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Abstract
We consider a class of second-order rational difference equations with two
parameters, and we show, in two ways, that the class of equations is solvable in
closed form. One way is based on using an invariant for the class of equations,
whereas the second one is based on the method of substitution. The main results
extend and complement some previous ones in the literature.
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1 Introduction
We use the following standard notations N, N0, Z, R, C, for natural, nonnegative, whole,
real and complex numbers, respectively.

Finding closed-form formulas for solutions to difference equations started at the be-
ginning of the eighteenth century by de Moivre, who knew to solve homogeneous linear
difference equations with constant coefficients ([1, 2]). He first solved the difference equa-
tion

xn+2 = ãxn+1 +˜bxn, n ∈N0, (1)

by showing that under the conditions ˜b �= 0 and ã2 �= –4˜b, its general solution is given by
the following formula:

xn =
(x1 – λ2x0)λn

1 + (λ1x0 – x1)λn
2

λ1 – λ2
, n ∈N0, (2)

where λ1 and λ2 are roots of the polynomial P2(λ) = λ2 – ãλ –˜b. Equation (2) is called
the de Moivre formula, whereas the polynomial P2 is called the characteristic polynomial
associated to the linear equation (1).

Methods and ideas by de Moivre were later developed by Euler ([3]). The study was
continued by Lagrange (see, e.g., [4, 5]), Laplace (see, e.g., [6]), and many other scientists.
Several methods for solving some classes of nonlinear difference equations in closed form
had been known to Laplace yet ([6]).
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Stević Advances in Difference Equations        (2019) 2019:230 Page 2 of 15

From [6] we also see that Laplace essentially knew to solve the class of bilinear difference
equations, that is, the following one:

xn+1 =
αxn + β

γ xn + δ
, n ∈ N0, (3)

where α, β , γ , δ are given numbers. Let us mention that it is usually assumed that
αδ –βγ �= 0 �= γ to avoid dealing with the trivial and linear equations obtained from Eq. (3)
(the equation with γ = 0 was solved by Lagrange in [4]; moreover, the first-order linear
difference equation with nonconstant coefficients was also solved therein). For more his-
torical details on some classical difference equations including bilinear one, see [7]. Hence,
Eq. (3) is regarded as one of the basic solvable nonlinear difference equations, and can be
found in many books ([8–14]; see also [15]). The equation frequently appears in papers on
the solvability of difference equations (see, e.g., the recent papers [7, 16–19]).

Note that, by using the change of variables

x̃n = γ xn + δ, n ∈N0,

Equation (3) is transformed to the following one

x̃n+1 = α̃ +
˜β

x̃n
, n ∈ N0. (4)

By using the following change of variables

x̃n =
un

un–1
, n ∈N0,

from Eq. (4) we get

un+1 = α̃un + ˜βun–1, n ∈N0,

which is an equation of the form in (1), so, solvable one, implying the solvability of Eq. (3)
(see, e.g., also [13, 15, 16]).

Nowadays, a part of the scientific community seems uses only computers and symbolic
algebra for getting some results on solvability of various equations, including difference
ones. This causes several problems, including some on originality of such obtained re-
sults. In some of our papers, among other things, we have discussed such problems (see,
e.g., [7, 16–22]). Many of the known solvable difference equations and systems can be
transformed to linear ones, which are solvable (for solvability of linear difference equa-
tions see, e.g., [8, 9, 14]). This motivated some authors to apply and develop the method of
transformation/substitution (see, e.g., [20–29]). Many applications of solvable difference
equations, can be found in the literature which shows their importance (see, e.g., [2, 5, 6,
9–14, 30–36]). For some related results see also [37–42].

Now we give a formal definition of solvability of a difference equation.
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Definition 1 We say that a difference equation is solvable in closed form if there is a finite
number of closed-form formulas from which any well-defined solution to the equation
can be obtained.

Some closed-form formulas for solutions to the difference equation

xn+1 = xn +
xn

xn – xn–1
, n ∈ N0, (5)

appeared in [43], where they were proved by induction. However, there was said nothing
about the way for obtaining the formulas, which motivated us to find theoretical explana-
tions for getting them. Some explanations, including a method for getting the formulas,
have been given, recently, in [44]. This was done in a quite unexpected way. Namely, by
using an invariant for Eq. (5). The following solvability result holds ([43, 44]).

Theorem 1 Consider the difference equation

xn+1 = xn +
dxn

xn – xn–1
, n ∈ N0, (6)

where d ∈ C \ {0}, and x–1, x0 ∈ C. Then the general solution to Eq. (6) is given by the fol-
lowing formula:

xn =
(

x0 – x–1 +
dx0

x0 – x–1

)

n
2

+
1
8

(

6x0 + 2x–1 +
2 dx0

x0 – x–1
– d

)

+
(

2x0 – 2x–1 –
2 dx0

x0 – x–1
+ d

)

(–1)n

8
+

d
4

n2, (7)

for n ≥ –1.

Invariants for difference equations can be useful in their investigations. But it is usually
difficult to find those which can be of any use. Invariants for several classes of difference
equations and systems of difference equations can be found, e.g., in [45–50] (see also the
related references therein). They can be useful in finding general solutions to some classes
of difference equations, although it is not quite a common situation. Some examples of
difference equations which are solved by using invariants can be found in [44, 51] and
[52].

Now we define notion of being an invariant for a difference equation.

Definition 2 If for every solution (xn)n≥–k to the difference equation

xn+s = f (xn+s–1, xn+s–2, . . . , xn), n ≥ –k, (8)

where s, k ∈N, there is a function I : Rl (or Cl) →R (or C) and a constant c, such that

I(xn, xn+1, . . . , xn+l–1) = c, for n ≥ –k,

then we say that I is an invariant for Eq. (8).
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Motivated by [44] here we study an extension of Eq. (6). Namely, we show that the fol-
lowing generalization of Eq. (6)

xn+1 = axn +
dxn

xn – axn–1
, n ∈N0, (9)

where parameters a and d, and initial values x–1 and x0 are given numbers, can also be
solved in closed form, extending and complementing the main result in [44].

We prove this by using two methods. First, this is proved by using an invariant for the
difference equation. Since in this way is obtained a closed-form formula for general solu-
tion to the equation, this suggests that it might be some other, more standard, methods
for getting the formula. Bearing in mind some of our previous investigations on solvability
of difference equations and systems of difference equations (see, e.g., [20–22, 24–29] and
number of related references therein), the first natural choice is the method of substitu-
tion. Employing some suitably chosen changes of variables we also show the solvability of
Eq. (9), confirming the guess.

2 Main results
Our main results are stated and proved in this section. As we have already mentioned, here
we present two methods for solving difference equation (9). The first one essentially uses
an invariant for the equation together with a nice trick, while the second one is based on
the method of substitution where a chain of substitutions is used to get general solution
to the equation.

First note that if d = 0, then Eq. (9) becomes

xn+1 = axn, n ∈N0,

from which it easily follows that

xn = anx0, n ∈ N0.

Hence, from now on we will assume that d �= 0.
Also note that if a = 0, then Eq. (9) becomes

xn+1 = xn
d
xn

, n ∈N0,

from which it easily follows that every solution to the equation is well-defined if and only
if x0 �= 0, and if x0 �= 0, then xn = d, n ∈ N. Hence, from now on we will also assume that
a �= 0.

Bearing in mind Definition 1, we see also that solutions which are not well-defined
should not be taken into the consideration. This means that, for every well-defined so-
lution (xn)n≥–1 to the Eq. (9),

xn �= axn–1, n ∈N0. (10)
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2.1 Solving Eq. (9) by using an invariant
Here we use our idea in [44]. First, note that, from (9), we have

(xn+1 – axn)(xn – axn–1) – dxn = 0, n ∈N0. (11)

Let

I(u, v, w) = (w – av)(v – au) – dv. (12)

Then from (11) we see that function (12) is an invariant for Eq. (9).
Now note that

I(xn–1, xn, xn+1) = aI(xn–2, xn–1, xn), n ∈ N,

that is,

(xn+1 – axn)(xn – axn–1) – dxn = a(xn – axn–1)(xn–1 – axn–2) – a dxn–1,

for n ∈N, from which it follows that

(xn – axn–1)
(

xn+1 – axn – axn–1 + a2xn–2 – d
)

, n ∈N. (13)

Since (10) must hold, from (13), we obtain

xn+1 – axn – axn–1 + a2xn–2 = d, n ∈ N. (14)

The zeros of the characteristic polynomial

p3(λ) = λ3 – aλ2 – aλ + a2 = (λ – a)
(

λ2 – a
)

, (15)

associated with (14), are

λ1 = a, λ2 =
√

a, λ3 = –
√

a. (16)

Case a = 1 was considered in [44]. Hence, the case is omitted here, and we assume that
a ∈C\ {1, 0}. In this case the characteristic roots in (16) are mutually different. Hence, the
general solution to the homogeneous equation

xn+1 – axn – axn–1 + a2xn–2 = 0

is

xh
n = c1an + c2(

√
a)n + c3(–

√
a)n, n ≥ –1,

whereas a solution to Eq. (14) can be found in the form

xp
n = c̃, n ≥ –1,
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from which it is easily found that

xp
n =

d
(1 – a)2 , n ≥ –1.

Hence,

xn = c1an + c2(
√

a)n + c3(–
√

a)n +
d

(1 – a)2 , n ≥ –1. (17)

Using (17) for n = –1, 0, 1, respectively, we get

a–1c1 + (
√

a)–1c2 – (
√

a)–1c3 = x–1 –
d

(1 – a)2 ,

c1 + c2 + c3 = x0 –
d

(1 – a)2 , (18)

ac1 +
√

ac2 –
√

ac3 = x1 –
d

(1 – a)2 .

The determinant of system (18) is

� =

∣

∣

∣

∣

∣

∣

∣

a–1 (
√

a)–1 –(
√

a)–1

1 1 1
a

√
a –

√
a

∣

∣

∣

∣

∣

∣

∣

=
2(a – 1)√

a
. (19)

Let

x̃j = xj –
d

(1 – a)2 , j = –1, 0, 1. (20)

By a well-known theorem, using (19) and (20), and after some calculations, we have

c1 =
1
�

∣

∣

∣

∣

∣

∣

∣

x̃–1 (
√

a)–1 –(
√

a)–1

x̃0 1 1
x̃1

√
a –

√
a

∣

∣

∣

∣

∣

∣

∣

=
–2

√
ãx–1 + 2√

a x̃1

�

=
a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1
, (21)

c2 =
1
�

∣

∣

∣

∣

∣

∣

∣

a–1 x̃–1 –(
√

a)–1

1 x̃0 1
a x̃1 –

√
a

∣

∣

∣

∣

∣

∣

∣

=
(
√

a + a)̃x–1 + (
√

a – 1√
a )̃x0 – ( 1

a + 1√
a )̃x1

�

=
(1 +

√
a)(ax–1 – x0) – 1+

√
a√

a
dx0

x0–ax–1
– d(

√
a+1)2√

a(a–1)

2(a – 1)
, (22)
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and

c3 =
1
�

∣

∣

∣

∣

∣

∣

∣

a–1 (
√

a)–1 x̃–1

1 1 x̃0

a
√

a x̃1

∣

∣

∣

∣

∣

∣

∣

=
(
√

a – a)̃x–1 + (
√

a – 1√
a )̃x0 + ( 1

a – 1√
a )̃x1

�

=
(
√

a – 1)(x0 – ax–1) + 1–
√

a√
a

dx0
x0–ax–1

+ d(
√

a–1)2√
a(a–1)

2(a – 1)
. (23)

Using (21)–(23) in (17), we get

xn =
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

an

+
( (1 +

√
a)(ax–1 – x0) – 1+

√
a√

a
dx0

x0–ax–1
– d(

√
a+1)2√

a(a–1)

2(a – 1)

)

(
√

a)n

+
( (

√
a – 1)(x0 – ax–1) + 1–

√
a√

a
dx0

x0–ax–1
+ d(

√
a–1)2√

a(a–1)

2(a – 1)

)

(–
√

a)n +
d

(a – 1)2 , (24)

for n ≥ –1.
Now we check that the sequences given by (24) satisfy Eq. (9). Let

x̂n :=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

an

+
( (1 +

√
a)(ax–1 – x0) – 1+

√
a√

a
dx0

x0–ax–1
– d(

√
a+1)2√

a(a–1)

2(a – 1)

)

(
√

a)n

+
( (

√
a – 1)(x0 – ax–1) + 1–

√
a√

a
dx0

x0–ax–1
+ d(

√
a–1)2√

a(a–1)

2(a – 1)

)

(–
√

a)n +
d

(a – 1)2 , (25)

for n ≥ –1.
By the way of getting (24) it is clear that

x̂–1 = x–1 and x̂0 = x0. (26)

From (25) we have

x̂2n–1 :=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

a2n–1

+
( (1 +

√
a)(ax–1 – x0) – 1+

√
a√

a
dx0

x0–ax–1
– d(

√
a+1)2√

a(a–1)

2(a – 1)

)

(
√

a)2n–1

–
( (

√
a – 1)(x0 – ax–1) + 1–

√
a√

a
dx0

x0–ax–1
+ d(

√
a–1)2√

a(a–1)

2(a – 1)

)

(
√

a)2n–1 +
d

(a – 1)2

=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

a2n–1

–
(

ax0 – a2x–1 +
dx0

x0 – ax–1
+

d(a + 1)
a – 1

)

an–1

a – 1
+

d
(a – 1)2 (27)
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and

x̂2n :=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

a2n

+
( (1 +

√
a)(ax–1 – x0) – 1+

√
a√

a
dx0

x0–ax–1
– d(

√
a+1)2√

a(a–1)

2(a – 1)

)

an

+
( (

√
a – 1)(x0 – ax–1) + 1–

√
a√

a
dx0

x0–ax–1
+ d(

√
a–1)2√

a(a–1)

2(a – 1)

)

an +
d

(a – 1)2

=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

a2n

–
(

x0 – ax–1 +
dx0

x0 – ax–1
+

2d
a – 1

)

an

a – 1
+

d
(a – 1)2 . (28)

We also have

x̂2n =
(

(x0 – x–1)an+1 – (x0 – ax–1)
(x0 – ax–1)(a – 1)2

)

(

(a – 1)x0 + a(1 – a)x–1 + d
)

an – d), (29)

for n ≥ –1.
From (27) and (28), we have

x̂2n – âx2n–1 =
((a – 1)x0 + a(1 – a)x–1 + d)an – d

a – 1
,

from which it follows that

a +
d

x̂2n – âx2n–1
= a +

d(a – 1)
((a – 1)x0 + a(1 – a)x–1 + d)an – d

=
((a – 1)x0 + a(1 – a)x–1 + d)an+1 – d
((a – 1)x0 + a(1 – a)x–1 + d)an – d

. (30)

By using (29) and (30), we have

x̂2n

(

a +
d

x̂2n – âx2n–1

)

=
(

(x0 – x–1)an+1 – (x0 – ax–1)
(x0 – ax–1)(a – 1)2

)

(

(a – 1)x0 + a(1 – a)x–1 + d
)

an+1 – d) (31)

=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

a2n+1

–
(

ax0 – a2x–1 +
dx0

x0 – ax–1
+

d(a + 1)
a – 1

)

an

a – 1
+

d
(a – 1)2 (32)

= x̂2n+1. (33)

From (28) and (32), we have

x̂2n+1 – âx2n =
d((x0 – x–1)an+1 – (x0 – ax–1))

(x0 – ax–1)(a – 1)
,
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from which it follows that

a +
d

x̂2n+1 – âx2n
= a +

(x0 – ax–1)(a – 1)
(x0 – x–1)an+1 – (x0 – ax–1)

=
(x0 – x–1)an+2 – (x0 – ax–1)
(x0 – x–1)an+1 – (x0 – ax–1)

. (34)

Using (31) and (34), we have

x̂2n+1

(

a +
d

x̂2n+1 – âx2n

)

=
(

((a – 1)(x0 – ax–1) + d)an+1 – d
(a – 1)2(x0 – ax–1)

)

(

(x0 – x–1)an+2 – (x0 – ax–1)
)

=
(a(x0 – x–1) + dx0

x0–ax–1
+ d

a–1

a – 1

)

a2n+2

–
(

x0 – ax–1 +
dx0

x0 – ax–1
+

2d
a – 1

)

an+1

a – 1
+

d
(a – 1)2

= x̂2n+2. (35)

Equations (26), (33), (35) together with induction show that (25) is a solution to (9). Hence,
we have the following theorem, which complements Theorem 1.

Theorem 2 Consider Eq. (9). If a �= 1, then the general solution to the equation is given by
Eq. (24).

2.2 Solving Eq. (9) by the method of substitution
Before we start describing the procedure for finding general solution to Eq. (9), which is
based on the method of substitution (use of some changes of variables), we would like to
point out that if

xn0 = 0 and xn0 �= axn0–1, (36)

for some n0 ∈ N0 (of course, we regard that terms xn are defined for –1 ≤ n ≤ n0), then
from (9) it follows that xn0+1 = 0, from which along with (36) it follows that xn0+1 – axn0 = 0,
implying that xn0+2 is not defined. Hence, such solutions are not well-defined. So, from now
on we may also assume that

xn �= 0, (37)

for every n ∈ N0. Value of x–1 can be equal to zero and it essentially does not effect the
final solution. However, since it effects some steps of this procedure for finding general
solution, we will also assume that x–1 �= 0.

Our first idea is to write Eq. (9) in the form of a product-type difference equations, which
along with systems of product-type difference equations have been considerably studied
(see, e.g., [28, 53–55] and the related references therein).
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So, first note that from (9) we have

xn+1 – axn =
dxn

xn – axn–1
, n ∈N0. (38)

Hence

xn – axn–1 =
dxn–1

xn–1 – axn–2
, n ∈N. (39)

By using (39) in (38), it follows that

xn+1 – axn =
xn

xn–1
(xn–1 – axn–2), n ∈N. (40)

Equation (40) can be written in the form

xn+1

xn
= a + 1 – a

xn–2

xn–1
, n ∈N. (41)

By using the change of variables

yn =
xn

xn–1
, n ∈N0, (42)

Equation (41) becomes

yn+1 = a + 1 –
a

yn–1
, n ∈N. (43)

Now note that the difference equation (43) is an equation with interlacing indices of
order two ([17, 20]). This means that the sequences

y(i)
m := y2m+i, (44)

for m ∈N0 and i = 0, 1, are two solutions to the first-order difference equation

zm+1 = a + 1 –
a

zm
, m ∈ N0. (45)

Equation (45) is a special case of the bilinear difference equation, or more precisely, of
Eq. (4). Hence, it is solvable, implying solvability of Eq. (43), which along with the change
of variables (42) implies solvability of Eq. (40).

There are two cases to be considered: (1) a = 1; (2) a �= 1.
Case a = 1. In this case Eq. (45) becomes

zm+1 = 2 –
1

zm
, m ∈N0. (46)

By using the change of variables

zm =
um

um–1
, m ∈ N0, (47)
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where we assume that u–1 is a nonzero number, we get

um+1 = 2um – um–1, m ∈N0. (48)

Since the roots of the characteristic polynomial ˜P2(λ) = λ2 – 2λ + 1 associated with
Eq. (48) are λ1 = λ2 = 1, then the general solution to Eq. (48) is

um = ĉ1m + ĉ2, m ≥ –1, (49)

from which it follows that

um = (u0 – u–1)m + u0 = u0(m + 1) – u–1m, m ≥ –1. (50)

By using (50) in (47), we obtain

zm =
u0(m + 1) – u–1m
u0m – u–1(m – 1)

=
z0(m + 1) – m
z0m – m + 1

, m ∈N0. (51)

From (44) and (51), it follows that

y2m+i = y(i)
m =

y(i)
0 (m + 1) – m
y(i)

0 m – m + 1
=

yi(m + 1) – m
yim – m + 1

,

for m ∈N0 and i = 0, 1, that is,

y2m =
y0(m + 1) – m
y0m – m + 1

=
x0(m + 1) – x–1m
x0m – x–1(m – 1)

, (52)

y2m+1 =
y1(m + 1) – m
y1m – m + 1

=
x1(m + 1) – x0m
x1m – x0(m – 1)

=
(x0 + dx0

x0–x–1
)(m + 1) – x0m

(x0 + dx0
x0–x–1

)m – x0(m – 1)

=
d(m + 1) + x0 – x–1

dm + x0 – x–1
, m ∈N0. (53)

From (42) we have

xn = x–1

n
∏

j=0

yj, n ≥ –1. (54)

Hence, (52)–(54) yield

x2n–1 = x–1

2n–1
∏

j=0

yj = x–1

n–1
∏

i=0

y2i

n–1
∏

i=0

y2i+1

= x–1

n–1
∏

i=0

x0(i + 1) – x–1i
x0i – x–1(i – 1)

n–1
∏

i=0

d(i + 1) + x0 – x–1

di + x0 – x–1

= x–1
x0n – x–1(n – 1)

x–1
· dn + x0 – x–1

x0 – x–1

=
(

(x0 – x–1)n + x–1
)

(

dn
x0 – x–1

+ 1
)

(55)
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= x–1 +
(

x0 – x–1 +
dx–1

x0 – x–1

)

n + dn2, (56)

for n ∈N0.
Employing (42), (52), (54) and (55), we get

x2n = x–1

2n
∏

j=0

yj = x2n–1y2n

=
(

(x0 – x–1)n + x–1
)

(

dn
x0 – x–1

+ 1
)

x0(n + 1) – x–1n
x0n – x–1(n – 1)

=
(

dn
x0 – x–1

+ 1
)

(

(x0 – x–1)n + x0
)

= x0 +
(

x0 – x–1 +
dx0

x0 – x–1

)

n + dn2, (57)

for n ∈N0.
It is easy to see that Eqs. (56) and (57) match with Eq. (7), which shows that the method

also leads to finding the general solution to Eq. (9) in this case.
Case a �= 1. By using the change of variables (47) in Eq. (45) we obtain

um+1 = (a + 1)um – aum–1, (58)

for m ∈N0.
Since the roots of the characteristic polynomial

̂P2(λ) = λ2 – (a + 1)λ + a

associated with homogeneous linear difference equation (58) are λ1 = a, λ2 = 1, then by
using the de Moivre formula (2) it follows that the general solution to Eq. (58) is

um =
(u0 – u–1)am+1 + au–1 – u0

a – 1
, (59)

for m ≥ –1.
Employing (59) in (47), we obtain

zm =
(u0 – u–1)am+1 + au–1 – u0

(u0 – u–1)am + au–1 – u0

=
(z0 – 1)am+1 + a – z0

(z0 – 1)am + a – z0
, (60)

for m ∈N0.
From (60), it follows that

y2m+i = y(i)
m =

(y(i)
0 – 1)am+1 + a – y(i)

0

(y(i)
0 – 1)am + a – y(i)

0
=

(yi – 1)am+1 + a – yi

(yi – 1)am + a – yi
,
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for m ∈N0 and i = 0, 1, from which together with (42) we have

y2m =
(y0 – 1)am+1 + a – y0

(y0 – 1)am + a – y0
=

(x0 – x–1)am+1 + ax–1 – x0

(x0 – x–1)am + ax–1 – x0
, (61)

y2m+1 =
(y1 – 1)am+1 + a – y1

(y1 – 1)am + a – y1
=

(x1 – x0)am+1 + ax0 – x1

(x1 – x0)am + ax0 – x1

=
((a – 1)x0 + dx0

x0–ax–1
)am+1 – dx0

x0–ax–1

((a – 1)x0 + dx0
x0–ax–1

))am – dx0
x0–ax–1

=
((a – 1)(x0 – ax–1) + d)am+1 – d
((a – 1)(x0 – ax–1) + d)am – d

, (62)

for m ∈N0.
By using (54), (61) and (62), we have

x2n–1 = x–1

n–1
∏

i=0

y2i

n–1
∏

i=0

y2i+1

= x–1

n–1
∏

i=0

(x0 – x–1)ai+1 + ax–1 – x0

(x0 – x–1)ai + ax–1 – x0

n–1
∏

i=0

((a – 1)(x0 – ax–1) + d)ai+1 – d
((a – 1)(x0 – ax–1) + d)ai – d

=
((x0 – x–1)an + ax–1 – x0)(((a – 1)(x0 – ax–1) + d)an – d)

(a – 1)2(x0 – ax–1)
, (63)

for n ∈N0.
Further, from (54), (61) and (63), we get

x2n = x2n–1y2n

=
((x0 – x–1)an + ax–1 – x0)(((a – 1)(x0 – ax–1) + d)an – d)

(a – 1)2(x0 – ax–1)

× (x0 – x–1)an+1 + ax–1 – x0

(x0 – x–1)an + ax–1 – x0

=
(((a – 1)(x0 – ax–1) + d)an – d)((x0 – x–1)an+1 + ax–1 – x0)

(a – 1)2(x0 – ax–1)
, (64)

for n ∈N0.
It is easy to see that Eqs. (63) and (64) match with Eq. (24) (see also (29) and (31)), which

shows that the method of substitution also leads to finding a general solution to Eq. (9) in
this case.

Remark 1 Recall that solvability of Eq. (45) obviously implies solvability of Eq. (40). But it
is not immediately clear why Eqs. (63) and (64) present a general solution to Eq. (9). To be
on the safe side the formulas should be checked by induction. Nevertheless, the question
needs an answer. The catch is that we consider here only well-defined solutions, that is,
the solutions which satisfy condition (10). This means that for such solutions Eq. (40) is
equivalent to the following one:

(xn+1 – axn)(xn – axn–1)
dxn

=
(xn – axn–1)(xn–1 – axn–2)

dxn–1
, n ∈ N,
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which is clearly equivalent to the following one:

(xn+1 – axn)(xn – axn–1)
dxn

=
(x1 – ax0)(x0 – ax–1)

dx0
, n ∈N. (65)

Now note that, from (9) with n = 0, we get

(x1 – ax0)(x0 – ax–1)
dx0

= 1. (66)

From (65) and (66), we get relation (9).
Hence, a well-defined solution to Eq. (9) satisfy Eqs. (9) and (40) simultaneously.
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