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Abstract
The street under a skytrain station can be seen in many urban cities. Due to the cavity
geometry of the street canyon, natural ventilation is decreased. The reduction of the
ventilation causes the heat accumulation in the street canyon. To keep the thermal
climate at an acceptable level in the street canyon, controlling the air movement with
proper temperature is important. In this paper, mathematical models of air flow and
heat transfer in the skytrain street canyon are developed. The governing equations
are the Reynolds-averaged Navier–Stokes equations and the energy equation. Finite
element method is applied for the solution of the problem. The effect of wind speeds
on temperature distribution in the street canyon is investigated. Three levels of wind
speed including gentle, moderate, and strong wind speeds are chosen in this study.
The results indicate that our model can capture the air flow and temperature
distribution within a street canyon with a skytrain station.

Keywords: Street canyon; k-ε turbulence model; Finite element method; Heat
transfer; Skytrain station

1 Introduction
The location of dense urban areas where the street is surrounded by rows of buildings
is described as an urban street canyon. The deep geometry of street canyons can greatly
affect the local air quality and climate. In the summer season, temperature in the street
canyon is more affected by two primary sources, i.e., the hot wind flow and the heat re-
leased by burning fuel during traffic. To keep the air quality and thermal climate at an ac-
ceptable level in the street canyon, understanding the air flow pattern and the heat transfer
in the street canyon is important. A number of research works have been conducted to
investigate the heat transfer in the street canyons under hot weather in some urban cities
[1–3] through the experimental and mathematical studies. The wind tunnel experiments
of thermal effects on flow within and above urban street canyons were performed [4–6],
and the convective heat transfer in street canyons was investigated numerically [7, 8]. The
numerical simulations of heat transfer based on k – ε turbulence model were studied [9,
10], and thermal effects on fluid-dynamic in an urban street canyon were analyzed [11–
13].

There are several factors affecting the heat transfer in street canyons. The experiments
of wind speed effects in various aspect ratios and full-scale study were performed [14, 15].
The mean flow and turbulence structure were investigated [16, 17] in various directions
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of flow field, i.e., the perpendicular and ambient flows [18, 19]. The numerical studies
based on k – ε turbulence model were conducted to investigate many characteristics of
turbulent flows [20]. The flow distributions of skimming, wake, isolated, and vortex flows
[21, 22] and the effects of buoyant flow in street canyons were examined [23, 24]. The
influence of obstacles inside street canyons was considered by Hamlyn et al. [25]. They
developed a simple network approach to simulate the dispersion among large groups of
obstacles. The diffusive flow processes in the obstacle arrays and the pollutant dispersion
in an urban canopy were studied. Salim et al. [26] proposed a numerical simulation of
dispersion in street canyons of aspect ratio of the width to the height (W/H) about 1 lined
with avenue-like tree planting. The effects of loosely-packed and densely-packed trees
were considered in the models of dispersion in street canyons. Hang et al.[27] studied the
impact of viaduct configurations and ground heating on pollutant dispersion in 2D street
canyons based on CFD simulations. The flow to leeward and windward rooms of naturally-
ventilated buildings was considered in street canyon models. The influences of absence
and present of viaducts and road barriers on flow dispersion and the ground heating were
investigated.

The majority of the aforementioned studies have already accessed the influences of
the air flow and the building designs on heat transfer in street canyons. However, a few
types of obstacles influencing the heat transfer [28, 29] in the street canyons have been
reported. In some urban cities, the street canyon containing a skytrain above the main
street has a significant effect on the local climate. In this study, we investigate the air
flow and heat transfer in the region underneath the skytrain during traffic in the street
canyon in the summer season. A mathematical model of the air flow and heat transfer in
the street canyon is developed. The street canyon with the skytrain station is assumed to
be surrounded by symmetrical buildings on both sides of the street. The effect of wind
flow with three different levels of wind speed on the temperature distribution is investi-
gated.

1.1 Governing equations
The airflow and heat transfer are described by the Reynolds-averaged Navier–Stokes equa-
tions (1)–(4) [30] and the heat conservation equation (5) [31]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ ·
[

–pI + (μ – μT )
(∇u +

(∇uT))

–
2
3

(μ + μT )(∇ · u)I –
2
3
ρkI

]
+ F, (2)

ρ
∂k
∂t

+ ρ(u · ∇)k = ∇ ·
[(

μ +
μT

σk

)
∇k

]
+ Pk – ρε, (3)

ρ
∂ε

∂t
+ ρ(u · ∇)ε = ∇ ·

[(
μ +

μT

σε

)
∇ε

]
+ Cε1

ε

k
Pk – Cε2ρ

ε2

k
, (4)

ρCp

(
∂T
∂t

+ u · ∇T
)

+ ∇ · q = 0, (5)
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Table 1 Nomenclature

Variable Explanation and unit

Uref reference velocity scale (km/h)
utang shear velocity (km/h)
IT turbulent intensity (dimensionless)
LT turbulence length scale (m)
Pk turbulent kinetic energy production (s)
Cp specific heat capacity (J/(kg · k))
ρ air density (kg/m3)
t time (s)
μ dynamics viscosity (Pa · s)
μT kinematic dynamics viscosity (m2/s)
F buoyant force (N)
q heat flux (W/m2)
q0 inward heat flux (W/m2)
h heat transfer coefficient (W/m2K)
kT turbulent thermal conductivity (W/(m · K))

Table 2 Dependent variables

Variable Explanation and unit

u air velocity (km/h)
p pressure (Pa)
k turbulent kinetic energy (m2/s2)
ε turbulent kinetic energy dissipation rate (m2/s3)
T Temperature (°C)

Table 3 Model constants

Constant Value

Cμ 0.09
Cε1 1.44
Cε2 1.92
κv 0.41
δw 0.2

where Cε1 and Cε2 are constants and other variables and parameters are described in Ta-
bles 1–3 in which the kinematic turbulent viscosity μT , the heat flux q, and the turbulent
kinetic energy production Pk are respectively defined by

μT =
cμk2

ε
,

pk = μT
[∇u :

(∇u + (∇u)T)]
,

q = –kT∇T .

To obtain a well-defined problem of the fluid flow with heat transfer phenomena in the
street canyon, a set of boundary conditions [32] is established as follows.

The boundary conditions of the turbulent airflow near walls are obtained by using wall
functions. At the inlet boundary, we set

u = –U0n, k =
3
2

(Uref IT )2, and ε = C3/4
μ

k3/2

LT
.
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At the outlet (open) boundary, we employ

[
–pI + (μ + μT )

(∇u + (∇u)T)
–

2
3

(μ + μT )(∇ · u)I –
2
3
ρkI

]
= 0,

∇k · n = 0, ∇ε · n = 0 if u · n ≥ 0,

k =
3
2

(IT Uref )2, ε =
C3/4

μ

LT

(
3(IT Uref )2

2

) 3
2

if u · n < 0.

At the walls including the perimeters of buildings, the skytrain station, and the side-
walks, we apply

[
(μ + μT )

(∇u + (∇u)T)
–

2
3

(μ + μT )(∇ · u)I –
2
3
ρkI

]
= –ρutang,

u · n = 0, ∇k · n = 0, and ε = ρ
Cμk2

κvδwμ
,

where Uref is reference velocity, IT and LT are respectively turbulent intensity and turbu-
lence length scale, utang represents tangent velocity which is defined by utang = u – (u · n)u,
and Cμ, κv, and δw are constants.

For the temperature field, we assume the air temperature at the inlet boundary to be
constant, i.e., T = T0. For the conditions at the open boundary, we set

T = T0, if n · u < 0,

–n · q = 0, if n · u ≥ 0.

Thermal insulation is applied on the perimeters of the buildings, the skytrain station, and
the sidewalks, i.e.,

–n · q = 0.

On the street surface, we apply

–n · q = q0, and q0 = h(T – T0),

where q0 represents inward heat flux due to traffic, h is heat transfer coefficient, and T0
is hot temperature generated on the street surface.

1.2 Finite element formulation
Firstly, we construct the total residual function for each equation in the above system and
set it to zero, i.e.,

(
∂ρ

∂t
, wp

)
+

(∇ · (ρu), wp) = 0, (6)

(
ρ

(
∂u
∂t

)
+ ρ(u · ∇)u, wu

)
=

(∇p, wu) + (μ + μT )
(∇ · (∇u + (∇u)T)

, wu)

–
2
3

(μ + μT )
(
(∇ · u)I, wu) (7)
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–
2
3
ρ
(
k, wu) +

(
F, wu), (8)

(
ρ

(
∂k
∂t

)
+ (u · ∇)k

)
, wk) =

(
∇ ·

[(
μ +

μt

σk

)
∇k

]
, wk

)
+

(
Pk , wk)

–
(
ρε, wk), (9)(

ρ

(
∂ε

∂t

)
+ (u · ∇)ε

)
, wε) =

(
∇ ·

[(
μ +

μt

σε

)
∇ε

]
, wε

)
+

(
Cε1

ε

k
Pk , wε

)

–
(

Cε2ρ
ε2

k
, wε

)
, (10)

(
ρCp

∂T
∂t

+ ρCpu · ∇T , wT
)

=
(
q0, wT)

+
(∇ · q, wT)

, (11)

where (·, ·) denotes the inner product on the square integrable function space, wu is the
vector of test functions for velocity field, wp, wT , wk , and wε are test functions for pressure,
temperature, turbulent kinetic energy, and its dissipation rate, respectively.

By applying all Neumann boundary conditions to the above equations (6)–(11) and us-
ing Green’s theorem to reduce the second order derivatives to order one, we obtain the
following variational statement:

Find u ∈ [H1(Ω)]3, p, T , k and ε ∈ H1(Ω) such that, for all test functions wu ∈ [H1
0 (Ω)]3,

wp, wT , wk , and wε ∈ H1
0 (Ω), all Dirichlet boundary conditions are satisfied and

∫
Ω

wp ∂ρ

∂t
dΩ +

∫
Ω

wp(∇ · (ρu)
)

dΩ = 0, (12)

ρ

∫
Ω

wu ∂u
∂t

dΩ + ρ

∫
Ω

wu(u · ∇)u dΩ =
∫

Ω

wu∇(p) dΩ + (μ + μT )
∫

∂Ω

wu(∇u

+ (∇u)T) · n ds –
∫

Ω

∇u∇wu dΩ

–
2
3

(μ – μT )
∫

Ω

wu(∇ · u)I dΩ

–
2
3
ρ

∫
Ω

wukI +
∫

Ω

wu · F dΩ , (13)

ρ

∫
Ω

wk ∂k
∂t

dΩ + ρ

∫
Ω

wk(u · ∇)k dΩ =
∫

∂Ω

wk
[(

μ +
μT

σK

)]
∇k · n d∂Ω

–
∫

Ω

∇wk
[(

μ +
μT

σK

)
∇k

]
dΩ

+
∫

Ω

wkPk dΩ – ρ

∫
Ω

wkε dΩ , (14)

ρ

∫
Ω

wε ∂ε

∂t
dΩ + ρ

∫
Ω

wε(u · ∇)ε dΩ =
∫

∂Ω

wε

[(
μ +

μT

σε

)]
∇ε · n d∂Ω

–
∫

Ω

∇wε

[(
μ +

μT

σε

)
∇ε

]
dΩ

+ Cε1

∫
Ω

wε ε

k
pk dΩ

– Cε2ρ

∫
Ω

wε ε2

k
dΩ , (15)
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ρCp

∫
Ω

wT ∂T
∂t

dΩ + ρCp

∫
Ω

wT (u∇T) dΩ =
∫

Ω

wT q0 dΩ –
∫

Ω

wT (∇ · q) dΩ , (16)

which is difficult to find the solution in the infinite space H1(Ω) = span{φi}∞1 . We apply
Galerkin approximation. We post the problem into an N finite-dimensional subspace and
choose an N-dimensional subspace HN = span{φi}N

1 ⊂ H1(Ω) for u1, u2, u3, k, ε, T and
the associated test functions wui , wT , wk , and wε . Let {φi}N

i=1 be the basis functions of HN ,
then any unknown function v with a test function w can be approximated in the form of
v ≈ vN =

∑N
i=1 φi(x)vi(t) and w =

∑N
i=1 φi(x)wi:

u(x, t) ≈ uN =
N∑

n=1

φn(x)un(t), (17)

wu ≈ wu
N =

N∑
l=1

φl(x)wu
l (t), (18)

T(x, t) ≈ TN =
N∑

n=1

φn(x)Tn(t), (19)

wT ≈ wT
N =

N∑
l=1

φl(x)wT
l (t), (20)

k(x, t) ≈ kN =
N∑

n=1

φn(x)kn(t), (21)

wk ≈ wk
N =

N∑
l=1

φl(x)wk
l (t), (22)

ε(x, t) ≈ εN =
N∑

n=1

φn(x)εn(t), (23)

wε ≈ wε
N =

N∑
l=1

φl(x)wε
l (t). (24)

Next, we choose an M-dimensional subspace HM ⊂ H1(Ω) for p and the test function wp.
Let {ψ}M

i=1 be the basis functions of HM , then

p(x, t) ≈ pM =
M∑

m=1

ψm(x)pm(t), (25)

wp ≈ wp
M =

M∑
m=1

ψm(x)wp
m(t). (26)

By substituting equations (18), (20), (22), (24), and (26) into equations (6), (8), (9), (10),
and (11), and noting that wu, wT , wk , wε , and wp are arbitrary, we then obtain

∫
Ω

ψm(∇ · u) dΩ = 0, (27)

ρ

∫
Ω

φl
∂u
∂t

dΩ + ρ

∫
Ω

φl · (u · ∇)u dΩ
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=
∫

∂Ω

φl ·
(
–p + (μ + μT )

(∇u + (∇u)T)) · n d∂Ω

–
∫

Ω

∇φl ·
(
(μ + μT )

(∇u + (∇u)T))

+
∫

Ω

∇φl · p dΩ +
∫

Ω

φl · F dΩ , (28)

ρ

∫
Ω

φl
∂k
∂t

dΩ + ρ

∫
Ω

φl · (u · ∇)kdΩ =
∫

∂Ω

φl ·
[(

μ +
μT

σk

)
∇k

]
· n d∂Ω

–
∫

Ω

∇φl ·
[(

μ +
μT

σk

)
∇k

]
dΩ

+
∫

Ω

φlpk dΩ – ρ

∫
Ω

φl · ε dΩ , (29)

ρ

∫
Ω

φl
∂ε

∂t
dΩ + ρ

∫
Ω

φl · (u · ∇)ε dΩ =
∫

∂Ω

φl ·
[(

μ +
μT

σε

)
∇ε

]
· n d∂Ω

–
∫

Ω

∇φl ·
[(

μ +
μT

σε

)
∇ε

]
dΩ

+ Cε1

∫
Ω

φl · ε

k
pk dΩ

– Cε2ρ

∫
Ω

φl · ε2

k
Ω , (30)

ρCp

∫
Ω

φl
∂T
∂t

dΩ + ρCp

∫
Ω

φl · (u · ∇T) dΩ =
∫

Ω

φl · q0 dΩ

–
∫

Ω

φl · (∇ · q) dΩ (31)

for all l = 1, 2, 3, . . . , N and m = 1, 2, 3, . . . , M.
Next, by substituting equations (17), (19), (21), (23), and (25) into equations (27), (28),

(29), (30), and (31), we have

N∑
n=1

∫
Ω

ψm

(
∂φn

∂xi

)
dΩUi = 0 (32)

ρ

N∑
n=1

∫
Ω

φlφn dΩU̇i + ρ

N∑
n=1

∫
Ω

φl · uj
∂φn

∂xi
dΩUi =

∫
∂Ω

φl

[
–

M∑
m=1

ψm

+ (μ + μT )
N∑

n=1

(
∂φn

∂xi

)]
· n d∂Ω

+
M∑

m=1

∫
Ω

∂φl

∂xi
ψm dΩP

–
N∑

n=1

∫
Ω

(μ – μT )
∂φl

∂xi

∂φn

∂xi
dΩUi

+
∫

Ω

φl · F dΩ (33)
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ρ

N∑
n=1

∫
Ω

φlφn dΩK̇i + ρ

N∑
n=1

∫
Ω

φluj
∂φn

∂xi
dΩKi

=
N∑

n=1

∫
Ω

[(
μ +

μT

σk

)
φl

∂φn

∂xi

]
· n d∂Ω

–
N∑

n=1

∫
Ω

(
μ +

μT

σk

)
∂φl

∂xi

∂φn

∂xi
dΩKi

+
∫

Ω

φlpk dΩ

– ρ

N∑
n=1

φlφn dΩEi (34)

ρ

N∑
n=1

∫
Ω

φlφn dΩĖi + ρ

N∑
n=1

∫
Ω

φluj
∂φn

∂xi
dΩEi

=
N∑

n=1

∫
Ω

[(
μ +

μT

σε

)
φl

∂φn

∂xi

]
· n d∂Ω

–
N∑

n=1

∫
Ω

(
μ +

μT

σε

)
∂φl

∂xi

∂φn

∂xi
dΩEi

+ Cε1

∫
Ω

φlpk dΩ

– Cε2ρ

N∑
n=1

∫
Ω

φlφn dΩEi (35)

ρCp

N∑
n=1

∫
Ω

φlφn dΩṪi + ρCp

N∑
n=1

∫
Ω

φluj
∂φn

∂xi
dΩTi =

∫
Ω

φlq0 dΩ

–
∫

Ω

φl · (∇ · q) dΩ (36)

for all n = 1, 2, 3, . . . , N , m = 1, 2, 3, . . . , M, and the superposed dot represents differentiation
with respect to time.

2 Numerical examples
The street canyon model is mimicked from the urban region in which the skytrain station
is above the main street surrounded by symmetrical buildings during traffic. To investigate
the air flow on heat transfer in the street canyon, three levels of wind speed are chosen to
be 7 km/h, 18 km/h, and 25 km/h corresponding to the gentle, moderate, and strong wind
speeds respectively. We assume that no air flows in and out of the building and the skytrain
station. Above the rooftop of the building on one side of the street canyon, the 35°C wind
flows into the street canyon. On the other side and on the top surface of the street canyon,
wind is allowed to flow in and out of the street canyon. The finite element solutions of
the air flow and the temperature distribution are simulated using COMSOL Multiphysics
[33].

As the street canyon is surrounded by symmetrical buildings on both sides of the street,
the 2D domain can be used to model the street canyon region. The computational domain
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Figure 1 Geometric domain of the two dimensional of the street canyon: (a) defining the domain area, and
(b) meshing the computational domain

Figure 2 The surface temperature (°C) at steady state when u = 7 km/h (gentle wind): (a) The entire
computational domain, and (b) Zoom-in of the selected area
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Figure 3 The surface temperature (°C) at steady state of the zoom-in selected area: (a) u = 7 km/h (gentle
wind), (b) u = 18 km/h (moderate wind) and (c) u = 25 km/h (strong wind)

Figure 4 The surface temperature (°C) at steady state when u = 7 km/h (gentle wind): (a) Half of the entire
computational domain, and (b) Zoom-in of the selected area

is a vertical cross section of the air-flow area in a street canyon in which the street is sur-
rounded by the 10-meter-tall buildings on both sides of the street. Figure 1(a) presents
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Figure 5 The surface temperature (°C) at steady state when u = 18 km/h (moderate wind): (a) Half of the
entire computational domain, and (b) Zoom-in of the selected area

Figure 6 The surface temperature (°C) at steady state when u = 25 km/h (strong wind): (a) Half of the entire
computational domain, and (b) Zoom-in of the selected area

Figure 7 The temperature contour (°C) at steady state when u = 7 km/h (gentle wind): (a) Half of the entire
computational domain, and (b) Zoom-in of the selected area
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the dimension of the computational domain with its inlet boundary ∂Ωin, and the out-
let boundaries ∂Ωopen. The skytrain station with the width of 9 m and the height of
5 m is located at 12 m above the street. Two sidewalks with the width of 3 m are on
both sides of the 9 m width street. The heat source due to traffic is applied on the sur-
face of the street. Figure 1(b) shows a non-uniform domain mesh with a number of
triangular-shaped elements with 48,125 degrees of freedom, 7899 nodes, and 15,100 ele-
ments. Due to the presence of two main regions including sidewalks and heat source on
the street, the meshing on these regions is more delicate than the other portion of the
street canyon in order to obtain accurate calculations at the vital parts in the heat transfer
process.

To investigate the effect of wind speed of the air flow on the temperature distribution,
we run the simulation until we obtain the static pattern of the air flow for each case of the
wind speed. The results shown in Fig. 2 and Fig. 3 indicate that the speed of the air flow has
a significant effect on the temperature distribution in the cavity under the skytrain. The
surface plot of the temperature distribution and its contour at the bottom left side next to
the building are presented in Figs. 4 to 10. These results indicate that lower speed gives

Figure 8 The temperature contour (°C) at steady state when u = 18 km/h (moderate wind): (a) Half of the
entire computational domain, and (b) Zoom-in of the selected area

Figure 9 The temperature contour (°C) at steady state when u = 25 km/h (strong wind): (a) Half of the entire
computational domain, and (b) Zoom-in of the selected area
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Figure 10 The velocity vector (km/h) at steady state when u = 7 km/h (gentle wind): (a) Half of the entire
computational domain, and (b) Zoom-in of the selected area

the higher heat accumulation in the cavity of the street canyon, especially at the region
near the building above the sidewalk on the left side of the street. Figure 11 illustrates the
patterns of the air flow obtained from three cases of wind speed. The results show the
flow of air loop in the cavity of the street canyon. This flow may reduce the air quality
in the street canyon and have a significant effect on the temperature accumulation in the
summer season.

3 Conclusions
An efficient mathematical model of the air flow and heat transfer in the skytrain-street
canyon in which the street is surrounded by symmetrical buildings is developed. The air
flow and heat transfer in the region underneath the skytrain during traffic in the summer
season is analyzed numerically. The effect of wind speed of the air flow on the tempera-
ture distribution is investigated. The results show that our model can capture the air flow
with heat transfer phenomena in the skytrain-street canyon effectively. The results of this
research may help civil engineers in the optimization of the air control system in the urban
street canyon with the skytrain.
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Figure 11 The velocity vector (km/h) at steady state state of the zoom-in selected area: (a) u = 7 km/h (gentle
wind), (b) u = 18 km/h (moderate wind), and (c) u = 25 km/h (strong wind)
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