds

Γ (β)(1 –
∫ 1

0 sβ–1 dA(s))

)

+
tβ–1 ∫ 1

0 (
∫ 1

s (τ – s)β–1 dA(τ ))h(s) ds
Γ (β)(1 –

∫ 1
0 sβ–1 dA(s))

+
atβ–1(

∫ 1
0 sβ–2 dA(s) – 1)

1 –
∫ 1

0 sβ–1 dA(s)
+ atβ–2

= –
∫ 1

0

(

K(t, s) +
tβ–1

1 –
∫ 1

0 sβ–1 dA(s)

∫ 1

0
K(τ , s) dA(τ )

)

h(s) ds + ag(t)

= –
∫ 1

0
G1(t, s)h(s) ds + ag(t).

On the other hand, if u satisfies (2.6), then u satisfies (2.9), too. It follows from (2.9)

Dβ

0+ u(t) = Dβ

0+ Iβ

0+ h(t) = D2(I2–β

0+ Iβ

0+ h
)
(t) = h(t),

which implies that the equation of boundary value problem (2.5) is satisfied.
We can easily show that u satisfies the boundary conditions of boundary value problem

(2.5). �

Lemma 2.5 If u ∈ E, then boundary value problem (1.1) is equivalent to the following in-
tegral equation:

u(t) = λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t), (2.10)
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where

G(t, s) =
1

Γ (α)

∫ 1

s

1
p(τ )

G1(t, τ )(τ – s)α–1 dτ . (2.11)

Proof Let u = u(t) be a solution of boundary value problem (1.1) and denote v(t) =
p(t)Dβ

0+ u(t), y(t) = λf (t, u(t)), h(t) = v(t)
p(t) . By Lemma 2.3 and Lemma 2.4, we have

u(t) = λ

∫ 1

0

1
p(s)

G1(t, s)
∫ s

0

(s – τ )α–1

Γ (α)
f
(
τ , u(τ )

)
dτ ds + ag(t). (2.12)

By exchanging integral order, we can get that

u(t) = λ

∫ 1

0

1
Γ (α)

f
(
s, u(s)

)
∫ 1

s

1
p(τ )

G1(t, τ )(τ – s)α–1 dτ ds + ag(t)

= λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t),

where G(t, s) is defined by (2.11).
On the other hand, if u satisfies (2.10), the u will also satisfy (2.12). By Lemma 2.3 and

Lemma 2.4, u satisfies boundary value problem (1.1). �

Denote constants

mi =
∫ 1

0
sβ–i dA(s), i = 0, 1, 2, (2.13)

γ0 =
(β – 1)(m1 – m0)

1 – m1 + m2
, (2.14)

and the function

g1(s) =
1

Γ (α)Γ (β)(1 – m1)

∫ 1

s

τ (1 – τ )β–1(τ – s)α–1

p(τ )
dτ , s ∈ [0, 1]. (2.15)

Remark 2.2 Since p ∈ C[0, 1] and p(t) > 0 for t ∈ [0, 1], we have g1(s) > 0 for s ∈ [0, 1) and

∫ 1

0
g1(s) ds =

1
Γ (α + 1)Γ (β)(1 – m1)

∫ 1

0

τα+1(1 – τ )β–1

p(τ )
dτ . (2.16)

Lemma 2.6 (See [11]) The function K (t, s), which is defined by (2.8), has the following
properties:

(1) K(t, s) is continuous for any t, s ∈ [0, 1] and K(t, s) > 0 for any t, s ∈ (0, 1);
(2)

tβ–1(1 – t)s(1 – s)β–1

Γ (β – 1)
≤ K(t, s) ≤ tβ–1(1 – t)(1 – s)β–2

Γ (β)
, t, s ∈ (0, 1);

(3)

K(t, s) ≤ 1
Γ (β)

tβ–2s(1 – s)β–1 <
1

Γ (β)
tβ–2, t, s ∈ (0, 1).
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Lemma 2.7 The function G1(t, s), which is defined by (2.7), has the following properties:
(1) G1(t, s) is continuous for t, s ∈ [0, 1] and G1(t, s) > 0 for t, s ∈ (0, 1);
(2)

(m1 – m0)s(1 – s)β–1tβ–1

Γ (β – 1)(1 – m1)
< G1(t, s) <

(1 – m1 + m2)s(1 – s)β–1tβ–2

Γ (β)(1 – m1)
, t, s ∈ (0, 1),

where mi (i = 0, 1, 2) are defined by (2.13).

Proof (1) By the expression of G1(t, s) and Lemma 2.6, it is easy to check that (1) holds.
(2) For any t, s ∈ (0, 1), from Lemma 2.6, we have

G1(t, s) = K(t, s) +
tβ–1

1 –
∫ 1

0 sβ–1 dA(s)

∫ 1

0
K(τ , s) dA(τ )

>
tβ–1

1 –
∫ 1

0 sβ–1 dA(s)

∫ 1

0

τβ–1(1 – τ )s(1 – s)β–1

Γ (β – 1)
dA(τ )

=
(m1 – m0)s(1 – s)β–1tβ–1

Γ (β – 1)(1 – m1)
.

On the other hand, for any t, s ∈ (0, 1), 1 < β ≤ 2, implies that tβ–1 < tβ–2, thus, we have

G1(t, s) ≤ tβ–2s(1 – s)β–1

Γ (β)
+

tβ–1

1 –
∫ 1

0 sβ–1 dA(s)

∫ 1

0

τβ–2s(1 – s)β–1

Γ (β)
dA(τ )

<
tβ–2s(1 – s)β–1

Γ (β)
+

tβ–2s(1 – s)β–1

Γ (β)(1 – m1)

∫ 1

0
τβ–2 dA(τ )

=
(1 – m1 + m2)s(1 – s)β–1tβ–2

Γ (β)(1 – m1)
. �

Lemma 2.8 The function G(t, s), which is defined by (2.11), has the following properties:
(1) G(t, s) is continuous for t, s ∈ [0, 1] and G(t, s) > 0 for t, s ∈ (0, 1);
(2)

(β – 1)(m1 – m0)g1(s)t < t2–βG(t, s) < (1 – m1 + m2)g1(s), t, s ∈ (0, 1),

where mi, g1(s) are defined by (2.13) and (2.15), respectively.

Proof (1) By the expression of G(t, s), we can easily get the results.
(2) According to the definition of G(t, s) and Lemma 2.7, for any t, s ∈ (0, 1), we can obtain

that

t2–βG(t, s) =
t2–β

Γ (α)

∫ 1

s

1
p(τ )

G1(t, τ )(τ – s)α–1 dτ

>
t2–β

Γ (α)

∫ 1

s

(m1 – m0)τ (1 – τ )β–1tβ–1(τ – s)α–1

Γ (β – 1)(1 – m1)p(τ )
dτ

= (β – 1)(m1 – m0)g1(s)t.
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On the other hand, for any t, s ∈ (0, 1), by Lemma 2.7, we can show that

t2–βG(t, s) =
t2–β

Γ (α)

∫ 1

s

1
p(τ )

G1(t, τ )(τ – s)α–1 dτ

<
t2–β

Γ (α)

∫ 1

s

(1 – m1 + m2)τ (1 – τ )β–1tβ–2(τ – s)α–1

Γ (β)(1 – m1)p(τ )
dτ

= (1 – m1 + m2)g1(s). �

Let

P =
{

u ∈ E : t2–βu(t) ≥ γ0t‖u‖, t ∈ [0, 1]
}

.

Then P is a cone in E.

Lemma 2.9 If u is a positive solution of boundary value problem (1.1), then u ∈ P.

Proof If u is a positive solution of boundary value problem (1.1), then from Definition 2.1,
we can get that u(t) > 0 for t ∈ (0, 1) and u satisfies (2.10). It is easy to see u ∈ E.

For any t ∈ [0, 1], by Lemma 2.8, we have

t2–βu(t) = t2–β

(

λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

)

≥ λ(β – 1)(m1 – m0)t
∫ 1

0
g1(s)f

(
s, u(s)

)
ds +

at(m2 – m1)
1 – m1

≥ λ(β – 1)(m1 – m0)t
∫ 1

0
g1(s)f

(
s, u(s)

)
ds +

at(m1 – m0)
1 – m1

≥ t(β – 1)(m1 – m0)(λ(1 – m1)
∫ 1

0 g1(s)f (s, u(s)) ds + a)
1 – m1

.

On the other hand, we have

‖u‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

≤ λ(1 – m1 + m2)
∫ 1

0
g1(s)f

(
s, u(s)

)
ds +

a max{1 – m1, m2 – m1}
1 – m1

≤ λ(1 – m1 + m2)
∫ 1

0
g1(s)f

(
s, u(s)

)
ds +

a(1 – m1 + m2)
1 – m1

=
(1 – m1 + m2)(λ(1 – m1)

∫ 1
0 g1(s)f (s, u(s)) ds + a)

1 – m1
.

Then t2–βu(t) ≥ γ0t‖u‖, which implies u ∈ P. �

We define T : P → E by

(Tu)(t) = λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t).
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Lemma 2.10 The operator T : P → P is completely continuous.

Proof By Lemma 2.9, we have Tu ∈ P for u ∈ P, then T : P → P.
(1) T is a continuous operator.
If {un} ⊂ P, u ∈ P, and ‖un – u‖ → 0 as n → ∞, there exists a constant γ > 0 such that

‖un‖ ≤ γ and ‖u‖ ≤ γ , that is, supt∈[0,1] |t2–βun(t)| ≤ γ and supt∈[0,1] |t2–βu(t)| ≤ γ . Then
there exists ϕγ ∈ Lq[0, 1], we have

t2–βG(t, s)
∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣

≤ 2(1 – m1 + m2)g1(s)ϕγ (s) for t ∈ [0, 1] and a.e. s ∈ [0, 1].

Since f satisfies the Lq-Carathéodory conditions, for a.e. t ∈ [0, 1], we have

lim
n→∞ f

(
t, un(t)

)
= lim

n→∞ f
(
t, tβ–2t2–βun(t)

)
= f

(
t, tβ–2t2–βu(t)

)
= f

(
t, u(t)

)
.

By the Lebesgue dominated convergence theorem, we can get

lim
n→∞‖Tun – Tu‖ ≤ lim

n→∞ sup
t∈[0,1]

λ

∫ 1

0
t2–βG(t, s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

≤ lim
n→∞λ(1 – m1 + m2)

∫ 1

0
g1(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

= λ(1 – m1 + m2)
∫ 1

0
lim

n→∞ g1(s)
∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

= 0, n → ∞.

Hence, T : P → P is continuous.
(2) T is relatively compact.
Let Ω ⊂ P be any bounded set, then there exists a constant r > 0 such that ‖u‖ ≤ r for

each u ∈ Ω , that is, supt∈[0,1] |t2–βu(t)| ≤ r. There exists ϕr ∈ Lq[0, 1], for any u ∈ Ω , we
have

∣
∣f

(
t, u(t)

)∣
∣ =

∣
∣f

(
t, tβ–2t2–βu(t)

)∣
∣ ≤ ϕr(t), a.e. t ∈ [0, 1].

Therefore, by Lemma 2.8, we have

‖Tu‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

≤ λ(1 – m1 + m2)‖ϕr‖Lq

∫ 1

0
g1(s) ds +

a max{1 – m1, m2 – m1}
1 – m1

,

which implies that T(Ω) is uniformly bounded.
In addition, because G(t, s) is continuous on [0, 1] × [0, 1], then it must be uniformly

continuous on [0, 1] × [0, 1]. Thus, for any ε > 0, there exists a constant δ ∈ (0, ε(1–m1)
2a|1–m2|+1 )
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such that

∣
∣t2–β

1 G(t1, s1) – t2–β
2 G(t2, s2)

∣
∣ <

ε

2λ‖ϕr‖Lq + 1

whenever |t1 – t2| < δ and |s1 – s2| < δ, where t1, t2, s1, s2 ∈ [0, 1].
Then, for any u ∈ Ω and t1, t2 ∈ [0, 1] with |t1 – t2| < δ, we have

∣
∣t2–β

1 Tu(t1) – t2–β
2 Tu(t2)

∣
∣

= λ

∫ 1

0

∣
∣t2–β

1 G(t1, s) – t2–β
2 G(t2, s)

∣
∣f

(
s, u(s)

)
ds +

a|1 – m2|
1 – m1

|t1 – t2|

≤ λε‖ϕr‖Lq

2λ‖ϕr‖Lq + 1
+

a|1 – m2|δ
1 – m1

< ε.

Thus, we prove that T(Ω) is equicontinuous.
According to the Arzela–Ascoli theorem, T is relatively compact.
Therefore, T : P → P is completely continuous. �

Lemma 2.11 (See [36], Lemma 2.3.1) Let E be a Banach space and P ⊆ E be a cone. As-
sume that Ω is a bounded open subset of E and θ ∈ Ω and that T : P ∩Ω̄ → P is completely
continuous. If

Tu �= τu for all u ∈ P ∩ ∂Ω and τ ≥ 1, (2.17)

then the fixed point index i(T , P ∩ Ω , P) = 1.

Lemma 2.12 (See [36], Corollary 2.3.1) Let E be a Banach space and P ⊆ E be a cone.
Assume that Ω is a bounded open subset of E and that T : P ∩ Ω̄ → P is completely con-
tinuous. If there exists u0 ∈ P\{θ} such that

u – Tu �= τu0 for all u ∈ P ∩ ∂Ω and τ ≥ 0, (2.18)

then the fixed point index i(T , P ∩ Ω , P) = 0.

Corollary 2.1 Let E be a Banach space and P ⊆ E be a cone. Assume that Ω is a bounded
open subset of E and θ ∈ Ω and that T : P ∩ Ω̄ → P is completely continuous.

(1) If ‖u‖ > ‖Tu‖ for u ∈ P ∩ ∂Ω , then i(T , P ∩ Ω , P) = 1;
(2) If ‖u‖ < ‖Tu‖ for u ∈ P ∩ ∂Ω , then i(T , P ∩ Ω , P) = 0.

Proof (1) If ‖u‖ > ‖Tu‖ for u ∈ P ∩ ∂Ω , then we can show that (2.17) holds.
Otherwise, there exist u∗ ∈ P ∩ ∂Ω and τ ∗ ≥ 1 such that Tu∗ = τ ∗u∗, then

∥
∥Tu∗∥∥ =

∥
∥τ ∗u∗∥∥ ≥ ∥

∥u∗∥∥,

which contradicts ‖u‖ > ‖Tu‖. In view of Lemma 2.11, we can get i(T , P ∩ Ω , P) = 1.
(2) If ‖u‖ < ‖Tu‖ for u ∈ P ∩ ∂Ω , we can prove that (2.18) holds.
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In fact, if for any u ∈ P\{θ} there exist u∗ ∈ P ∩ ∂Ω and τ ∗ ≥ 0 such that u∗ – Tu∗ = τ ∗u,
then

u∗ = Tu∗ + τ ∗u ≥ Tu∗.

Thus, ‖u∗‖ ≥ ‖Tu∗‖, in contradiction with ‖u‖ < ‖Tu‖.
From Lemma 2.12, we can get i(T , P ∩ Ω , P) = 0. �

3 The existence of at least one positive solution
For convenience, we denote

f ∞ = lim sup
u→+∞

sup
t∈[0,1]

f (t, tβ–2u)
u

; f∞ = lim inf
u→+∞ inf

t∈[ 1
4 , 3

4 ]

f (t, tβ–2u)
u

;

f 0 = lim sup
u→0+

sup
t∈[0,1]

f (t, tβ–2u)
u

; f0 = lim inf
u→0+

inf
t∈[ 1

4 , 3
4 ]

f (t, tβ–2u)
u

.

Let Br = {u ∈ E : ‖u‖ < r}, ∂Br = {u ∈ E : ‖u‖ = r}, Pr = P ∩ Br , ∂Pr = P ∩ ∂Br .

Theorem 3.1 Suppose that there exist constants ξ ,η > 0 such that f 0 < ξ and f∞ > η. If

ξ <
γ 2

0 η
∫ 3

4
1
4

g1(s) ds

4
∫ 1

0 g1(s) ds
and λ satisfies

4
(

(β – 1)(m1 – m0)γ0η

∫ 3
4

1
4

g1(s) ds
)–1

≤ λ ≤
(

(1 – m1 + m2)ξ
∫ 1

0
g1(s) ds

)–1

, (3.1)

then there exists a constant aλ > 0 such that boundary value problem (1.1) with 0 ≤ a ≤ aλ

has at least one positive solution.

Proof Since f 0 < ξ , there exists a constant r1 > 0 such that

f
(
t, tβ–2u

)
< ξu, t ∈ (0, 1], and u ∈ [0, r1].

Let

aλ =
(1 – m1)(1 – λ(1 – m1 + m2)ξ

∫ 1
0 g1(s) ds)r1

max{1 – m1, m2 – m1} .

Because λ satisfies (3.1) and 0 ≤ a ≤ aλ, by Lemma 2.8, for any u ∈ ∂Pr1 , we have 0 <
t2–βu(t) ≤ r1 for t ∈ (0, 1] and

‖Tu‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

< λ(1 – m1 + m2)ξ
∫ 1

0
g1(s)s2–βu(s) ds +

aλ max{1 – m1, m2 – m1}
1 – m1

≤ λ(1 – m1 + m2)ξr1

∫ 1

0
g1(s) ds +

aλ max{1 – m1, m2 – m1}
1 – m1

= r1.
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Hence,

‖Tu‖ < ‖u‖, u ∈ ∂Pr1 .

It follows from Corollary 2.1(1) i(T , Pr1 , P) = 1.
By f∞ > η, there exists a constant r2 > r1 such that

f
(
t, tβ–2u

)
> ηu, t ∈

[
1
4

,
3
4

]

and u ∈
[

1
4
γ0r2, +∞

)

.

For any u ∈ ∂Pr2 , we have

t2–βu(t) ≥ γ0t‖u‖ ≥ 1
4
γ0r2, t ∈

[
1
4

,
3
4

]

,

and by Lemma 2.8,

‖Tu‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

> sup
t∈[0,1]

λ(β – 1)(m1 – m0)t
∫ 3

4

1
4

g1(s)f
(
s, sβ–2s2–βu(s)

)
ds

> λ(β – 1)(m1 – m0)
∫ 3

4

1
4

ηs2–βu(s)g1(s) ds

≥ 1
4
λ(β – 1)(m1 – m0)γ0r2η

∫ 3
4

1
4

g1(s) ds

≥ r2.

Therefore,

‖Tu‖ > ‖u‖, u ∈ ∂Pr2 . (3.2)

It follows from Corollary 2.1(2) i(T , Pr2 , P) = 0.
According to the additivity property of the fixed point index, we obtain

i(T , Pr2\P̄r1 , P) = i(T , Pr2 , P) – i(T , Pr1 , P) = –1.

Then T has at least one fixed point u ∈ P∩ (Pr2\P̄r1 ) with r1 < ‖u‖ < r2. Because u ∈ P, we
have t2–βu(t) ≥ γ0t‖u‖ > 0 for t ∈ (0, 1], that is, u(t) > 0 for t ∈ (0, 1), u = u(t) is a positive
solution for boundary value problem (1.1) with 0 ≤ a ≤ aλ. �

Theorem 3.2 If f 0 = 0, f∞ = +∞, and λ > 0, then there exists a constant aλ > 0 such that
boundary value problem (1.1) with 0 ≤ a ≤ aλ has at least one positive solution.

Proof Let λ > 0, 0 < ξ < (λ(1 – m1 + m2)
∫ 1

0 g1(s) ds)–1 and η ≥ 4(λ(β – 1)(m1 – m0)γ0 ×
∫ 3

4
1
4

g1(s) ds)–1.
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By f 0 = 0, there exists a constant r1 > 0 such that

f
(
t, tβ–2u

)
< ξu, t ∈ (0, 1], and u ∈ [0, r1],

and by f∞ = +∞, there exists a constant r2 > r1 such that

f
(
t, tβ–2u

)
> ηu, t ∈

[
1
4

,
3
4

]

and u ∈
[

1
4
γ0r2, +∞

)

.

Let

aλ =
(1 – m1)(1 – λ(1 – m1 + m2)ξ

∫ 1
0 g1(s) ds)r1

max{1 – m1, m2 – m1} .

For 0 ≤ a ≤ aλ, similar to the proof of Theorem 3.1, we have

i(T , Pr1 , P) = 1

and

i(T , Pr2 , P) = 0.

According to the additivity property of the fixed point index,

i(T , Pr2\P̄r1 , P) = i(T , Pr2 , P) – i(T , Pr1 , P) = –1.

Then T has at least one fixed point u ∈ P ∩ (Pr2\P̄r1 ) with r1 < ‖u‖ < r2, that is, u is a
positive solution for boundary value problem (1.1) with 0 ≤ a ≤ aλ. �

Theorem 3.3 Suppose that there exist constants ξ , η > 0 such that f ∞ < ξ and f0 > η. If

ξ <
γ 2

0 η
∫ 3

4
1
4

g1(s) ds

12
∫ 1

0 g1(s) ds
and λ satisfies

4
(

(β – 1)(m1 – m0)γ0η

∫ 3
4

1
4

g1(s) ds
)–1

≤ λ ≤
(

3(1 – m1 + m2)ξ
∫ 1

0
g1(s) ds

)–1

, (3.3)

then boundary value problem (1.1) with a ≥ 0 has at least one positive solution.

Proof By f0 > η, there exists a constant R1 > 0 such that

f
(
t, tβ–2u

)
> ηu, t ∈

[
1
4

,
3
4

]

, and u ∈ [0, R1].

When λ satisfies (3.3) and a ≥ 0, similar to the proof of Theorem 3.1, we can obtain

‖Tu‖ > ‖u‖, u ∈ ∂PR1 ,

and

i(T , PR1 , P) = 0.
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On the other hand, by f ∞ < ξ , there exists a constant M > 0 such that

f
(
t, tβ–2u

)
< ξu, t ∈ [0, 1], and u ∈ [M, +∞).

Since f satisfies the Lq-Carathéodory conditions, for the above M > 0, there exists ϕM ∈
Lq[0, 1] such that

∣
∣f

(
t, tβ–2u

)∣
∣ ≤ ϕM(t), a.e. t ∈ [0, 1] and u ∈ [0, M].

Let

R2 > max

{

M, R1, 3λ(1 – m1 + m2)
∫ 1

0
g1(s)ϕM(s) ds,

3a max{1 – m1, m2 – m1}
1 – m1

}

.

For any u ∈ ∂PR2 , by Lemma 2.8, we have

‖Tu‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

≤ λ(1 – m1 + m2)
(∫

0≤s2–β u(s)≤M
g1(s)f

(
s, u(s)

)
ds +

∫

s2–β u(s)≥M
g1(s)f

(
s, u(s)

)
ds

)

+
a max{1 – m1, m2 – m1}

1 – m1

< λ(1 – m1 + m2)
(∫ 1

0
g1(s)ϕM(s) ds + ξR2

∫ 1

0
g1(s) ds

)

+
a max{1 – m1, m2 – m1}

1 – m1

<
R2

3
+

R2

3
+

R2

3

= R2.

That is,

‖Tu‖ < ‖u‖, u ∈ ∂PR2 .

From Corollary 2.1(1), we can get i(T , PR2 , P) = 1.
According to the additivity property of the fixed point index, we obtain

i(T , PR2\P̄R1 , P) = i(T , PR2 , P) – i(T , PR1 , P) = 1.

Then T has at least one fixed point u ∈ P ∩ (PR2\P̄R1 ) with R1 < ‖u‖ < R2. That is, u is a
positive solution for boundary value problem (1.1) with a ≥ 0. �

Theorem 3.4 If f0 = +∞, f ∞ = 0, λ > 0, and a ≥ 0, then boundary value problem (1.1) has
at least one positive solution.
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Proof Denote

η = 4
(

λ(β – 1)(m1 – m0)γ0

∫ 3
4

1
4

g1(s) ds
)–1

,

ξ =
(

3λ(1 – m1 + m2)
∫ 1

0
g1(s) ds

)–1

.

By f0 = +∞, there exists a constant R1 > 0 such that

f
(
t, tβ–2u

) ≥ ηu, t ∈
[

1
4

,
3
4

]

, and u ∈ [0, R1].

On the other hand, by f ∞ = 0, there exists a constant M > 0 such that

f
(
t, tβ–2u

) ≤ ξu, t ∈ (0, 1], and u ∈ [M, +∞).

Let

R2 > max

{

M, R1, 3λ(1 – m1 + m2)
∫ 1

0
g1(s)ϕM(s) ds,

3a max{1 – m1, m2 – m1}
1 – m1

}

.

Similar to the proof of Theorem 3.3, we can obtain T has at least one fixed point u ∈
P ∩ (PR2\P̄R1 ) with R1 < ‖u‖ < R2. That is, u = u(t) is a positive solution for boundary value
problem (1.1). �

Theorem 3.5 If f∞ = +∞, r > 0 is a constant and λ satisfies

0 < λ ≤ r
(

(1 – m1 + m2)
∫ 1

0
g1(s)ϕr(s) ds

)–1

, (3.4)

then there exists a constant aλ > 0 such that boundary value problem (1.1) with 0 ≤ a ≤ aλ

has at least one positive solution u with ‖u‖ > r.

Proof For any given r > 0, when λ satisfies (3.4), let

aλ =
(1 – m1)(r – λ(1 – m1 + m2)

∫ 1
0 g1(s)ϕr(s) ds)

max{1 – m1, m2 – m1} .

For 0 ≤ a ≤ aλ and any u ∈ ∂Pr , by Lemma 2.8, we have

‖Tu‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

< λ(1 – m1 + m2)
∫ 1

0
g1(s)ϕr(s) ds +

aλ max{1 – m1, m2 – m1}
1 – m1

= r.

That is,

‖Tu‖ < ‖u‖, u ∈ ∂Pr .



Jia et al. Advances in Difference Equations        (2019) 2019:280 Page 17 of 26

By Corollary 2.1(1), we can get i(T , Pr , P) = 1.
Let η = 4(λ(β – 1)(m1 – m0)γ0

∫ 3
4

1
4

g1(s) ds)–1. Since f∞ = +∞, there exists a constant r1 > r
such that

f
(
t, tβ–2u

) ≥ ηu, t ∈
[

1
4

,
3
4

]

, and u ∈
[

1
4
γ0r1, +∞

)

.

Similar to the proof of Theorem 3.2, we obtain

‖Tu‖ > ‖u‖, u ∈ ∂Pr1 .

By Corollary 2.1(2)

i(T , Pr1 , P) = 0.

According to the additivity property of the fixed point index,

i(T , Pr1\P̄r , P) = i(T , Pr1 , P) – i(T , Pr , P) = –1.

Then T has at least one fixed point u ∈ P ∩ (Pr1\P̄r) with r < ‖u‖ < r1. That is, u = u(t) is
a positive solution for boundary value problem (1.1) with 0 ≤ a ≤ aλ. �

4 The multiplicity and nonexistence of positive solutions
In this section, we present the existence of at least two positive solutions and nonexistence
positive solutions.

Theorem 4.1 Suppose that there exist constants η1,η2 > 0 such that f0 > η1 and f∞ > η2.
Let a constant

r > 4
∫ 1

0
g1(s)ϕr(s) ds

(

min{η1,η2}γ 2
0

∫ 3
4

1
4

g1(s) ds
)–1

. (4.1)

If λ satisfies

4
(

min{η1,η2}(β – 1)(m1 – m0)γ0

∫ 3
4

1
4

g1(s) ds
)–1

≤ λ ≤ r
(

(1 – m1 + m2)
∫ 1

0
g1(s)ϕr(s) ds

)–1

, (4.2)

then there exists a constant aλ ≥ 0 such that boundary value problem (1.1) with 0 ≤ a ≤ aλ

has at least two positive solutions u1 and u2.

Proof Let

aλ =
(1 – m1)(r – λ(1 – m1 + m2)

∫ 1
0 g1(s)ϕr(s) ds)

max{1 – m1, m2 – m1} ,

by (4.1) and (4.2), we have aλ ≥ 0.
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For 0 ≤ a ≤ aλ and any u ∈ ∂Pr , similar to the proof of Theorem 3.5, we have

‖Tu‖ < ‖u‖, u ∈ ∂Pr ,

and

i(T , Pr , P) = 1.

Since f0 > η1, there exists a constant 0 < r̄1 < r such that

f
(
t, tβ–2u

)
> η1u, t ∈

[
1
4

,
3
4

]

, and u ∈ [0, r̄1].

By f∞ > η2, there exists a constant r̄2 > r such that

f
(
t, tβ–2u

)
> η2u, t ∈

[
1
4

,
3
4

]

, and u ∈
[

1
4
γ0r̄2, +∞

)

.

Similar to the proof of Theorem 3.3 and Theorem 3.1, we can obtain ‖Tu‖ > ‖u‖, u ∈
∂Pr̄1 , and ‖Tu‖ > ‖u‖, u ∈ ∂Pr̄2 . Hence, by Corollary 2.1(2), we can get i(T , Pr̄1 , P) = 0 and
i(T , Pr̄2 , P) = 0.

According to the additivity property of the fixed point index, we can show

i(T , Pr\P̄r̄1 , P) = i(T , Pr , P) – i(T , Pr̄1 , P) = 1

and

i(T , Pr̄2\P̄r , P) = i(T , Pr̄2 , P) – i(T , Pr , P) = –1.

Then T has at least two fixed points u1 ∈ P ∩ (Pr\P̄r̄1 ) with r̄1 < ‖u1‖ < r and u2 ∈ P ∩
(P̄r̄2\Pr) with r < ‖u2‖ < r̄2. That is, u1 and u2 are positive solutions of boundary value
problem (1.1) with 0 ≤ a ≤ aλ. �

Theorem 4.2 Suppose that f0 = +∞, f∞ = +∞, and a constant r > 0 hold. If λ satisfies

0 < λ ≤ r
(

(1 – m1 + m2)
∫ 1

0
g1(s)ϕr(s) ds

)–1

, (4.3)

then there exists a constant aλ ≥ 0 such that boundary value problem (1.1) with 0 ≤ a ≤ aλ

has at least two positive solutions u1 and u2.

Proof Let

aλ =
(1 – m1)(r – λ(1 – m1 + m2)

∫ 1
0 g1(s)ϕr(s) ds)

max{1 – m1, m2 – m1} .

Since λ satisfies (4.3), we have aλ ≥ 0.
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For 0 ≤ a ≤ aλ and any u ∈ ∂Pr , similar to the proof of Theorem 3.5, we have

‖Tu‖ < ‖u‖ for u ∈ ∂Pr .

By Corollary 2.1(1), we can get i(T , Pr , P) = 1.
Denote

η1 = η2 = 4
(

λ(β – 1)(m1 – m0)γ0

∫ 3
4

1
4

g1(s) ds
)–1

.

By f0 = +∞, there exists a constant 0 < r̄1 < r such that

f
(
t, tβ–2u

) ≥ η1u, t ∈
[

1
4

,
3
4

]

, and u ∈ [0, r̄1].

And by f∞ = +∞, there exists a constant r̄2 > r such that

f
(
t, tβ–2u

) ≥ η2u, t ∈
[

1
4

,
3
4

]

, and u ∈
[

1
4
γ0r̄2, +∞

)

.

Similar to the proof of Theorem 3.3 and Theorem 3.1, we obtain

‖Tu‖ > ‖u‖, u ∈ ∂Pr̄1 , and ‖Tu‖ > ‖u‖, u ∈ ∂Pr̄2 .

By Corollary 2.1(2), we can get i(T , Pr̄1 , P) = 0 and i(T , Pr̄2 , P) = 0.
According to the additivity property of the fixed point index, we obtain

i(T , Pr\P̄r̄1 , P) = i(T , Pr , P) – i(T , Pr̄1 , P) = 1

and

i(T , Pr̄2\P̄r , P) = i(T , Pr̄2 , P) – i(T , Pr , P) = –1.

Then T has at least two fixed points u1 ∈ P ∩ (Pr\P̄r̄1 ) with r̄1 < ‖u1‖ < r, and u2 ∈ P ∩
(P̄r̄2\Pr) with r < ‖u2‖ < r̄2. That is, u1 and u2 are positive solutions for boundary value
problem (1.1) with 0 ≤ a ≤ aλ. �

Theorem 4.3 Suppose that 0 < lim infu→+∞ inft∈[ 1
4 , 3

4 ] f (t, tβ–2u) < +∞, f 0 = 0, and f ∞ = 0
hold. Then there exist constants λ∗ > 0 and a0 > 0 such that boundary value problem (1.1)
has at least two positive solutions with λ ≥ λ∗ and 0 ≤ a ≤ a0.

Proof By 0 < lim infu→+∞ inft∈[ 1
4 , 3

4 ] f (t, tβ–2u) < +∞, there exist constants L > 0 and R2 > 0
such that

f
(
t, tβ–2u

)
> L, t ∈

[
1
4

,
3
4

]

, and u ∈ [R2, +∞),

Let

λ∗ =
4R2

(m1 – m0)(β – 1)L
∫ 3

4
1
4

g1(s) ds
.
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We denote ξ = (3λ(1 – m1 + m2)
∫ 1

0 g1(s) ds))–1 for λ ≥ λ∗.
By f ∞ = 0, there exists a constant M > R2 such that

f
(
t, tβ–2u

) ≤ ξu, t ∈ (0, 1], and u ∈ [M, +∞).

By f 0 = 0, there exists a constant 0 < R1 < R2 such that

f
(
t, tβ–2u

) ≤ ξu, t ∈ (0, 1], and u ∈ [0, R1].

Let

R3 >
{

42–βR2, 3λ(1 – m1 + m2)
∫ 1

0
g1(s)ϕM(s) ds

}

,

for 0 < R1 < R2 < R3, we define

Ω1 =
{

u : u ∈ E,‖u‖ < R1
}

,

Ω2 =
{

u : u ∈ E,‖u‖ < R3, min
t∈[ 1

4 , 3
4 ]

t2–βu(t) > R2

}
,

Ω3 =
{

u : u ∈ E,‖u‖ < R3
}

.

It is easy to see that Ω1, Ω2, and Ω3 are nonempty bounded convex open sets in E, and
Ω1 ⊂ Ω3, Ω2 ⊂ Ω3, and Ω1 ∩ Ω2 = ∅. Let

a0 =
R1(1 – m1)

3 max{1 – m1, m2 – m1} .

Then, when 0 ≤ a ≤ a0, for any u ∈ P ∩ ∂Ω1, similar to Theorem 3.1, we obtain

‖Tu‖ < ‖u‖, u ∈ P ∩ ∂Ω1

and by Corollary 2.1(1), we can get that

i(T , P ∩ Ω1, P) = 1. (4.4)

For any u ∈ P ∩ ∂Ω3, by Lemma 2.8, we have

‖Tu‖ = sup
t∈[0,1]

t2–β

∣
∣
∣
∣λ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds + ag(t)

∣
∣
∣
∣

≤ λ(1 – m1 + m2)
(∫

0≤s2–β u(s)≤M
g1(s)f

(
s, u(s)

)
ds +

∫

s2–β u(s)≥M
g1(s)f

(
s, u(s)

)
ds

)

+
a max{1 – m1, m2 – m1}

1 – m1

< λ(1 – m1 + m2)
(∫ 1

0
g1(s)ϕM(s) ds + ξR3

∫ 1

0
g1(s) ds

)
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+
a max{1 – m1, m2 – m1}

1 – m1

<
R3

3
+

R3

3
+

R3

3
= R3,

that is,

‖Tu‖ < ‖u‖ for u ∈ P ∩ ∂Ω3,

it follows i(T , P ∩ Ω3, P) = 1 from Corollary 2.1(1).
Similarly, for any u ∈ P ∩ ∂Ω2, we have

‖Tu‖ ≤ λ(1 – m1 + m2)
(∫

0≤s2–β u(s)≤M
g1(s)f

(
s, u(s)

)
ds +

∫

s2–β u(s)≥M
g1(s)f

(
s, u(s)

)
ds

)

+
a max{1 – m1, m2 – m1}

1 – m1

< λ(1 – m1 + m2)
(∫ 1

0
g1(s)ϕM(s) ds + ξR3

∫ 1

0
g1(s) ds

)

+
a max{1 – m1, m2 – m1}

1 – m1

<
R3

3
+

R3

3
+

R3

3
= R3,

then ‖Tu‖ < R3, and

min
t∈[ 1

4 , 3
4 ]

t2–βTu(t) ≥ min
t∈[ 1

4 , 3
4 ]

t2–βλ

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds

≥ min
t∈[ 1

4 , 3
4 ]

λ(β – 1)(m1 – m0)t
∫ 3

4

1
4

g1(s)f
(
s, u(s)

)
ds

>
1
4
λ∗(β – 1)(m1 – m0)L

∫ 3
4

1
4

g1(s) ds

= R2,

so, Tu ∈ P ∩ Ω2.
Let u0 ≡ 1

2 (42–βR2 + R3), and

H(τ , u) = (1 – τ )Tu + τu0, (τ , u) ∈ [0, 1] × (P ∩ Ω̄2).

Because u0 ∈ E, ‖u0‖ = 1
2 (42–βR2 + R3), γ0 < 1, then t2–βu0 ≥ γ0t‖u0‖, that is, u0 ∈ P.

Since R3 > 42–βR2, we can see that ‖u0‖ < R3, mint∈[ 1
4 , 3

4 ] t2–βu0 > R2, which implies u0 ∈
P ∩ Ω2. So, we have

H(τ , u) ∈ P ∩ Ω2, (τ , u) ∈ [0, 1] × (P ∩ Ω̄2).
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Therefore, we have

H(τ , u) �= u, (τ , u) ∈ [0, 1] × (P ∩ ∂Ω2).

By the complete continuity of the operator T and the definition of H , we can know that
H : [0, 1] × (P ∩ Ω2) → P is completely continuous.

According to the homotopy invariance and normality of fixed point index,

i(T , P ∩ Ω2, P) = i(u0, P ∩ Ω2, P) = 1.

Thus, T has one fixed point u1 in P ∩ Ω2.
By the additivity of the fixed point index, we obtain

i
(
T , P ∩ (

Ω3\(Ω̄1 ∪ Ω̄2)
)
, P

)

= i(T , P ∩ Ω3, P) – i(T , P ∩ Ω2, P) – i(T , P ∩ Ω1, P)

= 1 – 1 – 1 = –1.

Thus, T has one fixed point u2 in P ∩ (Ω3\(Ω̄1 ∪ Ω̄2)).
Consequently, u1 and u2 are positive solutions of boundary value problem (1.1) with

λ ≥ λ∗ and 0 ≤ a ≤ a0. �

Remark 4.1 If f (t, u) �= 0, by (4.4), we can get that boundary value problem (1.1) has at
least one positive solution in P ∩ Ω1. Then boundary value problem (1.1) with λ ≥ λ∗ and
0 ≤ a ≤ a0 has at least three positive solutions in P ∩ Ω3.

Similar to the proof of Theorem 4.3, we can prove the following theorem.

Theorem 4.4 Suppose that λ > 0, lim infu→+∞ inft∈[ 1
4 , 3

4 ] f (t, tβ–2u) = +∞, f 0 = 0, and
f ∞ = 0 hold. Then there exists a constant a0 > 0 such that boundary value problem (1.1)
has at least two positive solutions with 0 ≤ a ≤ a0.

Theorem 4.5 If f∞ > 0, then there exist constants λ∗ > 0 and a0 > 0 such that boundary
value problem with λ ≥ λ∗ and a ≥ a0 (1.1) has no positive solution.

Proof Since f∞ > 0, there exist constants η > 0 and r1 > 0 such that

f
(
t, tβ–2u

)
> ηu, t ∈

[
1
4

,
3
4

]

, and u ∈
[

1
4
γ0r1, +∞

)

. (4.5)

Let

λ∗ = 8
(

(m1 – m0)(β – 1)ηγ0

∫ 3
4

1
4

g1(s) ds
)–1

,

a0 = 2(1 – m1)r1(m2 + 1 – 2m1)–1.

If u is a positive solution of boundary value problem (1.1) with λ ≥ λ∗ and a ≥ a0, we will
show that this leads to a contradiction.
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In fact, since Tu = u, we have

(
1
2

)2–β

u
(

1
2

)

= λ

(
1
2

)2–β ∫ 1

0
G

(
1
2

, s
)

f
(
s, u(s)

)
ds +

a( 1
2 m2 + 1

2 – m1)
1 – m1

>
a( 1

2 m2 + 1
2 – m1)

1 – m1

≥ a0( 1
2 m2 + 1

2 – m1)
1 – m1

= r1.

Hence, ‖u‖ > r1.
Because u ∈ P, by (4.5), we can get that

t2–βu(t) ≥ γ0t‖u‖ >
1
4
γ0r1, t ∈

[
1
4

,
3
4

]

,

and

(
1
2

)2–β

u
(

1
2

)

= λ

(
1
2

)2–β ∫ 1

0
G

(
1
2

, s
)

f
(
s, u(s)

)
ds +

a( 1
2 m2 + 1

2 – m1)
1 – m1

>
1
8
λ∗(β – 1)(m1 – m0)γ0η‖u‖

∫ 3
4

1
4

g1(s) ds + r1

= ‖u‖ + r1.

That is, ‖u‖ > ‖u‖ + r1, which is a contradiction. Therefore, boundary value problem (1.1)
with λ ≥ λ∗ and a ≥ a0 has no positive solution. �

5 Illustration
To illustrate our main results, we present the following examples.

Example 5.1 Consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
1
4
0+ ( 1

t+1 D
7
4
0+ u(t)) + λ(t2 + 1)(160t 1

4 u(t) – 51,199
320 sin(t 1

4 u(t))) = 0, t ∈ (0, 1),

limt→0+ t 1
4 u(t) = a, u(1) = 1

2 u( 1
4 ) + 1

2 u( 3
4 ),

limt→0+ 1

(t+1)t
3
4

D
7
4
0+ u(t) = 0,

(5.1)

where α = 1
4 , β = 7

4 , f (t, u) = (t2 + 1)(160t 1
4 u – 51,199

320 sin(t 1
4 u)), p(t) = 1

t+1 > 0, and

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t < 1
4 ,

1
2 , 1

4 ≤ t < 3
4 ,

1, 3
4 ≤ t < 1.

Hence,

0 <
∫ 1

0
sβ–1 dA(s) ≈ 0.57974 < 1, γ0 ≈ 0.105123 < 1,
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m0 ≈ 0.346417, m1 ≈ 0.57974, m2 ≈ 1.24439,

f 0 =
1

160
< ξ =

1
80

, f∞ = 170 > η = 160.

We can obtain the following results.
(1) It is easy to check that all the conditions of Theorem 3.1 are satisfied. By

Theorem 3.1, for each λ with 2.75654 ≤ λ ≤ 62.0449, let a constant r1 = 0.01, then
for each a satisfying 0 ≤ a ≤ 0.00632303 – 0.00010191λ, boundary value problem
(5.1) has at least one positive solution.

(2) It is easy to see that all the conditions of Theorem 4.5 are satisfied. By Theorem 4.5,
let r1 = 381, for all λ ≥ 5.51308 and a ≥ 295.175, boundary value problem (5.1) has
no positive solution.

Example 5.2 Consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
1
2
0+ ((t + 1)D

3
2
0+ u(t)) + λ(etu2(t) + t sin(t 1

2 u(t))) = 0, t ∈ (0, 1),

limt→0+ t 1
2 u(t) = a, u(1) = 1

4 u( 1
4 ) + 1

8 u( 3
4 ),

limt→0+ t 1
2 (t + 1)D

3
2
0+ u(t) = 0,

(5.2)

where α = 1
2 , β = 3

2 , f (t, u) = (etu2 + t sin(t 1
2 u)), p(t) = t + 1 > 0 for any t ∈ [0, 1], and

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t < 1
4 ,

1
4 , 1

4 ≤ t < 3
4 ,

1
4 + 1

8 , 3
4 ≤ t < 1.

Then

∫ 1

0
sβ–1 dA(s) ≈ 0.233253 < 1, γ0 ≈ 0.0428085 < 1,

m0 ≈ 0.11244, m1 ≈ 0.233253, m2 ≈ 0.644338,

f∞ = +∞, f0 = +∞.

All the conditions of Theorem 4.2 are satisfied. By Theorem 4.2, for given r > 1, 0 < λ ≤
1.1124 and each a satisfying 0 ≤ a ≤ 1 – 0.402948λ, boundary value problem (5.2) has at
least two positive solutions u1, u2.

Example 5.3 Consider the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
1
2
0+ ((t + 1)D

3
2
0+ u(t)) + λf (t, u(t)) = 0, t ∈ (0, 1),

limt→0+ t 1
2 u(t) = a, u(1) =

∫ 1
0 su(s) ds,

limt→0+ t 1
2 (t + 1)D

3
2
0+ u(t) = 0,

(5.3)
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where α = 1
2 , β = 3

2 , p(t) = t + 1, A(t) = 1
2 t2, and

f (t, u) =

⎧
⎨

⎩

t2u2, 0 ≤ t ≤ 1 and 0 ≤ u < 1,

t2√u, 0 ≤ t ≤ 1 and u ≥ 1.

Then lim infu→+∞ inft∈[ 1
4 , 3

4 ] f (t, tβ–2u) = +∞, f 0 = 0, and f ∞ = 0,

0 <
∫ 1

0
sβ–1 dA(s) =

∫ 1

0
s

3
2 ds =

2
5

< 1,

m0 =
2
7

, m1 =
2
5

, m2 =
2
3

, γ0 =
6

133
< 1.

All the conditions of Theorem 4.4 are satisfied. By Theorem 4.4, there exists a constant
a0 > 0 such that boundary value problem (5.3) with 0 ≤ a ≤ a0 has at least two positive
solutions for λ > 0.
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