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Abstract
This paper is devoted to the numerical scheme for the impulsive differential
equations. The main idea of this method is, for the first time, to establish a broken
reproducing kernel space that can be used in pulse models. Then the uniform
convergence of the numerical solution is proved, and the time consuming Schmidt
orthogonalization process is avoided. The proposed method is proved to be stable
and have the second-order convergence. The algorithm is proved to be feasible and
effective through some numerical examples.
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1 Introduction
Pulse boundary value problems occur in many applications: population dynamics [1],
physics, chemistry [2], irregular geometries and interface problems [3–5], signal process-
ing [6, 7]. The research on the impulsive differential equations with all kinds of bound-
ary value is much more active in recent years. However, only in the last few decades
has the attention been paid to the theory and numerical analysis of IDEs. All kinds of
methods have been widely used to study the existence of solutions for impulsive prob-
lems [8–12]. Many researchers have extensively studied the numerical methods of im-
pulsive differential equations. Berenguer [13] provide a collage-type theorem for impul-
sive differential equations with inverse boundary conditions. Epshteyn [14, 15] solved the
high-order differential equations with interface conditions based on Difference Potentials
approach for the variable coefficient. Hossainzadeh [16] applied the Adomian Decompo-
sition Method(ADM) for solving first-order impulsive differential equations. Zhang [17]
researched numerical solutions to the first-order impulsive differential equations by collo-
cation methods. Zhang [18] analyzed a class of linear impulsive delay differential equation
by asymptotic stability. Impulsive differential equation is a mathematical form of problems
in many application fields, how to solve the impulsive differential equation accurately is
very important.
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In this paper, we consider the following second-order impulsive differential equations
(IDEs for short):

⎧
⎪⎪⎨

⎪⎪⎩

u′′(x) + a1(x)u′(x) + a0(x)u(x) = f (x), x ∈ [a, b]\{c},
u(a) = α1, u(b) = α2,

�u′(c) = α3, �u(c) = α4,

(1)

where �u′(c) = u′(c+) – u′(c–), α3 and α4 are not at the same time as 0. ai(x) and f (x) are
known function, αj ∈ R, j = 1, 2, 3, 4. In this paper, only one pulse point is considered, by
that analogy, the algorithm can also be applied to multiple pulse points.

As known to all, the reproducing kernel method is a powerful tool to solve differential
equations [19–23]. However, the reproducing kernel space is smooth, in order to solve the
impulsive differential equation, for the first time, we propose a broken reproducing kernel
space.

The aim of this paper is to derive the numerical solutions of Eq. (1) in Sect. 1. In Sect. 2,
we introduce the reproducing kernel space for solving problems. Some primary results
are analyzed in Sect. 3. The numerical algorithm and convergence order of approximate
solution is presented in Sect. 4. In Sect. 5, the presented algorithms are applied to some
numerical experiments. Then we end with some conclusions in Sect. 6.

2 The reproducing kernel method
The application of reproducing kernel method in the boundary value problems has been
developed by many researchers, because this method is easy to obtain the exact solution
with the series form and get approximate solution with higher precision [19, 20]. However,
this method required the exact solution to be smooth, this leads to the fact that IDEs
cannot be solved directly in the reproducing kernel space.

In this paper, the traditional reproducing kernel space is dealt with delicately, the space
has been broken into two spaces that each one is smooth reproducing kernel space, so we
can use this space to solve IDEs. We assume that Eq. (1) have a unique solution.

2.1 The traditional reproducing kernel space
• The reproducing kernel space W 3

2 [a, c] is defined as follows:
W 3

2 [a, c] = {u(x) | u′′ is an absolutely continuous real value funcion, u′′′ ∈
L2[a, c]} [20] (W 3

a for short).
The inner product and norm are defined as follows:

〈
u(t), v(t)

〉
=

2∑

k=0

u(k)(a)v(k)(a) +
∫ c

a
u′′′v′′′ dt, u, v ∈ W 3

2 [a, c],

‖u‖ =
√

〈u, u〉w3
2
.

• The reproducing kernel space W 1
2 [a, c] is defined as follows:

W 1
2 [a, c] = {u(x) | u is an absolutely continuous real value funcion, u′ ∈ L2[a, c]}

[20] (W 1
a for short).
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The inner product and norm are defined as follows:

〈
u(t), v(t)

〉
= u(0)v(0) +

∫ c

a
u′v′ dt, u, v ∈ W 1

2 [a, c],

‖u‖ =
√

〈u, u〉w1
2
.

The reproducing kernel spaces are W 3
a and W 1

a with reproducing kernel R0
t (x) and r0

t (x),
respectively.

In the same way, the reproducing kernel spaces are W 3
2 [c, b] (W 3

b for short) and W 1
2 [c, b]

(W 1
b for short) with reproducing kernel R1

t (x) and r1
t (x), respectively.

2.2 The reproducing kernel space with piecewise smooth
In this paper, consider that the exact solution of Eq. (1) is not a smooth function, so, we
connected two reproducing kernel spaces on both sides of the impulsive point, we call it
the broken reproducing kernel space.

Definition 2.1 The linear space W 3
2,c is defined as

W 3
2,c[a, b] =

{
u(x)| if x < c then u(x) ∈ W 3

a , if x ≥ c then u(x) ∈ W 3
b
}

.

Every u(x) ∈ W 3
2,c[a, b] has the following form:

u(x) =

⎧
⎨

⎩

u0(x), x < c,

u1(x), x ≥ c,

where u0(x) ∈ W 3
a , u1(x) ∈ W 3

b .

Theorem 2.1 Assuming that the inner product and norm in W 3
2,c[a, b] are given by

〈u, v〉W 3
2,c

= 〈u0, v0〉W 3
a

+ 〈u1, v1〉W 3
b

, u, v ∈ W 3
2,c[a, b], (2)

‖u‖W 3
2,c

=
√

〈u, u〉W 3
2,c

, u ∈ W 3
2,c[a, b]

then the space W 3
2,c[a, b] is an inner space.

Proof For any u, v, w ∈ W 3
2,c[a, b],

〈u + v, w〉W 3
2,c

= 〈u0 + v0, w0〉W 3
a

+ 〈u1 + v1, w1〉W 3
b

= 〈u0, w0〉W 3
a

+ 〈v0, w0〉W 3
a

+ 〈u1, w1〉W 3
b

+ 〈v1, w1〉W 3
b

= 〈u, w〉W 3
2,c

+ 〈v, w〉W 3
2,c

.

We can prove that Eq. (2) satisfies the other requirements of the inner product space. �

Theorem 2.2 The space W 3
2,c[a, b] is a Hilbert space.
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Proof Suppose that {un(x)}∞n=1 is a Cauchy sequence in W 3
2,c[a, b], however,

un(x) =

⎧
⎨

⎩

u0,n(x), x < c,

u1,n(x), x ≥ c,
n = 1, 2, . . . ,

so, {u0,n(x)}∞n=1 and {u1,n(x)}∞n=1 are Cauchy sequences in W 3
a and W 3

b , respectively.
So, there are two functions g0(x) ∈ W 3

a , g1(x) ∈ W 3
b , and

∥
∥u0,n(x) – g0(x)

∥
∥2

W 3
a

→ 0,
∥
∥u1,n(x) – g1(x)

∥
∥2

W 3
b

→ 0.

Let

g(x) =

⎧
⎨

⎩

g0(x), x < c,

g1(x), x ≥ c.

By Definition 2.1, g(x) ∈ W 3
2,c[a, b], and

∥
∥un(x) – g(x)

∥
∥2

W 3
2,c

=
∥
∥u0,n(x) – g0(x)

∥
∥2

W 3
a

+
∥
∥u1,n(x) – g1(x)

∥
∥2

W 3
b

→ 0.

So, the space W 3
2,c[a, b] is a Hilbert space. �

Theorem 2.3 The space W 3
2,c[a, b] is a reproducing kernel space with the reproducing ker-

nel function

Rt(x) =

⎧
⎪⎪⎨

⎪⎪⎩

R0
t (x), (x, t) ∈ [a, c) × [a, c),

R1
t (x), (x, t) ∈ [c, b] × [c, b],

0, others.

(3)

Proof Consider arbitrary u(x) ∈ W 3
2,c[a, b].

If t ∈ [a, c), 〈u(x), Rt(x)〉W 3
2,c

= 〈u0(x), R0
t (x)〉W 3

a
+ 〈u1(x), 0〉W 3

b
= u0(t).

If t ∈ [c, b], 〈u(x), Rt(x)〉W 3
2,c

= 〈u0(x), 0〉W 3
a

+ 〈u1(x), R1
t (x)〉W 3

b
= u1(t).

In conclusion, for every u(x) ∈ W 3
2,c[a, b], it follows that

〈
u(x), Rt(x)

〉
= u(t). �

Similarly, the reproducing kernel space W 1
2,c[a, b] is defined as

W 1
2,c[a, b] =

{
u(x)| if x < c then u(x) ∈ W 1

a , if x ≥ c then u(x) ∈ W 1
b
}

(4)

and it has the reproducing kernel function

rt(x) =

⎧
⎪⎪⎨

⎪⎪⎩

r0
t (x), (x, t) ∈ [a, c) × [a, c),

r1
t (x), (x, t) ∈ [c, b] × [c, b],

0, others.

(5)
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In order to solve Eq. (1), we introduce a linear operator L : W 3
2,c[a, b] → W 1

2,c[a, b],

Lu = u′′(x) + a1(x)u′(x) + a0(x)u(x), u ∈ W 3
2,c[a, b].

By Ref. [20], it is easy to prove that L is a bounded operator.
Then Eq. (1) can be transformed into the following form:

⎧
⎪⎪⎨

⎪⎪⎩

Lu = f (x), x ∈ [a, b]\{c},
u(a) = α1, u(b) = α2,

�u′(c) = α3, �u(c) = α4.

(6)

3 Primary result
In this section, the approximate solution of Eq. (6) is presented in the reproducing kernel
space W 3

2,c[a, b]. And the convergence of the approximate solution is proved, discuss the
approximate solution of the situation and the range of error.

We make {xi}∞i=1 is a dense point set that removed the point c on the interval [a, b], put

∅1(x) = Ra(x), ∅2(x) = Rb(x), ∅3(x) =
∂Rx(t)

∂t

∣
∣
∣
∣
t=c+

–
∂Rx(t)

∂t

∣
∣
∣
∣
t=c–

,

∅4(x) = Rx
(
c+)

– Rx
(
c–)

and

ψi(x) = L
∗rxi (x), i = 1, 2, . . . ,

where L
∗ is the adjoint operator of L.

Let Sn = span{{ψi(x)}n
i=1 ∪ {∅j(x)}4

j=1}. Then we can obtain Sn ∈ W 3
2,c[a, b].

The orthogonal projection operator are denoted by Pn : W 3
2,c[a, b] → Sn.

Theorem 3.1 ψi(x) = LRx(xi), i = 1, 2, . . . .

Proof

ψi(x) =
〈
L

∗rxi , Rx
〉

W 3
2,c

= 〈rxi ,LRx〉W 1
2,c

= LRx(xi), i = 1, 2, . . . . �

Theorem 3.2 For each fixed n, {ψi(x)}n
i=1 ∪ {∅j(x)}4

j=1 is linearly independent in W 3
2,c[a, b].

Proof Let

0 =
n∑

i=1

λiψi(t) +
4∑

j=1

kj∅j(t)

• Consider

h(t) ∈ W 3
2,c[a, b],

⎧
⎪⎪⎨

⎪⎪⎩

Lh = 0, t ∈ [a, b]\{c},
h(a) = α1, h(b) = α2,

�h′(c) = α3, �h(c) = α4,
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then

0 =

〈

h(t),
n∑

i=1

λiψi(t) +
4∑

j=1

kj∅j(t)

〉

=
n∑

i=1

λi
〈
h(t),L∗rxi (t)

〉
+ k1

〈
h(t), Ra(t)

〉
+ k2

〈
h(t), Rb(t)

〉

+ k3

〈

h(t),
∂Rx(t)

∂t

∣
∣
∣
∣
t=c+

–
∂Rx(t)

∂t

∣
∣
∣
∣
t=c–

〉

+ k4
〈
h(t), Rc+ (t) – Rc– (t)

〉

=
n∑

i=1

λiLh(xi) + k1h(a) + k2h(b) + k3
(
h′(c+)

– h′(c–))
+ k4

(
h
(
c+)

– h
(
c–))

= k3.

Similarly, we have k1 = 0, k2 = 0, k4 = 0.
• Consider

fj(t)

⎧
⎨

⎩

= 0, t = x1, x2, . . . , xj–1, xj+1, . . . , xn,


= 0, others,
fj(t) ∈ W 1

2,c[a, b],

take vj(t) ∈ W 3
2,c[a, b] make

⎧
⎨

⎩

Lvj(t) = fj(t), t ∈ [a, b]\{c},
vj(a) = 0, vj(b) = 0.

The unique solution to the above equations exists (see [20]), then

0 =

〈

vj(t),
n∑

i=1

λiψi(t)

〉

=
n∑

i=1

λi
〈
vj(t),L∗rxi (t)

〉

=
n∑

i=1

λiLvj(xi) =
n∑

i=1

λifj(xi) = λjfj(xj).

So, λj = 0, j = 1, 2, . . . , n. �

Theorem 3.3 If u ∈ W 3
2,c[a, b] is the solution of Eq. (6), then un = Pnu satisfies the following:

⎧
⎨

⎩

〈v,ψi〉 = f (xi), i = 1, 2, . . . , n,

〈v,∅1〉 = α1, 〈v,∅2〉 = α2, 〈v,∅3〉 = α3, 〈v,∅4〉 = α4.
(7)

Proof Supposing u(x) is a solution of Eq. (6), there

〈Pnu,ψi〉W 3
2,c

= 〈u,Pnψi〉W 3
2,c

= 〈u,ψi〉W 3
2,c

=
〈
u,L∗rxi

〉

W 3
2,c

= 〈Lu, rxi〉W 1
2,c

= Lu(xi) = f (xi)
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and

〈Pnu,∅1〉W 3
2,c

= 〈u,Pn∅1〉W 3
2,c

= 〈u,∅1〉W 3
2,c

= 〈u, Ra〉W 3
2,c

= u(a) = α1.

Similarly, we have

〈Pnu,∅2〉 = α2, 〈Pnu,∅3〉 = α3, 〈Pnu,∅4〉 = α4.

So, Pnu is the solution of Eq. (7). �

In fact, un(x) is an approximate solution of the exact solution.

Theorem 3.4 If u ∈ W 3
2,c[a, b] is the solution of Eq. (6), put un = Pnu ∈ Sn then un converges

uniformly to u.

Proof

∣
∣u(t) – un(t)

∣
∣ =

∣
∣
∣
∣

〈

u – un,
∂Rt

∂t

〉∣
∣
∣
∣ ≤

∥
∥
∥
∥
∂Rt

∂t

∥
∥
∥
∥

W 3
2,c

‖u – un‖W 3
2,c

≤ M‖u – un‖W 3
2,c

→ 0. �

Similarly, we can prove that if t ∈ [a, c] and [c, b], respectively, then u(i)
n converges uni-

formly to u(i), i = 1, 2.
In order to analyze the convergence order of the algorithm proposed in this section, we

derive the following lemma.

Lemma 3.1 ([20]) If un = Pnu is the approximate solution of Lu = f (x), L : W 3
2 [a, b] →

W 1
2 [a, b] is a linear operator, then

∣
∣u(i) – u(i)

n
∣
∣ ≤ Mih2, i = 0, 1.

Theorem 3.5 The approximate solution un = Pnu of Eq. (6) converges to its exact solution
u with not less than second-order convergence.

Proof By Definition 2.1, we get

u(x) =

⎧
⎨

⎩

u0(x), x < c,

u1(x), x ≥ c.

In addition, un = Pnu is converges uniformly to u by Theorem 3.4. So, there are u0,n and
u1,n satisfying the following expressions:

∥
∥u(x) – un(x)

∥
∥2

W 3
2,c

=
∥
∥u0(x) – u0,n(x)

∥
∥2

W 3
a

+
∥
∥u1(x) – u1,n(x)

∥
∥2

W 3
b

→ 0.

So, ‖u0(x) – u0,n(x)‖2
W 3

a
→ 0, ‖u1(x) – u1,n(x)‖2

W 3
b

→ 0.
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Note that u0,n(x) is the approximate solution of Lu = f (x) in reproducing kernel space
W 3

a , take advantage of Lemma 3.1, we have

∣
∣u0(x) – u0,n(x)

∣
∣ ≤ M0h2.

Similarly, we have |u1(x) – u1,n(x)| ≤ M1h2.
For any x ∈ [a, b]

∣
∣u(x) – un(x)

∣
∣ ≤ max

{∣
∣u0(x) – u0,n(x)

∣
∣,

∣
∣u1(x) – u1,n(x)

∣
∣
} ≤ max

{
M0h2, M1h2} = M2h2.

Here h is step-size on the interval [a, b], M0, M1, M2 are constants. Therefore, un con-
verges to u not less than the second-order convergence. �

Furthermore, the following rate of convergence formulas can be obtained:

C.R = log2
|u(x) – un(x)|
|u(x) – u2n(x)| .

By the results of this section, the exact solution of Eq. (6) can be expressed as

u(x) =
∞∑

i=1

λiψi(x) + k1∅1(x) + k2∅2(x) + k3∅3(x) + k4∅4(x). (8)

4 Numerical algorithm
In this section, the numerical algorithm for the approximate solution un is given. Now, the
solution un of Eq. (7) is the approximate solution of Eq. (1). As un ∈ Sn, so

un(x) =
n∑

i=1

λiψi(x) + k1∅1(x) + k2∅2(x) + k3∅3(x) + k4∅4(x). (9)

To obtain the approximate solution un, we only need to obtain the coefficients of each
ψi(x), i = 1, 2, . . . , n and ∅j(x), j = 1, 2, 3, 4. Use ψi(x) and ∅j(x) to do the inner products with
both sides of Eq. (9), we have

⎧
⎨

⎩

∑n
j=1 λj〈ψj,ψi〉 +

∑4
j=1 kj〈ψi,∅j〉 = f (xi), i = 1, 2, . . . , n,

∑n
j=1 λj〈ψj,∅i〉 +

∑4
j=1 kj〈∅i,∅j〉 = αi, i = 1, 2, 3, 4.

(10)

This is the system of linear equations of λi, kj, i = 1, 2, . . . , n, j = 1, 2, 3, 4.
Let

Gn+4 =

⎡

⎢
⎣

〈ψi,ψk〉 · · · 〈ψi,∅j〉
· · · · · · · · ·

〈ψk ,∅j〉 · · · 〈∅j,∅m〉

⎤

⎥
⎦

i,k=1,2,...,n;j,m=1,2,3,4

,

F =
(
f (x1), f (x2), . . . , f (xn),α1,α2,α3,α4

)T .
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Consider that {ψi(x)}n
i=1 ∪ {∅j(x)}4

j=1 is linearly independent in W 3
2,c[a, b]; therefore, G–1

exists. Then we have

(λ1, . . . ,λn, k1, k2, k3, k4)T = G–1·F .

5 Numerical examples
In this section, the method proposed in this paper is applied to some impulsive differential
equations to evaluate the approximate solution. In Examples 1–3, the reproducing space
is W 3

2,c[0, 1]. We compare the numerical results with the other methods discussed in [13,
14]. Finally, the results show that our algorithm is practical and remarkably effective.

Example 1 (Ref. [13]) Consider the linear impulsive differential equation

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(x) + u(x) = 0, a.e. x ∈ (0, 1),

u(0) = 0, u(1) = –1,

�u′(1/4) = –2, �u(1/4) = 0.

The exact solution

u(x) =

⎧
⎨

⎩

e
1
4 –x(–1–e

3
4 +e

3
2 )(e2x–1)

e2–1 , x ∈ [0, 1
4 ],

e– 1
4 –x(e2x–e2x+ 1

2 –e2x+ 5
4 +e

5
4 –e2+e

5
2 )

e2–1 , x ∈ ( 1
4 , 1].

The numerical results are given in Table 1, where the rate of convergence C.R =
log2

|u(x)–un(x)|
|u(x)–u2n(x)| , from the comparison with method in [13], we confirm that our algorithm

satisfies Theorem 3.5. It shown that the present method can produce a more accurate ap-
proximate solution.

Example 2 (Ref. [13]) Consider the following equation with two pulse points:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′(x) = 0, a.e. x ∈ (0, 1),

u(0) = 0, u(1) = 0,

�u′( 1
3 ) = –1, �u( 1

3 ) = 0,

�u′( 4
5 ) = 1, �u( 4

5 ) = 0.

Table 1 Comparison of absolute errors in Example 1

n |u(x) – un(x)| [13] Presented method

max |u – un| C.R max |u′ – u′
n| C.R max |u′′ – u′′

n|
33 3.426E–3 7.988E–5 3.381E–4 7.988E–5
129 8.562E–4 5.297E–6 2.252E–5 5.297E–6
200 – 4.563E–6 1.896E–5 4.563E–6
400 – 4.486E–7 3.3464 1.934E–6 3.2933 4.486E–7
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Figure 1 The exact solution and the approximate
solution in Example 2 (n = 33)

Figure 2 The absolute errors of |u(x) – un(x)| in
Example 2 (n = 33)

Table 2 Comparison of absolute errors in Example 2

n max |u(x) – un(x)| [13] Presented method

max |u(x) – un(x)| C.R max |u′(x) – u′
n(x)| C.R

33 4.627F–2 3.299F–6 1.197F–5
129 1.578F–5 2.028F–7 8.090F–7
400 – 2.048F–8 8.238F–8
800 – 5.022F–9 2.0271 2.028F–8 2.0222

The exact solution

u(x) =

⎧
⎪⎪⎨

⎪⎪⎩

7x
15 , x ∈ [0, 1

3 ],
1
3 – 8x

15 , x ∈ ( 1
3 , 4

5 ],

– 7
15 – 7x

15 , x ∈ ( 4
5 , 1].

In Fig. 1, the red dotted line is the numerical solution and the black line is the exact
solution. Figure 2 shows the absolute error |u(x) – un(x)| when n = 33. Table 2 shows com-
parison of the absolute errors between our method and other methods. All graphs and
tables show that our method is effective as we expect. It is worth noting that the approx-
imate solutions of Example 1 and Example 2 are only proved norm of convergence to the
exact solutions (see [13]). But, the approximate solutions of this paper are proved uni-
formly converges to u(x).

Example 3 (Ref. [14]) Consider the following impulsive equation with variable coeffi-
cients:

(βux)x = 56x6, x ∈ [0, 1]{0.5}, where β =

⎧
⎨

⎩

1, x ∈ [0, 0.5],

2, x ∈ (0.5, 1],
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Table 3 Comparison of absolute errors in Example 3

n |u(x) – un(x)| [14] Presented method

max |w(x) – un(x)| C.R max |u′(x) – u′
n(x)| C.R

20 1.975F–2 3.221F–3 – 2.849F–2 –
40 6.241F–3 7.207F–4 2.1600 6.832F–3 2.0602
80 1.743F–3 1.702F–4 2.0822 1.669F–3 2.0333
160 4.600F–4 4.132F–5 2.0423 4.123F–4 2.0172
320 1.181F–4 1.017F–5 2.0255 1.024F–4 2.0095
640 2.992F–5 2.524F–6 2.0105 2.553F–5 2.0040

subject to the boundary and interface conditions:

⎧
⎨

⎩

u(0) = 0, u(1) = 257
512 ,

�u′(0.5) = –0.5u′(0.5–), �u(0.5) = 0.

The exact solution

u(x) =

⎧
⎨

⎩

x8, x ∈ [0, 0.5],
1
2 (x8 + 1

256 ), x ∈ (0.5, 1].

Table 3 lists the absolute error and the rate of convergence C.R to Example 3, from the
illustrative tables, we conclude that when truncation limit n is increased we can obtain a
good accuracy. It shows that the proposed approach is very stable and effective.

The proposed method not only can solve Eq. (1) of impulsive differential equation, but
also can solve high-order impulsive differential equations and complex boundary value
problems of pulse. The theory and algorithm is similar, we use the following example to
prove the effectiveness of the algorithm.

Example 4 Consider the third-order linear impulsive differential equation

⎧
⎪⎪⎨

⎪⎪⎩

u′′′(x) + a2(x)u′′(x) + a0(x)u(x) = f (x), x ∈ [–2, 2]\{0},
u(–2) = 16, u(2) = 14

3 ,
∫ 1

–1 u(x) dx = 119
120 ,

�u(0) = 0, �u′(0) = 1, �u′′(0) = 2.

Here

a0(x) =

⎧
⎨

⎩

1 – x, x < 0,

e–x, x ≥ 0,
a2(x) =

⎧
⎨

⎩

–2 cos x, x < 0,

–2, x ≥ 0,

f (x) =

⎧
⎨

⎩

x(–x4 + x3 – 24x cos x + 24), x < 0,

e–x(– x3

6 + x2 + x) + 2(x – 2) – 1, x ≥ 0.

The exact solution

u(x) =

⎧
⎨

⎩

x4, x < 0,

– x3

6 + x2 + x, x ≥ 0.
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Table 4 Comparison of absolute errors in Example 4

n max |u – un| C.R max |u′ – u′
n| max |u′′ – u′′

n| max |u′′′ – u′′′
n |

320 1.8367F–5 – 7.0934F–5 1.9598F–4 3.9198F–4
640 4.6155F–6 2 1.7919F–5 4.9411F–5 9.8826F–5

Figure 3 un(x) and u(x)

Figure 4 u′
n(x) and u′(x)

Figure 5 u′′(x) and u′′(x)

Figure 6 u′′′(x) and u′′′(x)

In the Example 4, the reproducing space is W 4
2,c[–2, 2]. Table 4 shows the absolute errors

and convergence order of our method in different cases. In Figs. 3–6, the red dotted line
is the numerical solution u(i)

n (x) and the black line is the exact solution u(i)(x), i = 0, 1, 2, 3.
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6 Conclusion
In this paper, it is the first time to apply the reproducing kernel method to solve the impul-
sive differential equations. A broken reproducing kernel space is cleverly built, the repro-
ducing space are reasonably simple because the author did not consider the complicated
boundary conditions, and avoid the time consuming Schmidt orthogonalization process,
and the approximate solution we get is no less than the second-order convergence. In
Sect. 5, Numerical examples, we do four experiments with the new algorithm, and make a
comparison with other algorithms. In fact, this technique can be extended to other class of
impulsive boundary value problems. Although we just considered one pulse point in our
presentation, by that analogy, the algorithm can also be applied to multiple pulse points.
From the illustrative tables and figures, we find that the algorithm is remarkably accurate
and effective as expected.
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